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Abstract� Iterative methods for inverse eigenvalue problems involve simultaneous approximation
of the matrix being sought and its eigenvectors� This paper revisits one such method for the inverse
Toeplitz eigenvalue problems by exploring the eigenstructure of centrosymmetric matrices� All itera�
tions are now taking place on a much smaller subspace� One immediate consequence is that the size
of the problem is e�ectively cut in half and hence the cost of computation is substantially reduced�
Another advantage is that eigenvalues with multiplicity up to two are necessarily separated into to
disjoint blocks and hence division by zero is unmistakably avoided� Numerical experiment seems to
indicate that the domain of convergence is also improved� In addition� a new scheme by using the
Wielandt�Ho�man theorem is proposed� This new mechanism makes it possible to handle the case
when eigenvalues with multiplicity greater than two are present�
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�� Introduction� For decades there has been considerable interest in inverse eigen�
values problems ��� �� ��� The inverse Toeplitz eigenvalue problem �ITEP	� in particular�
has intrigued researchers for years� A symmetric Toeplitz matrix T 
 �tij	 is completely

characterized by its �rst column r 
 �r�� � � � � rn�T with the relationship

tij 
 rji�jj���

It is convenient to denote T 
 T �r	� We are mainly interested in real matrices� Thus
by an ITEP we mean to �nd a vector r � Rn such that T �r	 has a prescribed set of real
numbers f��� � � � � �ng as its spectrum� The ITEP is best known for being intractable on
its analytic solvability� It has been a very challenging question whether real symmetric

Toeplitz matrices of dimension n � � can have arbitrary real spectra� Some discussion
can be found in �� ��� ���� Only very recently it is proved by Landau ���� that the
eigenvalues of Toeplitz matrices with a special regularity property ���� already attain all

possible n�tuple of real numbers� The proof� employing a topological degree argument�
inevitably is not constructive� The current paper is concerned with solving the ITEP
numerically� We shall present three methods�

At the �rst glance the ITEP involves exactly n unknowns in n equations� Thus the

problem appears to be a well�posed nonlinear algebraic system that can be solved by
classical methods� Indeed� a variety of iterative methods have already been proposed�
See� for example� ��� �� ��� ���� Continuation methods using di�erential equations ap�
proach can also be utilized ��� ��� Iterative methods necessarily involve simultaneous

approximation of the solution matrix and its eigenvectors� The updated eigenvectors
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sometimes are described implicitly as belonging to a symmetric matrix that has the

desired eigenvalues and is in some sense close to the current iterate for the solution
matrix � The process of obtaining such a symmetric matrix is called �lifting�� Con�
tinuation methods� in contrast� trace either isospectral �ows or orthogonal �ows� but
not both� Regardless� of most the methods we have known so far the iterations or the

�ows usually take place in the space S�n	 of real symmetric matrices� The matter of
fact is that the set T �n	 of real symmetric Toeplitz matrices is embedded in an even
smaller subspace C�n	 of real centrosymmetric matrices of which the spectral properties
are well understood ��� ���� It might be worthwhile� therefore� to explore methods that

work within C�n	 when solving the ITEP� and that is the main purpose of this paper�
It should be emphasized that the iterative methods given in ���� if applied to the

ITEP� will produce iterates that are Toeplitz and hence centrosymmetric� What lurks

behind the computation procedure� however� is the updating of eigenvectors that lifts to
non�centrosymmetric matrices� On the other hand� the algorithm proposed by Laurie
���� updates the eigenvectors explicitly and hence make it possible to adopt a strategy
of separating the eigenspace� That strategy in a sense has a similar e�ect of what we

are considering in this paper� Our methods� nevertheless� model after those in ��� since
a rigorous mathematical proof is readily available�

The eigenstructure of centrosymmetric matrices is quite special ��� ���� Some of
these properties are brie�y reviewed in x�� In particular� there is a neat way to divide

eigenvalues and the associated eigenvectors into two groups� that will be important in
helping our reconstruction� Methods proposed in this paper are variants of the classical
Newton method� Based on ideas in ��� ��� we shall discuss the notion of tangent and lift�
Because we want to work only in the subspace C�n	� the concept of parity come naturally

to the surface� To emphasize the signi�cance of parity� we consider graphically the ITEP
for n 
 � in x�� In particular� we demonstrate that symmetric Toeplitz matrices cannot
have arbitrary real spectra with arbitrary parities� Even with Landau�s result ���� in

mind� to solve the ITEP the eigenvalues must carry appropriately assigned parities�
Related to this issue� Delsarte and Genin pointed out �� that for an ITEP to have a
continuous solution as a function of eigenvalues� the eigenvalues arranged in ascending
order must alternate in parity� Some examples in x� also illustrate this point� Let

MC �
MC���� � � � � �n	 denote the isospectral subset of C�n	 associated with eigenvalues
f��� � � � � �ng� By taking advantage of the eigenstructure of C�n	� we describe in x� a
procedure of taking a tangent step from MC to T �n	� This crucial step is analogous
to that in the classical Newton method� We then described three ways to lift the

intersection of the tangent vector and T �n	 back toMC� We shall study how e�ectively
the ITEP is cut in half and how the division by zero can be avoided� We claim that
our methods converge quadratically� Convergence theorems involve only some modest
modi�cations of known results ��� �� and are given in x�� Finally� numerical examples

are presented in x� where we compare these methods and illustrate the convergence�

�� Spectral Properties of C�n	� This section contains a brief overview on spec�

tral properties of C�n	� All these results appear in the paper by Cantoni and Butler
���� and an earlier paper by Andrew ���� We summarize those that we need for the
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sake of convenience� For other properties and more recent studies on centrosymmetric

matrices� we refer readers to ���� �� and the references cited therein�
To describe the result more concisely� we introduce I and J � denoting respectively

the identity and the �backward identity� matrices� That is� J has ��s along the sec�
ondary �upper�right to lower�left	 diagonal and zeros elsewhere� The order of I and

J should be clear from the context� We say a vector v is symmetric if Jv 
 v� and
skew�symmetric if Jv 
 �v�

Recall that a symmetric and centrosymmetric matrix is one being symmetric with
respect to both the main and secondary diagonals� Thus there must be a rich depen�

dence among entries of a centrosymmetric matrix� We exploit these properties in the
following theorems�

Theorem ���� Depending upon if n is even or odd� any M � C�n	 is of the form�

M 


�
A CT

C JAJ

�

or

M 


�
��
A x CT

xT q xTJ

C Jx JAJ

�
�� �

where A�C � Rbn
�
�n

�
c� x � Rbn

�
c� q � R and A 
 AT �

With Theorem ��� in mind� we can further reduce a centrosymmetric matrix into
blocks by a special orthogonal similar transformation�

Theorem ���� Let M � C�n	�
�� Suppose n is even� De�ne

K �

�p
�

�
I �J
I J

�
�

Then K is orthogonal and

KMKT 


�
A� JC �

� A� JC

�
�

�� Suppose n is odd� De�ne

K �

�p
�

�
��
I � �J
�

p
� �

I � J

�
�� �

Then K is orthogonal and

KMKT 


�
��
A� JC � �

� q
p
�xT

�
p
�x A� JC

�
�� �
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We are now able to characterize the eigenstructure of a centrosymmetric matrix as

follows�
Corollary ���� Let Q denote the matrix of orthonormal eigenvectors of M �

C�n	� Then Q is of the form

Q 
 KTZ��	

with

Z 


�
Z� �
� Z�

�
���	

where Z� and Z� are orthogonal matrices whose columns are� respectively� eigenvectors

of A�JC and� depending upon whether n is even or odd� A�JC or

�
q

p
�xTp

�x A� JC

�
�

Upon multiplying out ��	� one can easily attest that for any M � C�n	 there are
exactly bn

�
c skew�symmetric eigenvectors and dn

�
e symmetric eigenvectors� For conve�

nience� we will say that an eigenvalue � of M is even or odd in accordance with if �
is associated with a symmetric or skew�symmetric eigenvector� Such a distinction of
parity is important because we will see later on that each given eigenvalue in an ITEP
must carry a speci�c parity in order that the problem is solvable� In other words� real

symmetric Toeplitz matrices cannot have arbitrary real spectra with arbitrary parity�
even if the cardinality of parities has been correctly divided into bn� c and dn�e� This
observation is in contrast to the the following theorem which is the converse of Corol�
lary ����

Theorem ���� Given an arbitrary diagonal matrix � 
 diagf��� � � � � �ng and
orthogonal matrices Z� � Rbn

�
c�bn

�
c and Z� � Rdn

�
e�dn

�
e� the matrix

M �
 KT

�
Z� �
� Z�

�
�

�
Z� �
� Z�

�T
K��	

is centrosymmetric� In this case� f��� � � � � �bn
�
cg are eigenvalues of M with odd parity

and f�bn
�
c��� � � � � �ng are eigenvalues with even parity�

�� An Example of n 
 �� We �nd it instructive to consider the geometry of an
ITEP when n 
 �� The subspace C��	 is of dimension �� Since we are interested in
isospectral subsets of C��	� we will examine only the cross�section where the trace of

a matrix is zero� In this case a matrix M 
 �mij� � C��	 can be represented by its
�rst column �m���m���m���T � R� since m�� 
 ��m��� Note that Toeplitz matrices
correspond to those points on the intersection of C��	 and the plane m�� 
 ��

A direct computation shows that the isospectral subsetMC of C��	 with eigenvalues
f��� ��� ��g where �� � �� � �� 
 � must satisfy the system�

�
�m�� � ���

�
	� � �

�
m�

�� 

���������

�

��

m�� 
 m�� � ��� �
��	
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Fig� �� Plots of m�� versus m�� forMC in C����

where � is a permutation of integers f�� �� �g� The �rst equation in ��	 indicates that
the isospectral subset consists of �three ellipses� whereas� by the second equation� these
ellipses reside at di�erent planes in R�� Illustrated in Figure � are the typical cases

when these ellipses are projected onto the �m���m��	�plane� It is interesting to note
that these ellipses must be such that one circumscribes the other two� By counting
the m���intercepts of these ellipses� it is readily proved that when n 
 � the ITEP has

exactly four real solutions if all given eigenvalues are distinct� and two real solutions if
one eigenvalue has multiplicity ��

The geometry in Figure � also illuminates two important ideas�
�� Each of the ellipses represents one parity assignment among eigenvalues� With

an inappropriate assignment of parities� the resulting isospectral centrosym�
metric matrices may contain no single Toeplitz matrix at all� This is evidenced
by the two left subplots in Figure � where each case involves one ellipse that
does not intersect the m���axis� This observation con�rms our previous claim

that real symmetric Toeplitz matrices cannot have arbitrary spectrum with
arbitrary parity� The �inappropriateness�� however� also depends on the mag�
nitude of eigenvalues� For example� suppose the eigenvalues are arranged in
the ascending order� The parity assignment OEE in the upper�left subplot

�the ellipse of the median size	 of Figure � gives rise to two solutions to the
ITEP while the same assignment in the lower�left subplot �the ellipse of the
smallest size	 gives no solution at all� The safeguard appears to be� as was also

suggested in �� ���� that the ordered eigenvalues alternate in parity �the ellipse
of the largest size	�

�� Recall that centrosymmetric matrices are of the form ��	� The geometry in
Figure � suggests that it is possible to work only within the subspace C�n	 and
to bring centrosymmetric matrices closer to a Toeplitz matrix by iteratively
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adjusting the two orthogonal matrices Z� and Z�� In doing so� all the matrices

generated are isospectral and the parity is left invariant� In other words� we
are dealing a re�ned ITEP where the prescribed spectrum also has a speci�ed
parity assignment� We will study in details how this iteration should be done
in the next section�

�� A Newton Method in C�n	� In an earlier paper ��� we have introduced a
geometry that interprets numerical methods in ��� as Newton methods done by tangent
and lift� Similar ideas have been extended successfully to solving inverse singular value

problems ���� Now we apply the same idea again to the ITEP with iterations restricted
in the subspace C�n	�

To make this note self�contained we recapitulate the idea as follows� Recall the
elementary fact that the new iterate x����� of a classical Newton step

x����� 
 x��� � �f ��x���		��f�x���	

for a function f � R �� R is precisely the x�intercept of the line which is tangent to
the graph of f at �x���� f�x���		� Our idea is to regard MC as playing the role of the

graph of f and the the subspace T �n	 of real symmetric Toeplitz matrices as the role of
the x�axis� We develop a procedure that emulates the classical Newton method doing
iterations between MC and T �n	� More precisely� we iteratively �nd a T �n	�intercept
of a tangent line from MC and then lift the intercept back to the surface MC� We

discuss the steps separately below�

���� A Tangent Step� Consider the set

OC�n	 �
 fKTZjZ 


�
Z� �
� Z�

�
� Z� � O�bn

�
c	� Z� � O�dn

�
e	g��	

where O�m	 stands for the group of all orthogonal matrices in Rm�m� It is easy to
see that OC�n	 is no longer a subgroup of O�n	 but is isomorphic to the manifold
O�bn

�
c	 � O�dn

�
e	� A tangent vector TQ�OC�n		 to OC�n	 at Q 
 KTZ therefore is of

the form

TQ�OC�n		 
 KT

�
Z�S� �
� Z�S�

�

 QS��	

with

S �


�
S� �

� S�

�
��	

where S� and S� are skew�symmetric matrices in Rbn
�
c�bn

�
c and Rdn

�
e�dn

�
e� respectively�

This realization helps to identify and maintain an �isospectral trajectory� in C�n	 as
we will describe now�

Renumbering the eigenvalues if necessary� we assume the parity has been assigned
as in Theorem ���� To emphasize the parity assignment� we rename the eigenvalues and

�



denote � �
 diagf��� � � � � �bn
�
c� ��� � � � �dn

�
eg� Then M�t	 
 Q�t	�Q�t	T with Q�t	 


KTZ�t	 for some one�parameter family Z�t	 of orthogonal matrices in the form ��	
constitutes an isospectral trajectory with �xed parity assignment in C�n	� Using ��	�
we further conclude the relationship

dM�t	

dt



dQ�t	

dt
�Q�t	T �Q�t	�

dQ�t	T

dt



	
Q�t	S�t	Q�t	T



M�t	�M�t	

	
Q�t	S�t	Q�t	T




where S�t	 is skew�symmetric matrix in the form �	� Thus any tangent vector TM�MC	

to MC at a point M 
 Q�QT � MC �about which a local chart can be de�ned	 must
be of the form

TM�MC	 
 �SM �M �S���	

where

�S �
 QSQT��	

is still skew�symmetric�
We are now ready to take a tangent step in the Newton method� GivenM ��� � MC�

by Corollary ��� there exists a Q��� 
 KTZ��� � OC�n	 such that

Q���TM ���Q��� 
 �����	

�Note that the parity in � is hence determined�	 From ��	� we know M ��� � �SM ��� �
M ��� �S with any skew�symmetric matrix �S in the form ��	 represents a tangent vector

ofMC emanating fromM ���� To search for an intersection T �r	 of such a tangent array
with the subspace T �n	� we need to �nd a skew�symmetric matrix �S��� and a vector
r����� such that

M ��� � �S���M ��� �M ��� �S��� 
 T �r�����	����	

We now explain how ���	 can be solved� Using ��	 and ���	� we obtain

� � S����� �S��� 
 Q���TT �r�����	Q��� 
 Z���TKT �r�����	KTZ�������	

Since T �r�����	 � C�n	� by Theorem ��� we can write

KT �r�����	KT 


�
T
�����
� �

� T
�����
�

�
����	

Note that every other term in ���	 by construction is ��block diagonal� It is truly
remarkable that ���	 now breaks down into two disjoint blocks�

�i � S
���
i �i � �iS

���
i 
 Z

���
i

T

T
�����
i Z

���
i � i 
 �� �����	

�



Obviously� such a decomposition will substantially reduce the overhead of computation�

Observe that the right�hand side of equation ���	 is linear in r������ Thus r�����

can be solved� More precisely� T �r�����	 can be written as

T �r�����	 

nX
j��

r
�����
j T �ej	

where ej stands for the j
th column of the identity matrix� It follows that

Z���TKT �r�����	KTZ��� 

nX
j��

r
�����
j

�
� Z

���
�

T

E
	j

� Z

���
� �

� Z
���
�

T

E
	j

� Z

���
�

�
� �

where for each j 
 �� � � � n� �
E

	j

� �

� E
	j

�

�

 KT �ej	K

T���	

is a constant matrix� Equating the n diagonal elements on both sides of ���	� we obtain
a linear system

J ���r����� 
 �����	

where

� �
 ���� � � � � �bn
�
c� ��� � � � �dn

�
e�
T��	

and

J
���
ij �


���
���

�Z
���
� 	T�iE

	j

� �Z

���
� 	�i� if � � i � bn�c�

�Z���
� 	T�iE

	j

� �Z���

� 	�i� if bn
�
c � i � n

���	

for j 
 �� � � � � n� with �Z
���
k 	�i denoting the ith column of the matrix Z

���
k � We stress

here that each of the vector�matrix�vectormultiplications in ���	 involves approximately
length of n

�
� Solving ���	� we obtain a T �n	�intercept T �r�����	�

���� A Lifting Step� The corresponding skew�symmetric matrix S��� does not

play a signi�cant role in the tangent step� Once T �r�����	 is determined� S��� �and
hence �S���	 can be obtained by comparing o��diagonal elements on both sides of ���	�
provided values within each group f��� � � � � �bn

�
cg and f��� � � � �dn

�
eg are distinct� Indeed�

we have

�S���
� 	ij 


�Z
���
� 	T�iT

�����
� �Z

���
� 	�j

�i � �j
���	

for � � i � j � bn
�
c and

�S���
� 	ij 


�Z
���
� 	T�iT

�����
� �Z

���
� 	�j

�i � �j
���	






for � � i � j � dn
�
e� Note that we do not require eigenvalues ��� � � � � �n to be mutually

distinct from each other� So the above procedure has another advantage over existing
methods� We remind readers a related result �� Theorem �� that if an eigenvalue of
a Toeplitz matrix has multiplicity greater than one� then the corresponding eigenspace
has an orthonormal basis which splits as evenly as possible between the associated

symmetric and skew�symmetric eigenvectors� Thus ���	 and ���	 work �ne so long as
any of the prescribed eigenvalues ��� � � � � �n has multiplicity less than or equal to two�
We now described how the matrix T �r�����	 from the �x�axis� T �n	 could be lifted back
to the �graph� MC� We shall discuss three ways to accomplish this task�

������ Lift by Approximation� If the matrix S��� exists� we may follow existing
methods �See ���� for example�	 by de�ning

R��� �


�
I �

S���

�

��
I � S���

�

���

���	

and hence the lift

M ����� �
 Q���R���TQ���TM ���Q���R���Q���T ����	

The motivation for de�nitions ���	 and ���	 has been discussed in ��� Section ��� In

practice the matrix M ����� needs not to be formed explicitly� In our formulation� only
the calculation of the orthogonal matrix

Z����� �
 Z���R���T���	

will be needed in equation ���	� We note again that the matrix R��� can be obtained

e�ciently since matrices on the right�hand side of ���	 are ��block diagonal� Similar
comments applies to ���	 as well� By now� one Newton step is completed� For later
reference� we shall call the above procedure a lift by approximation�

������ Lift by Global Ordering� The lift by approximation fails when the skew�

symmetric matrix S��� cannot be de�ned by either ���	 or ���	� This is the case where
multiple eigenvalues of the same parity exist� We now propose a new lifting mechanism
that by�passes the formulation of S���� The idea is to directly look for a matrixM ����� �
MC that is nearest to T �r�����	� The idea is depicted in Figure �� We formulate the
approach as follows�

Let

Z
�����T

KT �r�����	KTZ
�����




�
� �

�����
� �

� �
�����
�

�
����	

denote the spectral decomposition of T �r�����	� Note that the matrix

Z
�����

�


�
� Z

�����
� �

� Z
�����
�

�
����	

	



TT

M

M
(ν+1)

(ν+1)
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Fig� �� Geometry of Lift by Global Ordering�

can be obtained from eigenvectors of ���	� By the Wielandt�Ho�man theorem the
nearest matrix M ����� to T �r�����	 is given by

M ����� �
 KTZ
�����

�
�������
� �

� ��
�����
�

�
Z

�����T
K���	

where �������
� and �������

� are diagonal matrices whose elements as a whole are a rear�

rangement of f��� � � � � �ng in the same ordering as those in �
�����
� and �

�����
� � That is�

if � �
 ������ is the permutation such that

�
�����
��

� �
�����
��

� � � � �
�����
�n

��	

and � is such that

��� � ��� � � � � ��n ����	

then

��
�����
� �
 diag

�
��

�
��
�

� � � � � ��
�
��
b n
�
c

�
����	

�������
� �
 diag

�
��

�
��
b n
�
c��

� � � � � ��
�
��
n

�
���	

where ��� denotes the inverse of �� By taking

� 
 ������ �


�
��
�����
� �

� ��
�����
�

�
����	

Z����� �
 Z
�����

����	

we are thus at a new starting point for the next tangent step� i�e�� solving equation ���	�
To distinguish the rearrangement ���� from another approach yet to be described� we
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shall call the above procedure a lift by global ordering� It should be pointed out that

the global ordering might be so far�reaching that some elements in ��
���
� are switched

into ��
�����
� and hence the parity assignment will be changed� But more importantly� we

see that the skew�symmetric matrix S��� is not needed and hence multiple eigenvalues
with same parity can be handled more easily�

������ Lift by Local Ordering� To avoid both computing S��� and parity switch�
ing� we now modify the above procedure to a lift by local ordering� Instead of updating

������ according to the global ordering� the diagonal matrix � is kept �xed throughout

the iteration� But we do permute columns of Z
�����
� and Z

�����
� so that diagonal ele�

ments in the corresponding �
�����
� and �

�����
� are in the same ordering as those in �� and

��� respectively� For instance� suppose we have �� � � � � � �bn
�
c and �� � � � � � �dn

�
e

to begin with� then elements in �
�����
� and �

�����
� are arranged in ascending order� re�

spectively� The reorganized Z
�����

is taken to be Z����� for the next step� Using a
continuity argument� it is easy to see that upon reaching convergence the lift by global
ordering should become stablized and is equivalent to the lift by local ordering�

���� Algorithm� For clarity� we set forth in the following a algorithmic summary
of the methods we have described� We shall assume that the matrix K in Theorem ���

and the basis matrices E
	j

i for i 
 �� � and j 
 �� � � � n de�ned in ���	 are already

generated in the pre�processing stage�
Algorithm ���� Suppose the target spectrum with speci�ed parity is given by

� �
 ���� � � � � �bn
�
c� ��� � � � �dn

�
e�
T where �i and �j� respectively� are arranged in ascending

order among themselves� �This practice of rearrangement within parity is referred to
below as the �sorted� spectrum��

Choose an initial guess r���� Obtain the sorted spectrum ��r���	 and the correspond	

ing eigenvectors Z���
i for each of two diagonal blocks in KT �r���	KT �

For � 
 �� �� �� � � ��

�� Stop if k��r���	� �k is su
ciently small�
�� Form J ��� �See ����� and compute r����� by solving �����

� Form T
�����
i �


Pn
j�� r

�����
j E

	j

i for i 
 �� ��

�� If lift by approximation�
�a� Calculate the sorted spectrum ��r�����	�

�b� Form R
���
i for i 
 �� � according to ���� where S���

i follows from ���� and

����� respectively�

�c� De�ne Z�����
i �
 Z

���
i R

���
i

T

for i 
 �� ��
Elseif lift by global ordering�

�a� Calculate the sorted spectrum ��r�����	 and the corresponding eigenvectors

Z
�����
i for i 
 �� ��

�b� Rede�ne the target spectrum � according to the �total� ordering in ��r�����	�
Else lift by local ordering�
�a� Calculate the sorted spectrum ��r�����	 and the corresponding eigenvectors

Z
�����
i for i 
 �� ��

��



�� Convergence� The numerical method with lift by approximation is exactly

the same as Method III proposed by Friedland et al ��� for general inverse eigenvalue
problems� The only di�erence is that the iterations of our method are now restricted
to smaller sets� In particular� the lifted eigenvectors now reside in OC�n	 as opposed to

O�n	� The former is a manifold of dimension
	
dn
�
e�dn

�
e � �	 � bn

�
c�bn

�
c � �	



	� whereas

the latter is of dimension n�n� �		�� Since it is only the implementation that becomes
more perceptive yet the mathematics is the same� we may immediately establish the
following theorem�

Theorem ���� Suppose the ITEP with a prescribed parity has an exact solution T �

where the eigenvalues have multiplicity at most two� Suppose also that the matrix J ���

de�ned in ���� is nonsingular� Then T �r�����	 and Z����� �as in ���� can be de�ned�

Furthermore� suppose T �r���	 is su
ciently close to T �� Then

kT � � T �r�����	kF 
 O�kT � � T �r���	k�F 	����	

If �� and ���� are eigenvalues of T � and T �r���	� respectively� arranged in the ascending
order� then

k�� � ������k� 
 O�k�� � ����k��	����	

Proof� These results follow directly from ���� A similar proof can also be found in

����
In addition to the advantage that our approach with lift by approximation is com�

putationally more e�cient� we want to emphasize another advantage that the method
in ��� cannot do� i�e�� our method can handle eigenvalues with multiplicity up to two�

Our methods with lift by global or local ordering are new� They have the important
advantage of avoiding the computation of S��� and hence allow the eigenvalues to have
multiplicity greater than two� On the other hand� we have the following result on its

convergence�
Theorem ���� Suppose the ITEP with a prescribed parity has an exact solution

T �� Suppose also the matrix J ��� de�ned in ���� is nonsingular� Then T �r�����	 and

Z����� �as in ��� or as the reorganized Z
�����

in x������ are well de�ned� Furthermore�
suppose T �r���	 is su
ciently close to T �� Then

kT � � T �r�����	kF 
 O�kT � � T �r���	k�F 	����	

k�� � ������k� 
 O�k�� � ����k��	����	

Proof� Each of these two methods consists of a second order tangent step followed
by a �rst order projection� Our lift by ordering is a projection of shortest distance� No

other lifting procedure� including the lift of approximation� can be better� Our methods
with lift by ordering� therefore� converges at least quadratically� On the other hand�
according to ���� Theorem ����� a composition of a linearly convergent method and a

��



quadratically convergent method would result in at most a quadratically convergent

method� The assertions are proved�
Our numerical results certainly con�rm the claimed rate of convergence�
Thus far� our discussion has been centering around the development of a low�cost yet

high�e�ciency method� Like any other local methods� a good initial value is necessary

in order to realize the fast convergence� We conclude our discussion with one remark
on the initial value�

Finding a good initial value in general is a very di�cult task� For ITEP� fortunately�
several good starting strategies are available� For example� it is observed in ���� that

the choice r��� �
 ��� �� �� � � � � ��T usually works well� Our numerical experiment seems
to concur this suggestion� As another example� the initial value can be generated� if
necessary� from ordinary di�erential equations that are designed originally for solving

the ITEP by numerical integration� A full account of discussion on this di�erential
equation approach can be found in ��� among which we suggest in particular this initial
value problem

dX

dt

 Xk�X	 � k�X	X

X��	 
 ���	

where k�X	 
 �kij�X	� is the Toeplitz annihilator matrix de�ned by

kij�X	 �


��
��

xi���j � xi�j�� if � � i � j � n�
� if � � i 
 j � n�
xi�j�� � xi���j if � � j � i � n�

���	

Following the integral curve with high�accuracy integrator� we have always been able to

solve the ITEP numerically up to the integration error� We have thus long conjectured
that the ITEP is always solvable� only that an asymptotical analysis of the equilibrium
points is missing� Combined with the iterative method discussed in this paper� this

di�erential system can now be integrated at a much lower local error requirement just
so as to quickly reach within a neighborhood of its stable equilibrium from where the
iterative method is turned on to improve the accuracy�

�� Numerical Experiments� In this section we present some of our numerical
experiments� Our methods can be regarded as a re�nement of existing methods� es�
pecially that in ���� at reduced cost� We have already pointed out several main assets
of our methods� We feel� therefore� that at this stage it is more important to demon�

strate other interesting aspects of our algorithms than to demonstrate their practical
e�ciency� For the latter� more programming involvement including utilizing some more
specialized eigensolver could lead to further substantial savings� For convenience� all

numbers are displayed with only �ve digits although all calculations are done to the
machine accuracy�

Example �� We have pointed out earlier that an ITEP with inappropriate parity
assignment will have no solution� Just so that we can perceive what is going on in our

��
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Fig� �� Behaviors of Algorithms When Starting with the Wrong Orbit�

algorithms� we �rst consider a case of n 
 � where we purposefully assign the wrong
parity to the eigenvalues� We test the following problem

�� 
 ������� � ����� �� 
 ������ � ����� �� 
 ����� � �����

with �� having odd parity and the other two even� Figure � illustrates the behavior of
di�erent algorithms� Lifts by local ordering and by approximation keep the iteration

staying on the �wrong� orbit� although the shortest distance property in the local
ordering method keeps the iterations clustering at the left half of the ellipse� It is most
interesting to observe that in the lift by global ordering� the iterations eventually change
orbit and then come to convergence where �� should have odd parity� The ��dimensional

subplot in Figure � depicts the �jump�o�� of the iterations�
Example �� In this example� we demonstrate the local but quadratic convergence�

We �rst randomly generate a row vector c� � R� from a normal distribution with mean
� and variance �� Let r��� �
 ��� c��T � The eigenvalues of T �r���	 are taken as the

prescribed eigenvalues with known parity� We then perturb c� to c��� by a uniform
distribution between �� and � and call r��� �
 ��� c����T as an initial guess�

Table � includes r���� r��� and the corresponding limit point r��� for three test cases�
It is interesting to note that

�� The limit point r��� of a iteration is not necessarily the same as the original
vector r��� even though to which r��� is reasonably close�

�



Case �a	 Case �b	 Case �c	

r��� � � �
������������ ������������ �����������
����������� ����������� �����������

Original Value ���������� ���������� ����������
����������� ����������� ������������

r��� � � �
������������ ������������ �����������
����������� ���������� �����������

Initial Value ����������� ����������� �����������
����������� ������������ ������������

r��� ������������ ������������ �����������
������������ ������������ ������������
����������� ����������� �����������

Local Ordering ���������� ���������� �����������
����������� ����������� ������������

r��� ������������ � �����������
������������ ������������ �����������
����������� ����������� �����������

Approximation ���������� ���������� ����������
����������� ����������� ������������

r��� ������������ ������������� ������������
���������� ������������ �����������
���������� ������������ �����������

Global Ordering ���������� ����������� ������������
���������� ������������ ������������

Table �

Initial and Final Values of r��� for Example ��

��



Iterations Local Ordering Approximation Global Ordering

� ���������� ���������� �����������
� ���������� ���������� ����������
� ����������� ����������� ����������
� ���������� ����������� ����������
� ������������ ��������� �����������
� ���������� ���������� ����������

Table �

Errors of Eigenvalues for Case �a� in Example ��

�� The limit points of all three algorithms are not necessarily the same even though

they all start from the same r����
�� The eigenvalues of T �r���	 do agree with those of T �r�	 with the possibility of

parity change in the global ordering case�
Table � records the ��norm of the di�erence between eigenvalues of T �r���	 and

T �r���	 of the three algorithm� Since all three cases behaves similarly� we only report
the results from case �a	� It is obvious from the table that quadratic convergence indeed
occurs in all three methods� We note that in the �rst few iterations� the errors in the

global ordering method should always be less than those in the other two methods
because of the shortest distance property�

Example �� In this example we illustrate quadratic convergence of our methods
even when eigenvalues with multiplicity two are present� Again� so that we can com�

fortably present the data in the running text� we demonstrate the case n 
 �� We
randomly generate four real values and repeat one of them as the multiple eigenvalue�
The following is one set of eigenvalues we have tested�

�������� ���� � �������� ���� � �������� ���� � ����� � ���� � ������� �����

Since the parity is not known� we assume the possibly safest assignment� i�e�� the second

and the fourth are odd� and the rest are even� With initial guess r��� given by

��������� � ����� ������ � ����� ������ � ����� ������ � �����T �

all three methods work reasonably well� Both methods by local ordering and approxi�
mation converge to

���������� � ����� ������ � ������������ � ������������ � �����T

while the method by global ordering converges to

�������� � ������ ������ � ����� ������ � ����� ����� � ����������� � �����T �

The logarithmic plot of the ��norm of errors over the iterations is displayed in Figure ��

It is seen that at the initial stage the method by global ordering struggles for a while�

��
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Fig� �� Number of Iteration versus Logarithmic Scale of Errors in Example ��

but eventually the convergence becomes quadratic� We note that Method III in ��� will
not work for a multiply eigenvalue case like this�

Example �� We continue to challenge our methods by multiple eigenvalues� Sup�
pose the eigenvalues are

������������ � ������������ � ������������ � ������������ � �����������

Since one of the eigenvalue has multiplicity three� we already know the method by
approximation fails� It will be interesting to see how the other two methods perform�
Again we assume the possibly safest parity assignment� so ������������ appears twice
as an odd eigenvalue� With r��� given by

��� ������ � ����� ������ � ����� ����� � ����� ����� � �����T �

both methods by local and global ordering behave exactly the same� The limit point is
given by

������� � ������ ������ � ����� ������ � ����� ������ � ����� ������ � �����T �

The ��norm of errors in eigenvalues are

����� � ����� ������ � ����� ������ � ����� ���� � ����� ����� � ������

which shows quadratic convergence�

Example �� It is not true that the three methods we proposed always perform
similarly� Neither is it clear that any of these three method outperforms the others� We
illustrate these two points by an example of n 
 �� with eigenvalues�

������������ ����������� ������������ ������������ �����������

���������� ���������� ����������� ����������� ����������

������������ ������������ ����������� ���������� �����������

���������� ���������� ��������� ����������� ����������� �
��
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Consider �rst the case where the �rst two rows of eigenvalues above have odd parity

and the last two rows have even parity� Note that this parity assignment is not the
�safest possible�� With initial guess r��� given by

�� ���������� ����������� ���������� �����������
������������ ���������� ��������� ����������� ������������
������������ ����������� ����������� ���������� ������������
���������� ������������ ����������� ��������� ������������T �

we have observed that the method of global ordering performs best while the method

of approximation fails to converge in ��� iterations� The logarithmic plot of errors over
iterations is recorded in Figure �� In contrast� suppose now we arrange the eigenvalues
in the ascending order and assign the safest possible parity� i�e�� the parity alternates�
Then by using the same initial guess r���� we obtain a behavior as is depicted in Figure ��

showing that even the method by local ordering fails�
Example �� In this example� we apply our methods to the two numerical examples

given in ����� For comparison� we use the same vector r��� 
 ��� �� �� � � � ��T as the initial
value�

For the case of irregularly clustered eigenvalues f����� ���� ��� �� �g� our test results
using the safest parity assignment are presented in Figure � All three methods behave
similarly� except that the method by global ordering converges to a Toeplitz matrix

whose odd eigenvalues turn out to be f�� ���g instead of f�� ���g�
For the case of larger size problem where eigenvalues are

�� ��� ��� ��� �� ��� ��� ��� ��� ��� �� �� ��� ��� ���
��� ��� �� ��� �� ��� ��� ��� ��� �� �� ��� �� ��� ����

we assume the �rst row of eigenvalues are odd� and the second row are even� Our test
results are shown in Figure �� We �nd that all methods converge to the same point

�
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in seven iterations� and that methods by local ordering and global ordering behave

identically�

�� Conclusion� We have investigated the possibility of solving the ITEP within
the subspace C�n	 by fast and e�cient methods� Three methods that employ the

geometrical ideas of tangent and lift are presented� Our methods in a sense are a
re�nement of a Newton method proposed in ��� with several advantages� One important
advancement is that the case of multiple eigenvalues can now be handled� We also
have learned that parity assignment of eigenvalues plays an important role in whether

an ITEP is solvable� Numerical evidence strongly suggests that our methods have a
quadratic rate of convergence�
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