ON A NEWTON METHOD FOR
THE INVERSE TOEPLITZ EIGENVALUE PROBLEM
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Abstract. Iterative methods for inverse eigenvalue problems involve simultaneous approximation
of the matrix being sought and its eigenvectors. This paper revisits one such method for the inverse
Toeplitz eigenvalue problems by exploring the eigenstructure of centrosymmetric matrices. All itera-
tions are now taking place on a much smaller subspace. One immediate consequence is that the size
of the problem is effectively cut in half and hence the cost of computation is substantially reduced.
Another advantage is that eigenvalues with multiplicity up to two are necessarily separated into to
disjoint blocks and hence division by zero is unmistakably avoided. Numerical experiment seems to
indicate that the domain of convergence is also improved. In addition, a new scheme by using the
Wielandt-Hoffman theorem is proposed. This new mechanism makes it possible to handle the case
when eigenvalues with multiplicity greater than two are present.
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1. Introduction. For decades there has been considerable interest in inverse eigen-
values problems [2, 8, 9]. The inverse Toeplitz eigenvalue problem (ITEP), in particular,
has intrigued researchers for years. A symmetric Toeplitz matrix 7' = (¢,;) is completely
characterized by its first column r = [ry,...,7,]T with the relationship

Lij = T)imj|+1-

It is convenient to denote T' = T'(r). We are mainly interested in real matrices. Thus
by an ITEP we mean to find a vector r € R" such that T(r) has a prescribed set of real
numbers {A1,..., A\, } as its spectrum. The ITEP is best known for being intractable on
its analytic solvability. It has been a very challenging question whether real symmetric
Toeplitz matrices of dimension n > 5 can have arbitrary real spectra. Some discussion
can be found in [7, 10, 13]. Only very recently it is proved by Landau [13] that the
eigenvalues of Toeplitz matrices with a special regularity property [13] already attain all
possible n-tuple of real numbers. The proof, employing a topological degree argument,
inevitably is not constructive. The current paper is concerned with solving the ITEP
numerically. We shall present three methods.

At the first glance the ITEP involves exactly n unknowns in n equations. Thus the
problem appears to be a well-posed nonlinear algebraic system that can be solved by
classical methods. Indeed, a variety of iterative methods have already been proposed.
See, for example, [6, 9, 14, 15]. Continuation methods using differential equations ap-
proach can also be utilized [4, 5]. Iterative methods necessarily involve simultaneous
approximation of the solution matrix and its eigenvectors. The updated eigenvectors
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sometimes are described implicitly as belonging to a symmetric matrix that has the
desired eigenvalues and is in some sense close to the current iterate for the solution
matrix — The process of obtaining such a symmetric matrix is called "lifting”. Con-
tinuation methods, in contrast, trace either isospectral flows or orthogonal flows, but
not both. Regardless, of most the methods we have known so far the iterations or the
flows usually take place in the space S(n) of real symmetric matrices. The matter of
fact is that the set 7(n) of real symmetric Toeplitz matrices is embedded in an even
smaller subspace C(n) of real centrosymmetric matrices of which the spectral properties
are well understood [3, 11]. It might be worthwhile, therefore, to explore methods that
work within C(n) when solving the ITEP, and that is the main purpose of this paper.

It should be emphasized that the iterative methods given in [9], if applied to the
ITEP, will produce iterates that are Toeplitz and hence centrosymmetric. What lurks
behind the computation procedure, however, is the updating of eigenvectors that lifts to
non-centrosymmetric matrices. On the other hand, the algorithm proposed by Laurie
[14] updates the eigenvectors explicitly and hence make it possible to adopt a strategy
of separating the eigenspace. That strategy in a sense has a similar effect of what we
are considering in this paper. Our methods, nevertheless, model after those in [9] since
a rigorous mathematical proof is readily available.

The eigenstructure of centrosymmetric matrices is quite special [3, 11]. Some of
these properties are briefly reviewed in §2. In particular, there is a neat way to divide
eigenvalues and the associated eigenvectors into two groups, that will be important in
helping our reconstruction. Methods proposed in this paper are variants of the classical
Newton method. Based on ideas in [6, 9], we shall discuss the notion of tangent and lift.
Because we want to work only in the subspace C(n), the concept of parity come naturally
to the surface. To emphasize the significance of parity, we consider graphically the I[TEP
for n = 3 in §3. In particular, we demonstrate that symmetric Toeplitz matrices cannot
have arbitrary real spectra with arbitrary parities. Even with Landau’s result [13] in
mind, to solve the ITEP the eigenvalues must carry appropriately assigned parities.
Related to this issue, Delsarte and Genin pointed out [7] that for an ITEP to have a
continuous solution as a function of eigenvalues, the eigenvalues arranged in ascending
order must alternate in parity. Some examples in §6 also illustrate this point. Let
Me := Mc(A, ..., Ay) denote the isospectral subset of C(n) associated with eigenvalues
{A1,..., A ). By taking advantage of the eigenstructure of C(n), we describe in §4 a
procedure of taking a tangent step from M to 7 (n). This crucial step is analogous
to that in the classical Newton method. We then described three ways to lift the
intersection of the tangent vector and 7 (n) back to M¢. We shall study how effectively
the ITEP is cut in half and how the division by zero can be avoided. We claim that
our methods converge quadratically. Convergence theorems involve only some modest
modifications of known results [6, 9] and are given in §5. Finally, numerical examples
are presented in §6 where we compare these methods and illustrate the convergence.

2. Spectral Properties of C(n). This section contains a brief overview on spec-
tral properties of C(n). All these results appear in the paper by Cantoni and Butler
[3], and an earlier paper by Andrew [1]. We summarize those that we need for the
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sake of convenience. For other properties and more recent studies on centrosymmetric
matrices, we refer readers to [11, 17] and the references cited therein.

To describe the result more concisely, we introduce I and J, denoting respectively
the identity and the "backward identity” matrices. That is, J has 1’s along the sec-
ondary (upper-right to lower-left) diagonal and zeros elsewhere. The order of I and
J should be clear from the context. We say a vector v is symmetric if Jv = v, and
skew-symmetric if Jo = —wv.

Recall that a symmetric and centrosymmetric matrix is one being symmetric with
respect to both the main and secondary diagonals. Thus there must be a rich depen-
dence among entries of a centrosymmetric matrix. We exploit these properties in the
following theorems.

THEOREM 2.1. Depending upon if n is even or odd, any M € C(n) is of the form:

A CT
w=¢ fu]
or
A 2 (C7
M=|22T ¢ 2TJ |,
C Jx JAJ

where A,C € RI5*3) 2z € RI3) g€ R and A = AT,
With Theorem 2.1 in mind, we can further reduce a centrosymmetric matrix into
blocks by a special orthogonal similar transformation.

THEOREM 2.2. Let M € C(n).
1. Suppose n is even. Define

[
=5l g |

Then K is orthogonal and

A—JC 0
- T
KMK _[ 0 A—l—JC]'

2. Suppose n is odd. Define

| I 0 —J
Ki=—10 v2 0
V2 I 0 J
Then K is orthogonal and
A-JC 0 0
KMKT = 0 g V22T

0 V2&¢ A+ JC
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We are now able to characterize the eigenstructure of a centrosymmetric matrix as
follows.

COROLLARY 2.3. Let () denote the matriz of orthonormal eigenvectors of M €
C(n). Then Q is of the form

(1) Q=K"7
with

Zi 0
2) St

where 71 and Zy are orthogonal matrices whose columns are, respectively, eigenvectors

T

of A—JC and, depending upon whether n is even or odd, A+JC or l \/qﬁx A\/E%]C ] .

Upon multiplying out (1), one can easily attest that for any M € C(n) there are
exactly | 5] skew-symmetric eigenvectors and [4] symmetric eigenvectors. For conve-
nience, we will say that an eigenvalue A of M is even or odd in accordance with if A
is associated with a symmetric or skew-symmetric eigenvector. Such a distinction of
parity is important because we will see later on that each given eigenvalue in an I'TEP
must carry a specific parity in order that the problem is solvable. In other words, real
symmetric Toeplitz matrices cannot have arbitrary real spectra with arbitrary parity,
even if the cardinality of parities has been correctly divided into [%] and [5]. This
observation is in contrast to the the following theorem which is the converse of Corol-

lary 2.3.

THEOREM 2.4. Given an arbitrary diagonal matriz A = diag{\,..., A\,} and
orthogonal matrices 7y € RLZIX3) and 7, € RIZIXI31 | the matriz
Z 0 zo0 ]
_ T | 4 1 -
(3) M:=K [0 ZQ]AlO ZQ]A
is centrosymmetric. In this case, {\,.. .,)\ng} are eigenvalues of M with odd parity
and {A|2|41,. .., An} are eigenvalues with even parity.

3. An Example of n = 3. We find it instructive to consider the geometry of an
ITEP when n = 3. The subspace C(3) is of dimension 4. Since we are interested in
isospectral subsets of C(3), we will examine only the cross-section where the trace of
a matrix is zero. In this case a matrix M = [my;] € C(3) can be represented by its
first column [mn,mlg,mlg]T € R? since mgy = —2my;. Note that Toeplitz matrices
correspond to those points on the intersection of C(3) and the plane m; = 0.

A direct computation shows that the isospectral subset M of C(3) with eigenvalues
{A1, A2, A3} where A; + Ay + A3 = 0 must satisfy the system:

/\01 2 1 2 _ (/\02_A03)2
(4) { (ma 4 )"+ 212 = 16
miz = My — )\017
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distinct eigenvalues symmetric eigenvalues

05 05

0 0

05 -05
T s 0 05 1 T s 0 05 1

near eigenvalues multiple eigenvalues

05 05

0 0

05 -05
L s 0 05 1 T s 0 05 1

FiG. 1. Plots of myy versus mya for Mc in C(3).

where o is a permutation of integers {1,2,3}. The first equation in (4) indicates that
the isospectral subset consists of "three ellipses” whereas, by the second equation, these
ellipses reside at different planes in R®. Illustrated in Figure 1 are the typical cases
when these ellipses are projected onto the (mq1, mqz)-plane. It is interesting to note
that these ellipses must be such that one circumscribes the other two. By counting
the mqy-intercepts of these ellipses, it is readily proved that when n = 3 the ITEP has
exactly four real solutions if all given eigenvalues are distinct, and two real solutions if
one eigenvalue has multiplicity 2.
The geometry in Figure 1 also illuminates two important ideas.

1. Each of the ellipses represents one parity assignment among eigenvalues. With
an inappropriate assignment of parities, the resulting isospectral centrosym-
metric matrices may contain no single Toeplitz matrix at all. This is evidenced
by the two left subplots in Figure 1 where each case involves one ellipse that
does not intersect the mis-axis. This observation confirms our previous claim
that real symmetric Toeplitz matrices cannot have arbitrary spectrum with
arbitrary parity. The "inappropriateness’, however, also depends on the mag-
nitude of eigenvalues. For example, suppose the eigenvalues are arranged in
the ascending order. The parity assignment OFE in the upper-left subplot
(the ellipse of the median size) of Figure 1 gives rise to two solutions to the
ITEP while the same assignment in the lower-left subplot (the ellipse of the
smallest size) gives no solution at all. The safeguard appears to be, as was also
suggested in [7, 13], that the ordered eigenvalues alternate in parity (the ellipse
of the largest size).

2. Recall that centrosymmetric matrices are of the form (3). The geometry in
Figure 1 suggests that it is possible to work only within the subspace C(n) and
to bring centrosymmetric matrices closer to a Toeplitz matrix by iteratively
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adjusting the two orthogonal matrices Z; and Z;. In doing so, all the matrices
generated are isospectral and the parity is left invariant. In other words, we
are dealing a refined ITEP where the prescribed spectrum also has a specified
parity assignment. We will study in details how this iteration should be done
in the next section.

4. A Newton Method in C(n). In an earlier paper [6] we have introduced a
geometry that interprets numerical methods in [9] as Newton methods done by tangent
and lift. Similar ideas have been extended successfully to solving inverse singular value
problems [6]. Now we apply the same idea again to the ITEP with iterations restricted
in the subspace C(n).

To make this note self-contained we recapitulate the idea as follows. Recall the

v+1)

elementary fact that the new iterate ! of a classical Newton step

A = ) (20 ()

for a function f : R — R is precisely the z-intercept of the line which is tangent to
the graph of f at (¢, f(x))). Our idea is to regard Mg as playing the role of the
graph of f and the the subspace 7 (n) of real symmetric Toeplitz matrices as the role of
the x-axis. We develop a procedure that emulates the classical Newton method doing
iterations between M¢ and 7 (n). More precisely, we iteratively find a 7 (n)-intercept
of a tangent line from M and then lift the intercept back to the surface My. We
discuss the steps separately below:

4.1. A Tangent Step. Consider the set

5 o= K'Ziz= | D) | meouinme oy

where O(m) stands for the group of all orthogonal matrices in R™*™. It is easy to
see that Oc¢(n) is no longer a subgroup of O(n) but is isomorphic to the manifold
O(15]) x O([%1])- A tangent vector To(Oc(n)) to Oc(n) at Q = K*Z therefore is of

2
the form

) ro(octny = &7 | A0 0| = gs
with
) s=10 6

where S and S, are skew-symmetric matrices in RLZI¥LZ] and RIZ1X[Z1 respectively.
This realization helps to identify and maintain an "isospectral trajectory” in C(n) as
we will describe now.
Renumbering the eigenvalues if necessary, we assume the parity has been assigned
as in Theorem 2.4. To emphasize the parity assignment, we rename the eigenvalues and
6



denote A := diag{¢1,...,d2),%1,... ¢z} Then M(1) = QHAQ(H)T with Q(t) =
KTZ(t) for some one-parameter family Z(t) of orthogonal matrices in the form (2)
constitutes an isospectral trajectory with fixed parity assignment in C(n). Using (6),
we further conclude the relationship

dM(1) dQ(t) T dQ(t)"
7 = TAQ@) + Q1A 7t

= (QU)SMQE)T) M) — M(1) (Q)SHQ())

where S(%) is skew-symmetric matrix in the form (7). Thus any tangent vector Th(Mc)

to Mc at a point M = QAQT € M, (about which a local chart can be defined) must
be of the form

(8) Tn(Me) = SM — M,
where
(9) S:=08Q"

is still skew-symmetric.
We are now ready to take a tangent step in the Newton method. Given M) € Me,
by Corollary 2.3 there exists a Q) = KT Z(") € O¢(n) such that

(10) QW MVQW = A

(Note that the parity in A is hence determined.) From (8), we know M®) 4+ SM®) —
MW S with any skew-symmetric matrix S in the form (9) represents a tangent vector
of M¢ emanating from M®). To search for an intersection T'(r) of such a tangent array

with the subspace 7 (n), we need to find a skew-symmetric matrix S and a vector
r(+1) such that

(11) MW 4 g0 ) ) gt — T(T(V-H)),

We now explain how (11) can be solved. Using (9) and (10), we obtain

(12) A+ SN = ASW) = QU ()W) = ZWT KA KT 700,
Since T'(r**1)) € C(n), by Theorem 2.2 we can write

i y i T(l/-l—l) 0
(13) AT(T( +1))[xT — [ 10 TQ(UH) )

Note that every other term in (12) by construction is 2-block diagonal. It is truly
remarkable that (12) now breaks down into two disjoint blocks,

T
(14) A+ SMIA; — A S =zl Z0 2 9,
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Obviously, such a decomposition will substantially reduce the overhead of computation.
Observe that the right-hand side of equation (12) is linear in r®+Y. Thus »*+)
can be solved. More precisely, T'(r(**1)) can be written as

n

T(rtH0) = 3T ()

=1

where ¢; stands for the 57 column of the identity matrix. It follows that

n T j v
Z(U)T[(T(T(U—I—l))[(TZ(U) — Z r(u+1) Zl( ) E%J]Zl( ) . 0
— J 0 Z(”) E[J]z(”) ’
=1 2 2 49
where for each 7 =1,...n,
EW o ) T
(15) [ 0 E%?] =K T(ej)]&

is a constant matrix. Equating the n diagonal elements on both sides of (12), we obtain
a linear system

(16) JWpr) =y

where

(17) N (TR TS
and

ZNEEWN (70N it <a < |2
1 1 1 2
(18) JY =
(Z VRS (Z5)) e, 1 [5) < i <m

for y = 1,...,n, with (Z,gy))*i denoting the :** column of the matrix Z,gy). We stress
here that each of the vector-matrix-vector multiplications in (18) involves approximately
length of 7. Solving (16), we obtain a 7 (n)-intercept T(r(”"'l)).

4.2. A Lifting Step. The corresponding skew-symmetric matrix S does not
play a significant role in the tangent step. Once T(r**1) is determined, S™ (and
hence 5’(”)) can be obtained by comparing off-diagonal elements on both sides of (12),
provided values within each group {1,..., ¢z} and {¢1,... [z} are distinct. Indeed,
we have

(ZET ().

*7

b — ¢;

(19) (S1)i; =

for 1 <7<y <[%] and

2T,

*7

i — 1p;
8
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for 1 <4 < j < [%]. Note that we do not require eigenvalues Ay, ..., A, to be mutually
distinct from each other. So the above procedure has another advantage over existing
methods. We remind readers a related result [7, Theorem 8] that if an eigenvalue of
a Toeplitz matrix has multiplicity greater than one, then the corresponding eigenspace
has an orthonormal basis which splits as evenly as possible between the associated
symmetric and skew-symmetric eigenvectors. Thus (19) and (20) work fine so long as
any of the prescribed eigenvalues Ay, ..., A\, has multiplicity less than or equal to two.
We now described how the matrix T'(r*+1) from the "z-axis” 7 (n) could be lifted back
to the 7graph” M. We shall discuss three ways to accomplish this task.

4.2.1. Lift by Approximation. If the matrix S*) exists, we may follow existing
methods (See [9], for example.) by defining

G g\t
(v) . _
o e (129) (1-50)

and hence the lift

(22) MY .= ) g T

The motivation for definitions (21) and (22) has been discussed in [6, Section 3]. In

v+1)

practice the matrix M needs not to be formed explicitly. In our formulation, only

the calculation of the orthogonal matrix

(23) 7041 = 7 gt

will be needed in equation (12). We note again that the matrix R can be obtained
efficiently since matrices on the right-hand side of (21) are 2-block diagonal. Similar
comments applies to (23) as well. By now, one Newton step is completed. For later
reference, we shall call the above procedure a [lift by approximation.

4.2.2. Lift by Global Ordering. The lift by approximation fails when the skew-
symmetric matrix S cannot be defined by either (19) or (20). This is the case where
multiple eigenvalues of the same parity exist. We now propose a new lifting mechanism
that by-passes the formulation of S®). The idea is to directly look for a matrix M+ ¢
M that is nearest to 7'(r*1). The idea is depicted in Figure 2. We formulate the
approach as follows.

Let

—(l/-l—l)T

(24) 7V KT (e KTZ Y 2

A
0 K(zl/-l—l)

denote the spectral decomposition of 7'(r**1). Note that the matrix

(25) om0 ]




lift by global ordering

1
(v+1) ™

T(n)

(v+1)

Fia. 2. Geometry of Lift by Global Ordering.

can be obtained from eigenvectors of (13). By the Wielandt-Hoffman theorem the
nearest matrix M*+1) to T'(r+V) is given by

— AHD — T
(26) MO = 70 | A N(PH) AR
0 A5
where M”“) and /N\(QU—H) are diagonal matrices whose elements as a whole are a rear-
rangement of {A,...,A,} in the same ordering as those in Kgy-l_l) and K(;-H). That is,
if o := o1 is the permutation such that
(27) A XU <3

and p is such that

(28) )\Pl S )\02 ° S )\Pn7
then
(29) AT = diag {Apc_l U } :
1 L3]
(30) AV™ = diag {Apc_l ,...,Apc_l}
1B 1+1 "
where 7! denotes the inverse of o. By taking
ATV
31 A=AV = ! . :
( ) 0 A(2V+1)
(32) 7040 = 7

we are thus at a new starting point for the next tangent step, i.e., solving equation (12).
To distinguish the rearrangement p,-1 from another approach yet to be described, we
10



shall call the above procedure a lift by global ordering. 1t should be pointed out that
the global ordering might be so far-reaching that some elements in M”) are switched
into /N\(QU—H) and hence the parity assignment will be changed. But more importantly, we
see that the skew-symmetric matrix S®) is not needed and hence multiple eigenvalues

with same parity can be handled more easily.

4.2.3. Lift by Local Ordering. To avoid both computing S) and parity switch-
ing, we now modify the above procedure to a lift by local ordering. Instead of updating
AW according to the global ordering, the diagonal matrix A is kept fixed throughout
the iteration. But we do permute columns of 751,4_1) and 7(2%'_1) so that diagonal ele-
ments in the corresponding Kgy-l_l) and K(;H) are in the same ordering as those in Ay and
Az, respectively. For instance, suppose we have ¢; < ... < ¢z and ¢ < ... < Yy

to begin with, then elements in Kgy-l_l) and K(;-H) are arranged in ascending order, re-

spectively. The reorganized 7™ is taken to be ZOt1 for the next step. Using a
continuity argument, it is easy to see that upon reaching convergence the lift by global
ordering should become stablized and is equivalent to the lift by local ordering.

4.3. Algorithm. For clarity, we set forth in the following a algorithmic summary
of the methods we have described. We shall assume that the matrix A in Theorem 2.2
and the basis matrices EZ[]] for ¢ = 1,2 and j = 1,...n defined in (15) are already
generated in the pre-processing stage.

ALGORITHM 4.1. Suppose the target spectrum with specified parity is given by
A=, TENP P .L/J[g]]T where ¢; and 1p;, respectively, are arranged in ascending
order among themselves. (This practice of rearrangement within parity is referred to
below as the "sorted” spectrum.)

Choose an initial guess r°). Obtain the sorted spectrum A(r(®) and the correspond-
ing eigenvectors ZZ»(O) for each of two diagonal blocks in KT (rO)KT.

Forv=20,1,2,...,

1. Stop if [AN(rW)) — \|| is sufficiently small.
2. Form JW) (See (18)) and compute r*+t1) by solving (16).
3. Form TZ»(U—H) =20 T;UH)EP] foro=1,2.
4. If lift by approximation,
(a) Calculate the sorted spectrum A(r+1),
(b) Form REU) fori=1,2 according to (21) where SZ»(U) follows from (19) and
(20), respectively.

(¢) Define ZZ»(U—H) = ZZ»(V)R?/)T fore=1,2.
Elseif lift by global ordering,
(a) Caleulate the sorted spectrum Mr+Y) and the corresponding eigenvectors
ZZ»(U—H) fori=1,2.
(b) Redefine the target spectrum \ according to the “total” ordering in A\(r+V).
Else lift by local ordering,
(a) Caleulate the sorted spectrum Mr+Y) and the corresponding eigenvectors

ZZ»(U—H) fori=1,2.
11



5. Convergence. The numerical method with lift by approximation is exactly
the same as Method 111 proposed by Friedland et al [9] for general inverse eigenvalue
problems. The only difference is that the iterations of our method are now restricted
to smaller sets. In particular, the lifted eigenvectors now reside in O¢(n) as opposed to

O(n). The former is a manifold of dimension ((ﬂ ([=1—=1)+ [&]( L%J — 1)) /2 whereas

2 U172 2
the latter is of dimension n(n — 1)/2. Since it is only the implementation that becomes

more perceptive yet the mathematics is the same, we may immediately establish the
following theorem.

THEOREM 5.1. Suppose the ITEP with a prescribed parity has an exact solution T™
where the eigenvalues have multiplicity at most two. Suppose also that the matriz J)
defined in (16) is nonsingular. Then T(r¥+Y) and ZW+Y (as in (23)) can be defined.
Furthermore, suppose T(r(o)) is sufficiently close to T™. Then

(33) |17 =T e = O™ = T )]17).

If X and \¥) are eigenvalues of T* and T(r™)), respectively, arranged in the ascending
order, then

(34) 1A = AL, = O([]A" = AL3).

Proof. These results follow directly from [9]. A similar proof can also be found in
[6]. O

In addition to the advantage that our approach with lift by approximation is com-
putationally more efficient, we want to emphasize another advantage that the method
in [9] cannot do, i.e., our method can handle eigenvalues with multiplicity up to two.

Our methods with lift by global or local ordering are new. They have the important
advantage of avoiding the computation of S*) and hence allow the eigenvalues to have
multiplicity greater than two. On the other hand, we have the following result on its
convergence.

THEOREM 5.2. Suppose the ITEP with a prescribed parity has an exact solution
T*. Suppose also the matriz JW¥) defined in (16) is nonsingular. Then T(r®*V) and

ZWtY (as in (32) or as the reorganized AR §4.2.3) are well defined. Furthermore,
suppose T(r)) is sufficiently close to T*. Then

(35) 1T =T = O(IT* = T(M)IE),
(36) I = A = O(x = AV

Proof. Each of these two methods consists of a second order tangent step followed
by a first order projection. Our lift by ordering is a projection of shortest distance. No
other lifting procedure, including the lift of approximation, can be better. Our methods
with lift by ordering, therefore, converges at least quadratically. On the other hand,
according to [16, Theorem 2.4], a composition of a linearly convergent method and a
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quadratically convergent method would result in at most a quadratically convergent
method. The assertions are proved. 0O

Our numerical results certainly confirm the claimed rate of convergence.

Thus far, our discussion has been centering around the development of a low-cost yet
high-efficiency method. Like any other local methods, a good initial value is necessary
in order to realize the fast convergence. We conclude our discussion with one remark
on the initial value.

Finding a good initial value in general is a very difficult task. For ITEP, fortunately,
several good starting strategies are available. For example, it is observed in [14] that
the choice ) :=1[0,1,0,...,0]7 usually works well. Our numerical experiment seems
to concur this suggestion. As another example, the initial value can be generated, if
necessary, from ordinary differential equations that are designed originally for solving
the ITEP by numerical integration. A full account of discussion on this differential
equation approach can be found in [5] among which we suggest in particular this initial
value problem

dd—)t( = XK(X) - k(X)X
(37) X(0) = A

where k(X) = [k;;(X)] is the Toeplitz annihilator matrix defined by

Tiy1;— Tij1 i1 <i<j<n,
(38) kij(X) = § 0 if1<i=j<n,
Tijo1— Tipr,y; L1 <j<i<n

Following the integral curve with high-accuracy integrator, we have always been able to
solve the ITEP numerically up to the integration error. We have thus long conjectured
that the ITEP is always solvable, only that an asymptotical analysis of the equilibrium
points is missing. Combined with the iterative method discussed in this paper, this
differential system can now be integrated at a much lower local error requirement just
so as to quickly reach within a neighborhood of its stable equilibrium from where the
iterative method is turned on to improve the accuracy.

6. Numerical Experiments. In this section we present some of our numerical
experiments. Our methods can be regarded as a refinement of existing methods, es-
pecially that in [9], at reduced cost. We have already pointed out several main assets
of our methods. We feel, therefore, that at this stage it is more important to demon-
strate other interesting aspects of our algorithms than to demonstrate their practical
efficiency. For the latter, more programming involvement including utilizing some more
specialized eigensolver could lead to further substantial savings. For convenience, all
numbers are displayed with only five digits although all calculations are done to the
machine accuracy.

Example 1. We have pointed out earlier that an ITEP with inappropriate parity
assignment will have no solution. Just so that we can perceive what is going on in our

13
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Fia. 3. Behaviors of Algorithms When Starting with the Wrong Orbit.

algorithms, we first consider a case of n = 3 where we purposefully assign the wrong
parity to the eigenvalues. We test the following problem

A= —2.4128 x 1017, Ay = —2.6407 x 107", A3 = 2.6769 x 107,

with A3 having odd parity and the other two even. Figure 3 illustrates the behavior of
different algorithms. Lifts by local ordering and by approximation keep the iteration
staying on the "wrong” orbit, although the shortest distance property in the local
ordering method keeps the iterations clustering at the left half of the ellipse. It is most
interesting to observe that in the lift by global ordering, the iterations eventually change
orbit and then come to convergence where Ay should have odd parity. The 3-dimensional
subplot in Figure 3 depicts the "jump-off” of the iterations.

Example 2. In this example, we demonstrate the local but quadratic convergence.
We first randomly generate a row vector ¢* € R* from a normal distribution with mean
0 and variance 1. Let r# := [0,¢#]". The eigenvalues of T'(r(#)) are taken as the
prescribed eigenvalues with known parity. We then perturb ¢# to ¢(® by a uniform
distribution between -1 and 1 and call (© := [0, ®]7 as an initial guess.

Table 1 includes r#) | 7 and the corresponding limit point r*) for three test cases.
It is interesting to note that

1. The limit point ™) of a iteration is not necessarily the same as the original
vector 7#) even though to which r(®) is reasonably close.

14



Case (a) ‘ Case (b) ‘ Case (c) ‘
r(#) 0 0 0
22.0413x1072 | -9.2349x 107" | -3.3671x 107!
1.6065%x 1010 | -7.0499x1072 | 4.1523x107!
Original Value | 8.4765x107* 1.4789x107" | 1.5578x101°
2.6810x10~" | -5.5709%x 107" | -2.4443x10%°
r(©) 0 0 0
22.8351x 1071 | -1.8024x10%° | 6.3658x 107!
9.3953x10~" | 7.3881x107! | 4.0318x10~*
Initial Value 8.2068x 107" | 1.5694x10~" | 1.0901x10%°
1.0634x 1070 | -5.2451x107" | -3.2628 x 1010
() 2.0426x 10716 | 2.2204x 10716 | 7.4940x 1016
22.0413x1072 | -9.2349x 107" | -3.5391 x 107!
1.6065%x 1070 | -7.0499x1072 | 4.3645%x107!
Local Ordering | 8.4765x107" | 1.4789x107" | 1.5244x10%°
2.6810x 107" | -5.5709%x 107" | -2.4655x107°
r(*) 8.6831x 10716 0] 4.7184x10716
22.0413x1072 | -9.2349x 107" | -3.3671x 107!
1.6065%x 1010 | -7.0499x1072 | 4.1523x107!
Approximation | 8.4765x1071 1.4789x107! | 1.5578x10%°
2.6810x10~" | -5.5709%x 107" | -2.4443x10%°
() 2.4113x1071% | -1.1102x 1076 | 6.1062x 1016
29.3778 %1072 | -9.2646x107" | 3.5391x107!
1.5174x10M° | -6.1419%x1072 | 4.3645%x 1071
Global Ordering | 9.9597x10~' | 1.3518x10~" | -1.5244x10%°
5.7042x 107" | -5.4694x 107" | -2.4655x107°

TABLE 1

Initial and Final Values of V) for Example 2.
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Iterations ‘ Local Ordering ‘ Approximation ‘ Global Ordering

0 1.3847x 1010 1.3847x 1010 1.2194x 1010

1 7.1545x 107! 7.1545x 107! 4.2739%x 1071

2 2.1982x 1072 6.3866x 1072 1.4179x107?

3 5.1223x107° 2.0606x 10~ 4.3624x107°

4 4.4931x10~1° 7.1037x107° 4.7985 %1071

5 1.4729x10~1° 2.9671 %1071 1.7659x10~1°
TABLE 2

Errors of Figenvalues for Case (a) in Example 2.

2. The limit points of all three algorithms are not necessarily the same even though
they all start from the same r(©),

3. The eigenvalues of T'(r*)) do agree with those of T'(r#) with the possibility of
parity change in the global ordering case.

Table 2 records the 2-norm of the difference between eigenvalues of T'(r*)) and
T(r#)) of the three algorithm. Since all three cases behaves similarly, we only report
the results from case (a). It is obvious from the table that quadratic convergence indeed
occurs in all three methods. We note that in the first few iterations, the errors in the
global ordering method should always be less than those in the other two methods
because of the shortest distance property.

Example 3. In this example we illustrate quadratic convergence of our methods
even when eigenvalues with multiplicity two are present. Again, so that we can com-
fortably present the data in the running text, we demonstrate the case n = 5. We
randomly generate four real values and repeat one of them as the multiple eigenvalue.
The following is one set of eigenvalues we have tested,

—5.8942 x 1071 < —1.8565 x 107! < —1.8565 x 107 < 3.7508 x 107 < 5.8564 x 107",

Since the parity is not known, we assume the possibly safest assignment, i.e., the second
and the fourth are odd, and the rest are even. With initial guess (*) given by

[0, —1.2367 x 107", 2.3243 x 107", 1.4269 x 1072, 5.4264 x 107']7,

all three methods work reasonably well. Both methods by local ordering and approxi-
mation converge to

[0, —3.0906 x 107", 4.2949 x 1072, —6.4816 x 1072, —2.3238 x 107']"
while the method by global ordering converges to
[—8.2508 x 10717, 1.8565 x 107", 1.8565 x 107", 1.8447 x 107!, —3.7508 x 10~']7.

The logarithmic plot of the 2-norm of errors over the iterations is displayed in Figure 4.
It is seen that at the initial stage the method by global ordering struggles for a while,
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Fia. 4. Number of Iteration versus Logarithmic Scale of Errors in Example 3.

but eventually the convergence becomes quadratic. We note that Method III in [9] will
not work for a multiply eigenvalue case like this.

Example 4. We continue to challenge our methods by multiple eigenvalues. Sup-
pose the eigenvalues are

—8.4328 x 1071 < —1.2863 x 107! < —1.2863 x 107 < —1.2863 x 107! < 1.2292 x 10T°

Since one of the eigenvalue has multiplicity three, we already know the method by
approximation fails. It will be interesting to see how the other two methods perform.
Again we assume the possibly safest parity assignment, so —1.2863 x 10~} appears twice
as an odd eigenvalue. With r(® given by

[0,8.6825 x 107",6.2954 x 107", 7.3622 x 1071,7.2541 x 107]7,

both methods by local and global ordering behave exactly the same. The limit point is
given by

[2.2204 % 1071¢,4.2222 x 107",1.2863 x 107',4.2222 x 107',1.2863 x 107']7.
The 2-norm of errors in eigenvalues are

2.0327 x 10%°,4.0355 x 1072,1.3903 x 10™*,3.5477 x 1077, 7.8896 x 10716,

which shows quadratic convergence.

Example 5. It is not true that the three methods we proposed always perform
similarly. Neither is it clear that any of these three method outperforms the others. We
illustrate these two points by an example of n = 20 with eigenvalues:

—1.0242x10%"  —9.6736x10%°  —5.5608x10%°  —2.2651x10%°  5.5692x10~*

2.1786x10T°  3.3867x10T°  4.0016x10T°  6.3594x10T°  8.7090x10T°

—1.0416x10%"  —9.4352x10%°  —4.7955x10%°  —7.7180x10~"  6.3996x10~*

2.6374x10T0  4.4879x10T0  4.7572x10T0  6.2222x10T°  9.2230x101°.
17
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Fi1Gc. 5. Number of Iteration versus Logarithmic Scale of Errors in Example 5 (Irregular parity).

Consider first the case where the first two rows of eigenvalues above have odd parity
and the last two rows have even parity. Note that this parity assignment is not the
"safest possible”. With initial guess r(®) given by

[0 1.9758x101° 9.1234x107! 6.7016x10~! 2.4391x107!
—2.8292x101° 1.8587x10%°  7.2979x1072? —6.7433x10* —2.0252x101°
—8.6838x107%  2.3288x101°  3.1950x10* 6.6702x10~! —1.5209%x10*

9.0678x107"  —1.5334x10™°  9.4695x107* 7.5671x1071  —3.7144x1074)7T,

we have observed that the method of global ordering performs best while the method
of approximation fails to converge in 100 iterations. The logarithmic plot of errors over
iterations is recorded in Figure 5. In contrast, suppose now we arrange the eigenvalues
in the ascending order and assign the safest possible parity, i.e., the parity alternates.

%), we obtain a behavior as is depicted in Figure 6,

Then by using the same initial guess 7
showing that even the method by local ordering fails.

Example 6. In this example, we apply our methods to the two numerical examples
given in [14]. For comparison, we use the same vector r® =[0,1,0,...0]” as the initial
value.

For the case of irregularly clustered eigenvalues {1000, 100,99, 5,1}, our test results
using the safest parity assignment are presented in Figure 7. All three methods behave
similarly, except that the method by global ordering converges to a Toeplitz matrix
whose odd eigenvalues turn out to be {1,100} instead of {5,100}.

For the case of larger size problem where eigenvalues are

83 163 182 226 247 283 303 363 456 535 746 796 811 888 900
110 166 187 239 267 283 339 384 512 557 750 810 837 899 985,

we assume the first row of eigenvalues are odd, and the second row are even. Our test
results are shown in Figure 8. We find that all methods converge to the same point
18
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in seven iterations, and that methods by local ordering and global ordering behave
identically.

7. Conclusion. We have investigated the possibility of solving the ITEP within
the subspace C(n) by fast and efficient methods. Three methods that employ the
geometrical ideas of tangent and lift are presented. Our methods in a sense are a
refinement of a Newton method proposed in [9] with several advantages. One important
advancement is that the case of multiple eigenvalues can now be handled. We also
have learned that parity assignment of eigenvalues plays an important role in whether
an ITEP is solvable. Numerical evidence strongly suggests that our methods have a
quadratic rate of convergence.
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