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Abstract. In this study, nonnegative matrix factorization is recast as the problem of approximating a polytope on
the probability simplex by another polytope with fewer facets. Working on the probability simplex has the advantage
that data are limited to a compact set with known boundary, making it easier to trace the approximation procedure.
In particular, the supporting hyperplane that separates a point from a disjoint polytope, a fact asserted by the Hahn-
Banach theorem, can be calculated in finitely many steps. This approach leads to a convenient way of computing
the proximity map which, in contrast to most existing algorithm where only an approximate map is used, finds the
unique and global minimum per iteration. This paper sets up a theoretical framework, outlines a numerical algorithm
and suggests an effective implementation. Testing results strongly evidence that this approach obtains better low rank
nonnegative matrix approximation in fewer steps than conventional methods.
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1. Introduction. The problem of nonnegative matrix factorization (NMF) arises in a large
variety of disciplines in sciences and engineering. Its wide range of important applications such
as text mining, chemoinformatics, factor retrieval, image articulation, dimension reduction and so
on has attracted considerable research efforts. Many different kinds of NMF techniques have been
proposed in the literature, notably the popular Lee and Seung iterative update algorithm [16, 17].
Successful applications to various models with nonnegative data values are abounding. We can hardly
be exhaustive by suggesting [6, 11, 12, 13, 18, 19, 20, 21, 23] and the references contained therein as a
partial list of interesting work. The review article [26] contains many other more recent applications
and references.

The basic idea behind NMF is the typical linear model,

Y = AF, (1.1)

where Y = [yij ] ∈ R
m×n denotes the matrix of “observed” data with yij representing, in a broad

sense, the score obtained by entity j on variable i, A = [aik] ∈ R
m×p is a matrix with aik representing

the loading of variable i from factor k or, equivalently, the influence of factor k on variable i, and
F = [fkj ] ∈ R

p×n with fkj denoting the score of factor k by entity j or the response of entity j
to factor k. The particular emphasis in NMF is that all entries of the matrices are required to be
nonnegative. To provide readers with a little bit motives on the study of NMF, we briefly outline
two applications below. A good survey of other interesting NMF applications can be found in [26,
Section 6.2].

The receptor model is an observational technique commonly employed by the air pollution research
community which makes use of the ambient data and source profile data to apportion sources or source
categories [10, 11, 14, 25]. The fundamental principle in this model is the conservation of masses.
Assume that there are p sources which contribute m chemical species to n samples. The mass balance
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equation within this system can be expressed via the relationship,

yij =

p∑

k=1

aikfkj , (1.2)

where yij is the elemental concentration of the ith chemical measured in the jth sample, aik is
the gravimetric concentration of the ith chemical in the kth source, and fkj is the airborne mass
concentration that the kth source has contributed to the jth sample. In a typical scenario, only values
of yij are observable whereas neither the sources are known nor the compositions of the local particulate
emissions are measured. Thus, a critical question is to estimate the number p, the compositions aik,
and the contributions fkj of the sources. For physical feasibility, the source compositions aik and the
source contributions fkj must all be nonnegative. The identification and apportionment, therefore,
becomes a nonnegative matrix factorization problem of Y .

In another application, NMF has been suggested as a way to identify and classify intrinsic “parts”
that make up the object being imaged by multiple observations. More specifically, each column yj

of a nonnegative matrix Y now represents m pixel values of one image. The columns ak of A are
basis elements in R

m. The columns of F , belonging to R
p, can be thought of as coefficient sequences

representing the n images in the basis elements. In other words, the relationship,

yj =

p∑

k=1

akfkj , (1.3)

can be thought of as that there are standard parts ak in a variety of positions and that each image yj

is made by superposing these parts together in some ways. Those parts, being images themselves, are
necessarily nonnegative. The superposition coefficients, each part being present or absent, are also
necessarily nonnegative.

In either case above and in many other contexts of applications, we see that the p factors, inter-
preted as either the sources or the basis elements, play a vital role. In practice, there is a need to
determine as fewer factors as possible and, hence, a low rank nonnegative matrix approximation of
the data matrix Y arises. The mathematical problem can be stated as follows:

(NMF) Given a nonnegative matrix Y ∈ R
m×n and a positive integer p < min{m, n},

find nonnegative matrices U ∈ R
m×p and V ∈ R

p×n so as to minimize the functional

f(U, V ) :=
1

2
‖Y − UV ‖2

F . (1.4)

It has been argued that NMF can be interpreted geometrically as the problem of finding a sim-
plicial cone which contains a cloud of data points located in the first orthant [6]. Further extending
that thought, this paper recasts NMF as the problem of approximating a polytope on the probability
simplex by another polytope which has fewer facets. Our basic idea follows from computational ge-
ometry where a complex surface is to be approximated by a simpler one. In our particular setting, the
complex surface refers to the boundary of a convex polytope of n points in R

m whereas the simpler
surface refers to that of p points in the same space. A unique feature in our approach is that the ap-
proximation is to take place on the probability simplex. We shall exploit the fact that the probability
simplex, being a compact set with well distinguishable boundary, makes the optimization procedure
easier to manage.

This paper actually deals with two related but independent problems. The first problem considers
the polytope approximation only on the probability simplex. The underlying geometry is easy to
understand, but the problem is of interest in itself. More importantly, with slight modifications the
idea lends it geometric characteristics naturally to the more difficult NMF problem.
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We organize our presentation as follows. Beginning in section 2, we briefly describe how the
original NMF can be formulated as a low dimensional polytope approximation through scaling. When
limited to the probability simplex, we introduce in section 3 two basic mechanisms for polytope
approximation — a recursive algorithm which projects a given point onto a prescribed polytope
and a descent method which slides points along the boundary of the probability simplex to improve
the objective value. We emphasize that the recursive algorithm determines the unique and global
proximity map in finitely many steps and thus enables our NMF method, which will be discussed in
section 4, to obtain much better, generally of several order, improvement over the well know Lee-Seung
updating algorithm [17] per iterative step.

2. Pull-back to the Probability Simplex. For convenience, denote a nonnegative vector y

by y � 0. Given a nonnegative matrix Y = [y1, . . . ,yn] ∈ R
m×n with nonzero columns yk ∈ R

m,
define the scaling factor σ(Y ) by

σ(Y ) := diag {‖y1‖1, . . . , ‖yn‖1} , (2.1)

where ‖ · ‖1 stands for the 1-norm of a vector, and the pull-back map ϑ(Y ) by

ϑ(Y ) := Y σ(Y )−1. (2.2)

Each column of ϑ(Y ) can be regarded as a point on the (m − 1)-dimensional probability simplex Dm

defined by

Dm :=
{
y ∈ R

m|y � 0,1⊤

my = 1
}

, (2.3)

where 1m = [1, . . . , 1]⊤ stands for the vector of all 1’s in R
m.

For each given nonnegative matrix Y ∈ R
m×n, there is a smallest convex polytope C(Y ) on Dm

containing all columns of ϑ(Y ). Indeed, the vertices of C(Y ) consist of a subset of columns of ϑ(Y ).
If we denote this fact by

C(Y ) := conv(ϑ(Y )) = conv(ϑ(Ỹ ))

where Ỹ = [yi1 , . . . ,yip
] ∈ R

m×p is a submatrix of Y , then every column of ϑ(Y ) is a convex combi-

nation of columns of ϑ(Ỹ ) and we can write

ϑ(Y ) = ϑ(Ỹ )Q, (2.4)

where Q ∈ R
p×n itself represents p points in the simplex Dp. Together, we have obtained

Y = ϑ(Y )σ(Y ) = ϑ(Ỹ )(Qσ(Y )) (2.5)

which is an exact nonnegative matrix factorization of Y . It is important to note in this setting that
the integer p is the number of vertices of the minimal convex hull conv(ϑ(Y )). We only know that
p ≤ n, but it might be that p ≥ m. See Figure 2.1. In practice, we prefer to see that ϑ(Y ) is contained
in convex hull with fewer than min{m, n} vertices, but clearly that is not always possible.

Conversely, suppose a given Y can be factorized as the product of two nonnegative matrices,
Y = UV , with U ∈ R

m×p and V ∈ R
p×m. We can write

Y = ϑ(Y )σ(Y ) = UV = ϑ(U)ϑ(σ(U)V )σ(σ(U)V ). (2.6)

Note that the product ϑ(U)ϑ(σ(U)V ) itself is on the simplex Dm. It follows that

ϑ(Y ) = ϑ(U)ϑ(σ(U)V ), (2.7)

σ(Y ) = σ(σ(U)V ). (2.8)
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Fig. 2.1. Convex hull of ϑ(Y ) ∈ R
3×n with n = 11.

Because UV = (UD)(D−1V ) for any invertible matrix D ∈ R
p×p, we may assume without loss of

generality that U is already a pull-back so that σ(U) = In. It follows that ϑ(Y ) = ϑ(U)ϑ(V ) and
σ(Y ) = σ(V ).

The discussion thus far assumes the equality in the factorization of Y . To hold this equality would
require either that the integer p is large enough to accommodate all vertices for the convex hull of
ϑ(Y ) or that the matrix Y itself is of low rank p. Though these requirements cannot be met in general,
the above analysis does suggest that the pull-back of Y to the probability simplex might shed some
interesting geometric meaning of NMF which we shall study in the subsequent sections.

Assuming henceforth that the matrix U is already normalized to Dm, that is, assuming U = ϑ(U)
and σ(U) = Ip, rewrite the objective functional in NMF as follows:

f(U, V ) =
1

2
‖Y − UV ‖2

F =
1

2
‖

(
ϑ(Y ) − UV σ(Y )−1

)
σ(Y )‖2

F . (2.9)

For convenience, denote

W = V σ(Y )−1. (2.10)

Then columns in the product UV σ(Y )−1 = UW , each of which is a nonnegative combination of
columns of U , can be interpreted as points in the simplicial cone of U . The problem of NMF is
equivalent to finding points {u1, . . . ,up} on the simplex Dm so that the total distance from ϑ(Y ) to
the simplicial cone spanned by {u1, . . . ,up}, measured with respect to a weighted norm, is minimized.
Corresponding to each given Y , the scaling factor σ(Y ) is determined. The distance between Y and
UV measured in the Frobenius norm therefore can be considered as the distance between ϑ(Y ) and
UW measured in the induced norm from a weighted inner product. The general theory for Hilbert
space, in particular the separation of disjoint convex sets by hyperplanes based on the Hahn-Banach
theorem, remains applicable. The main thrust of this paper is to explain that by working on the
probability simplex Dm the supporting hyperplane can be calculated effectively.

4



3. Polytope Approximation on the Probability Simplex. Before we discuss how (2.9) can
be minimized in the next section, it might be worthwhile to consider in this section a related set
estimation problem — fit conv(ϑ(Y )) by conv(U) on the simplex Dm in the sense that

1

2
‖ϑ(Y ) − UW‖2

F (3.1)

is minimized, subject to U ∈ Dm and W ∈ Dp.
It is not difficult to see that this problem is similar in spirit to the well known sphere packing

problem [5] as well as the classical problem of approximating convex bodies by polytopes [3, 4, 7, 8].
The underlying principal is also similar to that of the k-plane method [2] or the support vector
machines method [1], except that the geometry object used in our approximation, which is either a
subspace or a polytope, is of high co-dimension and hence is harder to characterize. For applications,
we mention that set estimation is important in pattern analysis [9], robotic vision and tomography,
except that most of the applications in pattern recognition are limited to only 3-D objects whereas
we are interested in higher dimensional entities.

The optimization problem proposed in (3.1) seems to possess a profound geometric meaning in
itself. Since conv(U) has fewer vertices than conv(ϑ(Y )), minimizing (3.1) means in a sense retrieving
and regulating the “shape” of ϑ(Y ) by fewer facets. If the data ϑ(Y ) have an elongated distribution
over Dm to begin with, the convex hull of at the optimal solution U should display a simpler shape but
with similar orientation. Since columns of W represents convex combination coefficients, the diameter
of conv(U) should be at least as large as that of conv(ϑ(Y )). With that in mind, we notice that the
solution U need not be unique because we can always“expand” conv(U) outward a little bit toward
the boundary of Dm and still obtain the same convex combination UW . The drawing depicted in
Figure 3.1 illustrates the idea for the case m = 3 and p = 2. Note that the segment representing

conv(ϑ(Y ))
conv(U)

D3

Fig. 3.1. Convex hull of ϑ(Y ) and U in D3.

conv(U) can be extended to the two sides of the equilateral triangle while still resulting in the same
nearest points to ϑ(Y ). We may therefore assume that the columns of U reside on the boundary of
the simplex Dm to begin with. A point on the boundary of Dm is characterized by the location of
zero(s) in its coordinates. For example, each facet has one zero. The ith column in the matrix

1

m − 1




0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 1
...

. . .

1 1
1 1 1 0
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is the “midpoint” of the ith facet of the simplex Dm. When there is more than one zero in the entries,
we consider this point to be on a “ridge” and so on.

Putting the about thoughts together, the polytope fitting problem can be cast as a constrained
optimization problem,

minimize g(U, W ) =
1

2
‖ϑ(Y ) − UW‖2

F ,

subject to U ∈ ∂Dm, W � 0, 1⊤

p W = 1⊤

n , (3.2)

where ∂Dm stands for the boundary of Dm. During the computation, it matters to track which
boundary is being involved in U .

3.1. Nearest Point in the Convex Hull of U . Let U ∈ R
m×p be a fixed matrix with its

columns in ∂Dm. The Hahn-Banach theorem asserts that, corresponding to each given column of
ϑ(Y ), there is a unique nearest point in conv(U). Being in conv(U), the nearest point is a convex
combination of columns of U . That is, W � 0 automatically. The question is how to find the proximity
map for each column of ϑ(Y ).

It is not difficult to derive from linear regression theory that the expression,

W := (U⊤U)−1(U⊤ϑ(Y ) − 1pµ
⊤), (3.3)

with

µ
⊤ =

1⊤
p (U⊤U)−1U⊤ϑ(Y ) − 1⊤

n

1⊤
p (U⊤U)−11p

, (3.4)

is a global minimizer of g(U, W ) and satisfies 1⊤
p W = 1⊤

n . The trouble is that the constraint W � 0
often is not satisfied. Instead, since usually p is not too large, we suggest using a recursive algorithm
proposed in [24] to find the proximity map.

Algorithm 3.1. Given Z = ϑ(Y ) ∈ R
m×n and U ∈ ∂Dm, the following loop computes the

convex combination coefficients W for the proximity map of Z onto conv(U).

S = [];

C = [];

for i = 1:n

y = Z(:,i);

U0 = U - y*ones(1,p);

active = 1:p;

[s,c] = sekitani(U0,active);

S = [S,s+y];

C = [C,c];

end

W = C;

whereas the routine sekitani is evaluated recursively as follow:

function [y,c] = sekitani(U,active);

%

% The code SEKITANI computes the nearest point on the polytope generated by

% the columns of U to the origin

%
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% Reference:

%

% Sekitani and Yamamoto Algorithm, Math. Programming, 61(1993), 233-249

%

% Input:

%

% U = vertices of the given polytope

% active = set of active column indices (of U) for recursive purpose.

%

% Output:

%

% y = the point on conv(U) with minimal norm

% c = convex coordinates of y with respect to U, that is, y = Uc

%

[m,p0] = size(U);

p = length(active);

eps = 1.e-13; % relaxed machine zero

looping = ’y’;

temp0 = norm(U(:,active(1)));

S = 1;

for j = 2:p

temp1 = norm(U(:,active(j)));

if temp1 < temp0, temp0 = temp1; S = j; end

end

x = U(:,active(S)); % starting point

xc = zeros(p0,1);

xc(active(S)) = 1; % initial coordinates of x

while looping == ’y’;

temp0 = x’*U(:,active);

alpha = min(temp0);

K0 = find(temp0<=alpha+eps); % find supporting hyperplanes

if norm(x)^2 <= alpha+eps

y = x;

c = xc;

looping = ’n’;

return

else

Pk = active(K0);

if length(K0) == 1,

y = U(:,Pk);

c = zeros(p0,1);

c(Pk) = 1;

else

[y,c] = sekitani(U,Pk); % recursion

end

end
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I_K0 = setdiff(1:p,K0);

temp1 = y’*U(:,active(I_K0));

beta = min(temp1);

if norm(y)^2 <= beta+eps

looping = ’n’;

return

else

temp3 = U(:,active(I_K0))-y*ones(1,length(I_K0));

temp5 = find(((y-x)’*temp3)<0);

temp4 = (x’*temp3(:,temp5))./((y-x)’*temp3(:,temp5));

lambda = -max(temp4); % maximal rotation parameter

delta = lambda*(y-x);

if norm(delta) <= max([m,p])*eps

looping = ’n’;

return

else

x = x + lambda*(y-x);

xc = xc + lambda*(c-xc); % updated coordinates of x

looping = ’y’;

end

end

end

Some remarkably nice features of the routine sekitani include that it is not based on simplicial
decomposition as in the classical method [27] and hence does not require to solve systems of linear
equations, that it can start with an arbitrary point in conv(U), that it does not need an initial
separating hyperplane, and that it terminates in finite steps. Details of its mathematical theory
can be found in [24]. The method originally proposed in [24] only computes the nearest point y

on the polytope conv(U) to the origin, but does not provide the corresponding convex combination
coefficients of y with respect to U . As indicated in the above algorithm, the coefficients c such that
y = Uc with

∑p

i=1 ci = 1 and ci ≥ 0 are attainable with just a few vector operations.

3.2. Improving U . Once the optimal W is found, the next step is to move columns of U along
the boundary ∂Dm to improve the objective value. This amounts to redefining the convex hull conv(U)
to better fit cov(ϑ(Y )). We suggest to carry out this task by the projected gradient with line search.
In this section, we show how the projected gradient and the line search can be calculated efficiently.

We first characterize the projected gradient. It is easy to see that the gradient of g with respect
to U at a feasible point (U, W ) is given by the m × p matrix

∇Ug(U, W ) :=
∂g

∂U
= −(ϑ(Y ) − UW )W⊤. (3.5)

For i = 1, . . . p, the ith column of ∇Ug(U, W ) represents precisely the gradient ∇ui
g(U, W ). In general,

this gradient points away from the simplex Dm. We want to project the gradient back to ∂Dm so that
a movement of ui in the negative direction of its projected gradient remains in ∂Dm and decreases
the objective value of g. The probability simplex Dm is made of m facets, identified by the trait that
one of the coordinates is zero. It is important to know onto which facets the gradient ∇ui

g(U, W ) is
projected. Typically, we expect that an improvement of ui should take place within the same facet
where ui resides. However, if ui happens to be at the intersection of two facets, then a decision should
be made on over which facet a better improvement is achieved. Crossing facets is possible. This more
complicated task will be addressed later. The projection has to be calculated column by column.
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We mentioned earlier that for computation it is important to track which facets of Dm are involved.
Here is the reason. Suppose that ui resides on the jth facet of Dm. The jth facet of Dm can be thought
of as the intersection of two hyperplanes y1 + . . . + ym = 1 and yj = 0 in R

m. If we define the m × 2
matrix

Aj := [1m, ej] , (3.6)

where ej is the jth standard unit vector in R
m, then the projection of ∇ui

g(U, W ) onto the jth facet
is given by

∇j
ui

g(U, W ) := (Im − Aj(A
⊤

j Aj)
−1A⊤

j )∇ui
g(U, W ). (3.7)

In fact, the projection matrix Aj(A
⊤
j Aj)

−1A⊤
j need not be calculated since it is of the form

Aj(A
⊤

j Aj)
−1A⊤

j =
1

m − 1




1 . . . 1 0 1 . . . 1
...

. . .
...

1 1 0 1
0 0 m − 1 0 . . . 0
1 1 0 1 1
...

...
1 . . . 1 0 1 . . . 1




, (3.8)

where the value m − 1 occurs at the (j, j) position of the matrix. This formula offers a direct way to
compute the projected gradient.

Once we obtain the projection ∇j
ui

g(U, W ), i = 1, . . . , p, we may use line search techniques to
adjust ui to reduce the object value. When doing the line search, it becomes critical to adjust the
step size so as not to overshoot beyond the facet. That is, we do not allow any entry of the newly
computed matrix U to become negative. The optimal step size, which is easy to compute, must be
scale back whenever an entry is crossing zero. Zero crossing is an indication that the search path
is now reaching a “ridge” and a change of facet is necessary. A preliminary numerical algorithm for
updating U is as follows:

Algorithm 3.2. Given Z = ϑ(Y ) ∈ R
m×n, U ∈ ∂Dm and W ∈ R

p×n, the following steps update

U along ∂Dm while minimizing the objective g(U, W ).

function [U,facet] = update(Z,U,W,facet);

%

% Input:

%

% Z = points to be aprroximated

% U = vertices of the current polytope

% W = convex combination coefficients

% facet = indices of facets where U is residing

%

% Output:

%

% U = vertices of new polytope

% facet = indices of new facets where U is residing

%

[m,p] = size(U);
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eps = 1.e-10; % termination tolerance

residue = Z-U*W;

gradient_U = residue*W’; % negative gradient

if norm(residue,’fro’) < eps, return, end

tempA = eye(m)-ones(m)/(m-1);

for i = 1:p

Proj_matrix = tempA;

Proj_matrix(facet(i),:) = 0; Proj_matrix(:,facet(i)) = 0;

temp0 = Proj_matrix*gradient_U(:,i);

if norm(temp0) > eps*10

temp0 = temp0/norm(temp0);

else

temp0 = temp0*0;

end

proj_grad_U(:,i) = temp0; % normalized projected gradient

end

temp1 = trace(proj_grad_U*gradient_U’);

temp2 = norm(proj_grad_U*W,’fro’)^2;

alpha = temp1/temp2; % step size for steepest descent

Unew = U + alpha * proj_grad_U;

Unew = Unew.*(abs(Unew)>eps*10);

[row,column] = find(Unew<0); % detecting zero crossing

if isempty(column) == 0,

alpha_modify = alpha;

for i = 1:length(column)

temp = -U(row(i),column(i))/proj_grad_U(row(i),column(i));

if abs(temp) < eps

alpha_modify = 0;

vertex = [row(i),column(i)];

elseif temp < alpha_modify

alpha_modify = temp;

vertex = [row(i),column(i)];

end

end

U = U + alpha_modify*proj_grad_U;

facet(vertex(2)) = vertex(1); % facet change

else

U = Unew;

end

U = U.*(abs(U)>eps);
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3.3. Alternating Direction Iteration. With the above two mechanisms established, we can
use them iteratively between U and W to solve the optimization problem (3.2). That is, with a
given U (k) ∈ Dm, we employ Algorithm 3.1 to compute the projection of ϑ(Y ) onto the polytope
conv(U (k)) and obtain the convex combination coefficients W (k) ∈ Dp. From (U (k), W (k)), we then
employ Algorithm 3.2 to find a new set of vertices U (k+1) representing an improved low dimensional
polytope approximation to conv(ϑ(Y )). This is a descent method in both directions and the iteration
continues until convergence. Needless to say, the limit point depends on the starting value U (0). Some
numerical examples will be given in Section 5.

4. Application to the NMF. The NMF formulated in (2.9) differs from the above polytope
approximation in two aspects: that the weight σ(Y ) will change the inner product used in the polytope
approximation and that W is no longer required to be on the simplex Dp. Nonetheless, the idea
explored in the proceeding section can easily be generalized. In this section, we discuss its application
to the NMF.

We first explain where the conventional method might break down. Despite of its failure, the
conventional formulation sheds some insight into the geometric understanding which we shall exploit
later. The Lagrangian without the constraint W � 0 is given by

L(U, W ; µ) :=
1

2
〈(ϑ(Y ) − UW )σ(Y ), (ϑ(Y ) − UW )σ(Y )〉 + (1⊤

mU − 1⊤

p )µ. (4.1)

Then with respect to the Frobenius inner product over the product space R
m×p × R

p×n, we find the
partial gradients of L are given by

∂L(U, W ; µ)

∂U
= −(ϑ(Y ) − UW )σ(Y )2W⊤ + 1mµ

⊤, (4.2)

∂L(U, W ; µ)

∂W
= −U⊤(ϑ(Y ) − UW )σ(Y )2, (4.3)

respectively. The first order optimality conditions requires that U and W must satisfy the equations

U =
(
ϑ(Y )σ(Y )2W⊤ − 1mµ

⊤
) (

Wσ(Y )2W⊤
)−1

, (4.4)

W =
(
U⊤U

)−1
U⊤ϑ(Y ), (4.5)

where ϑ(Y ) and σ(Y ) are fixed matrices from a given Y . The Lagrange multiplier µ can be determined
from the constraint 1⊤

mU = 1⊤
p and thus

µ
⊤ =

1

m

(
1⊤

n σ(Y )2W⊤ − 1⊤

p Wσ(Y )2W⊤
)
. (4.6)

It is interesting to note that the equation (4.5) is precisely the normal equation for the least squares
problem of

UW = ϑ(Y ), (4.7)

expect that we prefer to see W � 0. It might be illuminative to consider the geometry associated
with the simplest case when m = 2 and p = 1. For convenience, denote

σ(Y ) = diag{σ1, . . . , σn}.

Then the NMF problem is equivalent to finding u ∈ D2 and nonnegative scalars w1, . . . , wn such that

f(u, w1, . . . , wn) :=
1

2

n∑

i=1

σ2
i ‖ϑ(yi) − uwi‖

2
2, (4.8)
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is minimized. The relationships (4.4) and (4.5) become

u =

n∑

i=1

(
σ2

i wi∑n

i=1 σ2
i w2

i

ϑ(yi) −
σ2

i wi − σ2
i w2

i

2
∑n

i=1 σ2
i w2

i

12

)
, (4.9)

wi =
u⊤ϑ(yi)

u⊤u
, i = 1, . . . , n. (4.10)

Note that the vector uwi with wi defined from (4.10) is precisely the projection of ϑ(yi) onto u. In
this case, the value of wi is guaranteed to be positive and is known as soon as u is given. It remains
to find a nonnegative vector u that satisfies (4.9), (4.10) and u ∈ D2. See Figure 4.1. Unfortunately,
the need of W � 0 cannot be guaranteed by the projection (4.5) in higher dimensional space. In the
following, we explain how the techniques developed for the polytope approximation in the preceding
section can be generalized.

Find this direction

u

ϑ(y1)

ϑ(y2)

ϑ(yn)

Fig. 4.1. NNMF in R
2 when p = 1.

4.1. Nearest Point in the Simplicial Cone of U . With the change of variable (2.10), we
shall work with the objective functional

h(U, W ) =
1

2
‖(ϑ(Y ) − UW )σ(Y )‖2

F =
1

2

n∑

i=1

σ2
i ‖ϑ(yi) − Uwi‖

2
2, (4.11)

which is equivalent to f(U, V ) in (2.9). Clearly, if each term in (4.11) is minimized, then h(U, W ) is
necessarily minimized. For each fixed U , instead of (4.5), we want to best approximate each column
of ϑ(Y ) within the simplicial cone of U . Since columns of ϑ(Y ) reside on the compact set Dm, their
nearest points on the simplicial cone reside in a bounded set as well. In other words, we do not need
a very extended region on the cone of U to obtain the nearest points. We think the portion of the

simplicial cone bounded within the unit sphere should be enough.

With a large enough and fixed positive constant α, define

Ũ = [0, αu1, . . . , αup]. (4.12)
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Columns of Ũ ∈ R
m×(p+1) represent p+1 vertices of the polytope toward which ϑ(yi), i = 1, . . . , n, is to

find its nearest point on the simplicial cone of U . See the geometric illustration depicted in Figure 4.2.
By now, Algorithm 3.1 can be applied to find the convex combination coefficients W̃ ∈ R

(p+1)×n for
the proximity map of ϑ(Y ) onto conv(Ũ).

1

1

1

.
.
.
.
.

.

.

u1

u2

Simplicial cone of U

Convex hull of ϑ(Y )

Fig. 4.2. Simplicial cone of U and convex hull of ϑ(Y ) ∈ R
3×n with p = 2 and n = 11.

Decompose W̃ into two blocks,

W̃ =

[
w⊤

0

W0

]
, (4.13)

where w⊤
0 denotes the first row of W̃ and W0 ∈ R

p×n. It is clear that the nearest approximation of
ϑ(Y ) on the simplicial cone of U is given by

ŨW̃ = UW (4.14)

with W = αW0. Note that by construction it is guaranteed that W � 0, but W is no longer on Dp.
We stress that, given Y and U , our Algorithm 3.1 computes a p × n nonnegative matrix,

V = Wσ(Y ), (4.15)

which is a global minimizer to the objective functional f(U, V ). This is in contrast to the nature of
most available NMF algorithms, in particular the well known Lee and Seung’s multiplicative update
rule [17],

V + = V. ∗ (U⊤Y )./(U⊤UV ), (4.16)

where only an approximate minimizer is attained. We stress also that the cost of Algorithm 3.1 is
compatible with that of the multiplicative update since the former involves only a few inner products
in the process of seeking the supporting hyperplanes.
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4.2. Updating U . We describe two ways to update U for the NMF from a given W � 0, which
could have been found from the above calculation.

The first approach is by means of the steepest descent method. Since the minimum of a function
over a larger domain generally is lower than that over a smaller domain, it is reasonable to consider
making the “angle” of the simplicial cone as wide as possible. It might be beneficial to expand the
simplicial cone of U sideway to until it touches the boundary of Dm. In other ways, we may assume
that columns of U are on the boundary ∂Dm to begin with. See the idea demonstrated in Figure 3.1
and Figure 4.2. With this in mind, we calculate the gradient of h(U, W ) with respect to U and obtain

∇Uh(U, W ) :=
∂h

∂U
= −(Y − UW )W⊤. (4.17)

We may now employ the idea proposed in Section 3.2 to compute the projected gradient of ∇Uh(U, W )
onto proper facets and adjust U along ∂Dm via the steepest descent method. In short, Algorithm 3.2
is applicable with the modification of setting Z = Y in the input of routine update.

The second approach is even simpler and more appealing, once Algorithm 3.1 is in place. It is
similar in spirit to that of Lee and Seung’s algorithm [17] where we can update U in exactly the same
way as computing the optimal W by swapping the roles of U and V . More precisely, we write

f(U, V ) =
1

2
‖


ϑ(Y ⊤) − ϑ(V ⊤)(σ(V ⊤)U⊤σ(Y ⊤)−1

︸ ︷︷ ︸
Φ

)


 σ(Y ⊤)‖2

F . (4.18)

We identify ϑ(V ⊤) as the given points upon whose simplicial cone points in R
n represented by columns

of ϑ(Y ⊤) are to be approximated. We apply the procedures described in Section 4.1 to compute the
unique and optimal simplicial combination coefficients Φ ∈ R

p×m. Then the optimal U is given by

U =
(
σ(V ⊤)−1Φσ(Y ⊤)

)⊤
. (4.19)

Again this procedure is similar to Lee and Seung’s multiplicative update,

U+ := U. ∗ (Y V ⊤)./(UV V ⊤), (4.20)

except that our U found through (4.19) is a global minimizer for f(U, V ) from a fixed V which is
calculated in (4.15). For completion, we summarize the second approach in the following algorithm.

Algorithm 4.1. Given a nonnegative matrix Y ∈ R
m×n, integers p < min{m, n} and maximal

allowable number T of iterations, each of the following iterations computes the proximity maps of Y
onto the simplcial cones of U ∈ R

m×p and V ∈ R
p×n alternatively. The resulting nonnegative matrices

U ∈ Dm and V therefore progress toward minimizing f(U, V ).

SigmaY = sum(Y); Z = Y*diag(1./SigmaY); % pull back of Y

SigmaYt = sum(Y’); Zt =Y’*diag(1./SigmaYt); % pull back of Y’

alpha = 10; % scaling factor

U = rand(m,p); % initialization of U

for iter = 1:T % loop of ADI

sigmaU = sum(U);

sigmaU(find(sigmaU~=0))=1./sigmaU(find(sigmaU~=0));

U = U*diag(sigmaU); % pull-back of U
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Utilde = [zeros(m,1),alpha*U]; % simplicial cone of U

S = []; C = [];

for i = 1:n

y = Z(:,i);

U0 = Utilde - y*ones(1,p+1);

active = 1:p+1;

[s,c] = sekitani(U0,active);

S = [S,s+y];

C = [C,c];

end

W = alpha*C(2:p+1,:);

V = W*diag(SigmaY); % optimal V, given U

V = V.*(V>eps*10);

if iter == T

return % end of iteration

end

sigmaVt = sum(V’);

sigmaVt(find(sigmaVt~=0))=1./sigmaVt(find(sigmaVt~=0));

Vt = V’*diag(sigmaVt);

Vtilde = [zeros(n,1),alpha*Vt]; % simplicial cone of V

S = []; C = [];

for i = 1:m

y = Zt(:,i);

V0 = Vtilde - y*ones(1,p+1);

active = 1:p+1;

[s,c] = sekitani(V0,active);

S = [S,s+y];

C = [C,c];

end

U = (alpha*C(2:p+1,:)*diag(SigmaYt))’; % optimal U (w/t scaling), given V

U = U.*(U>eps*10);

end

We emphasize that both matrices W in (4.14) (and hence V ) and Φ in (4.18) (and hence U) are
readily available from the routine sekitani which involves no matrix inversion but only matrix-vector
multiplications. Being able to compute the unique global minimizer in each alternating direction
efficiently this way is quite noteworthy. We have to comment on, however, two possible drawbacks
of our algorithm. First, it is difficult to predict in advance the depth of recursion needed for the
calculation. When p is large, the recursion might take several levels deep to complete the process
and thus drives up the overhead. Fortunately, in most NMF applications, p is rather small. Since
fewer vertices of the polytopes, namely, the truncated simplicial cones of either U or V ⊤, need to
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be checked for supporting hyperplanes, the recursion can be accomplished reasonably fast. Secondly,
the way we compute the proximity map by sekitani thus far is to work on one column of Y a time.
This is inefficient when m or n is large, which unfortunately is the case for NMF applications. Of
course, parallel computation is an alternative since each column can be handled independently. But
it is still desirable and perhaps more appropriate to rewrite the sekitani algorithm in such a way so
that it can compute the proximity maps of multiple columns simultaneously. We are exploring this
possibility and will report our investigation somewhere else.

5. Numerical Experiment. In this section, we provide testing results of several numerical
experiments to demonstrate the working of our algorithms.

Example 1. In order to demonstrate the polytope approximation on the probability simplex
graphically, we limit ourselves to R

3, although the theory works for general m. We randomly generate
n = 18 points on the simplex. Normally, for low rank polytope approximation of a given set of points,
we would have p < min{m, n}. With p = 3 in this example, the polytope approximation turns into
a problem of seeking a “triangle” to enclose the 18 given points [8]. Needless to say, the probability
simplex D3 itself can do the job. Does there exist at least another triangle that circumscribe these
points?

Applying Algorithm 3.1 followed by Algorithm 3.2 iteratively 100 times, we see in the left drawing
of Figure 5.1 that a “minimal” triangle with vertices on ∂D3 is found. The triangle is minimal in the
sense that some of the given points reside on the sides of the triangle which, thus, cannot be reduced
further without leaving some points outside. The dynamics of adjustment by our algorithm on the
triangles with vertices on ∂D3 is illustrated in the right drawing of Figure 5.1.

We caution that, just like most methods of iterative nature, the limiting behavior of our method
depends on the initial values. It is possible that a limiting triangle does not include all given points
to its interior when the iteration is terminated because the method has reached a local solution.
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Fig. 5.1. Triangle (polytope) enclosing a prescribed set of points on D3.

Example 2. One of the most attractive features in Algorith 4.1 is that the method finds global
minimizer per iteration. To demonstrate this point, we design our experiment as follows. Let A ∈
R

m×p and B ∈ R
p×n with p < min{m, n} be two randomly generated nonnegative matrices. Define

Y = AB which will be our target data matrix. Starting from the same initial value (U0, V0), we
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compare the objective values f(U, V ) per iteration with the popular Lee-Seung multiplicative update
algorithm.

With a test case where m = 100, n = 50 and p = 5 in 100 iterations, Figure 5.2 demonstrates that
our algorithm consistently produces much closer approximation to Y per iteration than the Lee-Seung
algorithm. In the case on the left, the objective value is reduced to 0.1909 by our method as opposed
to 13.1844 obtained by the Lee-Seung method, although these values continue to be improved with
more iterations. In yet another random case on the right, the objective value attained by our method
is 3.3035×10−4 as opposed to 1.1989 by Lee-Seung. We consistently discover, as are indicated by these
two experiments, that our method always produces an impressive improvement by multiple orders.
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Fig. 5.2. Objective values f(U, V ) per iteration by the Chu-Lin algorithm versus the Lee-Seung algorithm.

Example 3. To further demonstrate that our method decreases the objective values f(U, V )
more rapidly than the Lee-Seung algorithm, we generate randomly a 50 × 30 matrix Y of rank 20.
We systematically seek its nonnegative matrix approximation of rank p, p = 1, . . . , 15, but allowing
only 20 iterations. Each point in Figure 5.3 represents the objective value f(U, V ) after 20 iterations
of the corresponding method. It appears that our method decreases the objective value as p increases
while the Lee-Seung method does not seem to be sensitive to p during the first 20 iterations.

The continuous curve in the middle of Figure 5.3 represents the objective values obtained by the
Lee-Seung algorithm after 100 iterations. We choose not to draw the objective values obtained by
our method after 100 iterations because they are essentially the same as those after 20 iterations with
mild differences at the second decimal digit. In other words, our method not only yields a better
factorization than the Lee-Seung method, but also seems to converge quickly to an optimal solution
in the early iterations.

Example 4. The “swimmer” database characterized in [6] consists of a set of black-and-while
stick figures satisfying the so called separable factorial articulation criteria under which the NMF
is known in theory to be able to identify the standard parts in the articulation model (1.3). More
specifically, each figure consists of a “torso” of 12 pixels in the center and four “limbs” of six pixels
that can be in any one of four positions. With limbs in all possible positions, there are a total of
256 figures of dimension 32 × 32 pixels. Our data set is provided to us with the courtesy of Alberto
Pascual-Motano [22] and Victoria Stodden [6]. A subset of these images are sketched in Figure 5.4.
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Fig. 5.3. Objective values f(U, V ) in 20 iterations per specified rank by the Chu-Lin and the Lee-Seung algorithms.

After vectorizing each image into a column, our target matrix Y is of size 1024 × 256. The
numerical rank of Y is 13, but we shall decompose it with p = 17 in anticipation of 17 standard parts.
We remark that the effect of this overestimation of rank of Y in the NMF is something that deserves
further study, but we shall not elaborate in this discussion. Applying our algorithm with only 10
iterations, we obtain the “parts” sketched in Figure 5.5. It is seen that not all limbs are separated
from the torso, but all positions are clearly identified. It is worth noting that frame 16 contains
entirely zero information, perhaps having something to do with the overestimation of the rank in the
NMF.

6. Conclusion. The notion of low dimensional polytope approximation is investigated in this
paper. Given a polytope in the first orthant, we stress the benefits of projecting the polytope back
to the probability simplex, The pull-back has the advantages that the resulting polytopes are, in
as sense, regulated to a more manageable compact set and that proximity map which identifies the
unique nearest point on a polytope to an arbitrarily given point can be calculated in finitely many
steps.

Two kinds of low dimensional polytopes are used in the discussion. The polytopes of the first
kind are restricted entirely to the probability simplex whereas those in the second kind are truncated
simplical cones generated from polytopes of the first kind. We apply the ideas to tackle the nonnegative
matrix factorization problem. The fact that we are using the proximity maps to compute the unique
global minimization in each alternating direction strongly suggests that we should have obtained the
best possible approximation per iteration. Numerical experiments seem to evidence much smaller
residual errorsin the factorization by our method than by the Lee-Seung multiplicative updating
scheme.

In attempting to convey our ideas more easily, the main task of computing the proximity map is
accomplished at present column by column and thus is less competitive in speed with the Lee-Seung
algorithm which can be executed under matrix-to-matrix operations. A major topic for the next phase
of study should be to investigate the possibility of computing the proximity map for multiple columns
simultaneously. Such a vectorization, if realizable, would be an added power to our method which in
theory should produce the best possible approximation per alternating direction.
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Fig. 5.4. 80 sample images from the swimmer database.

Fig. 5.5. 17 “parts” decomposed from the swimmer database by Algorithm 4.1 in 10 iterations.
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