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1 Introduction

Data analysis is pervasive throughout science, engineering and business applications. Very often the data
to be analyzed is nonnegative, and it is very often preferable to take this constraint into account in the
analysis process. In this paper we provide a survey of some aspects of nonnegative matrix factorization and its
applications to nonnegative matrix data analysis. In general the problem is the following: given a nonnegative
data matrix Y find reduced rank nonnegative matrices U and V so that

Y ≈ UV.

Here, U is often thought of as the source matrix and V as the mixing matrix associated with the data in Y . A
more formal definition of the problem is given below. This approximate factorization process is an active area
of research in several disciplines (a Google search on this topic recently provided over 250 references to papers
involving nonnegative matrix factorization and applications written in the past ten years), and the subject is
certainly a fertile area of research for linear algebraists.

An indispensable task in almost every discipline is to analyze a certain data to search for relationships
between a set of exogenous and endogenous variables. There are two special concerns in data analysis. First,
most of the information gathering devices or methods at present have only finite bandwidth. One thus cannot
avoid the fact that the data collected often are not exact. For example, signals received by antenna arrays
often are contaminated by instrumental noises; astronomical images acquired by telescopes often are blurred
by atmospheric turbulence; database prepared by document indexing often are biased by subjective judgment;
and even empirical data obtained in laboratories often do not satisfy intrinsic physical constraints. Before any
deductive sciences can further be applied, it is important to first reconstruct or represent the data so that
the inexactness is reduced while certain feasibility conditions are satisfied. Secondly, in many situations the
data observed from complex phenomena represent the integrated result of several interrelated variables acting
together. When these variables are less precisely defined, the actual information contained in the original data
might be overlapping and ambiguous. A reduced system model could provide a fidelity near the level of the
original system. One common ground in the various approaches for noise removal, model reduction, feasibility
reconstruction, and so on, is to replace the original data by a lower dimensional representation obtained via
subspace approximation. The notion of low rank approximations therefore arises in a wide range of important
applications. Factor analysis and principal component analysis are two of the many classical methods used to
accomplish the goal of reducing the number of variables and detecting structures among the variables.

However, as indicated above, often the data to be analyzed is nonnegative, and the low rank data are
further required to be comprised of nonnegative values only in order to avoid contradicting physical realities.
Classical tools cannot guarantee to maintain the nonnegativity. The approach of low-rank nonnegative
matrix factorization (NNMF) thus becomes particularly appealing. The NNMF problem, probably due
originally to Paatero and Tapper [21], can be stated in generic form as follows:

(NNMF) Given a nonnegative matrix Y ∈ Rm×n and a positive integer p < min{m,n},
find nonnegative matrices U ∈ Rm×p and V ∈ Rp×n so as to minimize the functional

f(U, V ) :=
1
2
‖Y − UV ‖2

F . (1)

The product UV of the least squares solution is called a nonnegative matrix factorization of Y , although
Y is not necessarily equal to the product UV . Clearly the product UV is of rank at most p. An appropriate
decision on the value of p is critical in practice, but the choice of p is very often problem dependent. The
objective function (1) can be modified in several ways to reflect the application need. For example, penalty
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terms can be added to f(U, V ) in order to enforce sparsity or to enhance smoothness in the solution U and
V [13, 24]. Also, because UV = (UD)(D−1V ) for any invertible matrix D ∈ Rp×p, sometimes it is desirable
to “normalize” columns of U The question of uniqueness of the nonnegative factors U and V also arises,
which is easily seen by considering case where the matrices D and D−1 are nonnegative. For simplicity,
we shall concentrate on (1) only in this essay, but the metric to be minimized in the NNMF problem can
certainly be generalized and constraints beyond nonnegativity are sometimes imposed for specific situations,
e.g., [5, 13, 14, 15, 18, 19, 24, 25, 26, 27]. In many applications, we will see that the p factors, interpreted as
either sources, basis elements, or concepts, play a vital role in data analysis. In practice, there is a need to
determine as few factors as possible and, hence the need for a low rank NNMF of the data matrix Y arises.

2 Some Applications

The basic idea behind the NNMF is the linear model. The matrix Y = [yij ] ∈ Rm×n in the NNMF formulation
denotes the “observed” data whereas each entry yij represents, in a broad sense, the score obtained by entity
j on variable i. One way to characterize the interrelationships among multiple variables that contribute to
the observed data Y is to assume that yij is a linearly weighted score by entity j based on several “factors”.
We shall temporarily assume that there are p factors, but often it is precisely the point that the factors are to
be retrieved in the mining process. A linear model, therefore, assumes the relationship

Y = AF, (2)

where A = [aik] ∈ Rm×p is a matrix with aik denoting the loading of variable i to factor k or, equivalently,
the influence of factor k on variable i, and F = [fkj ] ∈ Rp×n with fkj denoting the score on factor k by entity
j or the response of entity j to factor k. Depending on the applications, there are many ways to interpret the
meaning of the linear model. We briefly describe a few applications below.

2.1 Air Emission Quality

In the air pollution research community, one observational technique makes use of the ambient data and source
profile data to apportion sources or source categories [12, 15]. The fundamental principle in this model is that
mass conservation can be assumed and a mass balance analysis can be used to identify and apportion sources of
airborne particulate matter in the atmosphere. For example, it might be desirable to determine a large number
of chemical constituents such as elemental concentrations in a number of samples. The relationships between
p sources which contribute m chemical species to n samples, therefore, lead to a mass balance equation,

yij =
p∑

k=1

aikfkj , (3)

where yij is the elemental concentration of the ith chemical measured in the jth sample, aik is the gravimetric
concentration of the ith chemical in the kth source, and fkj is the airborne mass concentration that the kth
source has contributed to the jth sample. In a typical scenario, only values of yij are observable whereas
neither the sources are known nor the compositions of the local particulate emissions are measured. Thus, a
critical question is to estimate the number p, the compositions aik, and the contributions fkj of the sources.

Tools that have been employed to analyze the linear model include principal component analysis, factor
analysis, cluster analysis, and other multivariate statistical techniques. In this receptor model, however, there is
a physical constraint imposed upon the data. That is, the source compositions aik and the source contributions
fkj must all be nonnegative. The identification and apportionment, therefore, becomes a nonnegative matrix
factorization problem of Y .

2.2 Image and Spectral Data Processing

Digital images are represented as nonnegative matrix arrays, since pixel intensity values are nonnegative. It
is sometimes desirable to process data sets of images represented by column vectors as composite objects in
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many articulations and poses, and sometimes as separated parts for in, for example, biometric identification
applications such as face or iris recognition. It is suggested that the factorization in the linear model would
enable the identification and classification of intrinsic “parts” that make up the object being imaged by multiple
observations [7, 16, 26]. More specifically, each column yj of a nonnegative matrix Y now represents m pixel
values of one image. The columns ak of A are basis elements in Rm. The columns of F , belonging to Rp, can
be thought of as coefficient sequences representing the n images in the basis elements. In other words, the
relationship,

yj =
p∑

k=1

akfkj , (4)

can be thought of as that there are standard parts ak in a variety of positions and that each image represented
as a vector yj , making up the factor U of basis elements is made by superposing these parts together in
specific ways by a mixing matrix represented by V in (1). Those parts, being images themselves, are necessarily
nonnegative. The superposition coefficients, each part being present or absent, are also necessarily nonnegative.
A related application to the identification of object materials from spectral reflectance data at different optical
wavelengths has been investigated in [25].

2.3 Text Mining

Assume that the textual documents are collected in an indexing matrix Y = [yij ] ∈ Rm×n. Each document is
represented by one column in Y . The entry yij represents the weight of one particular term i in document j
whereas each term could be defined by just one single word or a string of phrases. To enhance discrimination
between various documents and to improve retrieval effectiveness, a term-weighting scheme of the form,

yij = tijgidj , (5)

is usually used to define Y [2], where tij captures the relative importance of term i in document j, gi weights
the overall importance of term i in the entire set of documents, and dj = (

∑m
i=1 tijgi)

−1/2 is the scaling factor
for normalization. The normalization by dj per document is necessary because, otherwise, one could artificially
inflate the prominence of document j by padding it with repeated pages or volumes. After the normalization,
the columns of Y are of unit length and usually nonnegative.

The indexing matrix contains lot of information for retrieval. In the context of latent semantic indexing
(LSI) application [2, 10], for example, suppose a query represented by a row vector q> = [q1, . . . , qm] ∈ Rm,
where qi denotes the weight of term i in the query q, is submitted. One way to measure how the query q
matches the documents is to calculate the row vector s> = q>Y and rank the relevance of documents to q
according to the scores in s.

The computation in the LSI application seems to be merely the vector-matrix multiplication. This is so only
if Y is a “reasonable” representation of the relationship between documents and terms. In practice, however,
the matrix Y is never exact. A major challenge in the field has been to represent the indexing matrix and the
queries in a more compact form so as to facilitate the computation of the scores [6, 23]. The idea of representing
Y by its NNMF approximation seems plausible. In this context, the standard parts ak indicated in (4) may
be interpreted as subcollections of some “general concepts” contained in these documents. Like images, each
document can be thought of as a linear composition of these general concepts. The column-normalized matrix
A itself is a term-concept indexing matrix.

Nonnegative matrix factorization has many other applications, including linear sparse coding [13, 29],
chemometric [11, 21], image classification [9], neural learning process [20], sound recognition [14], remote
sensing and object characterization [25, 30]. We stress that, in addition to low-rank and nonnegativity, there
are applications where other conditions need to be imposed on U and V . Some of these constraints include
sparsity, smoothness, specific structures, and so on. The NNMF formulation and resulting computational
methods need to be modified accordingly, but it will be too involved to include that discussion in this brief
survey.
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3 Optimality

Quite a few numerical algorithms have been developed for solving the NNMF. The methodologies adapted
are following more or less the principles of alternating direction iterations, the projected Newton, the reduced
quadratic approximation, and the descent search. Specific implementations generally can be categorized
into alternating least squares algorithms [21], multiplicative update algorithms [16, 17, 13], gradient descent
algorithm, and hybrid algorithm [24, 25]. Some general assessments of these methods can be found in [5,
18, 28]. It appears that there is much room for improvement of numerical methods. Although schemes
and approaches are different, any numerical method is essentially centered around satisfying the first order
optimality conditions derived from the Kuhn-Tucker theory. Recall that the computed factors U and V may
only be local minimizers of (1).

Theorem 3.1 Necessary conditions for (U, V ) ∈ Rm×p
+ ×Rp×n

+ to solve the nonnegative matrix factorization
problem (1) are

U. ∗
(
(Y − UV )V >

)
= 0 ∈ Rm×p, (6)

V. ∗
(
U>(Y − UV )

)
= 0 ∈ Rp×n, (7)

(Y − UV )V > ≤ 0, (8)
U>(Y − UV ) ≤ 0, (9)

where .∗ denotes the Hadamard product.

4 Conclusions and Some Open Problems

We have attempted to outline some of the major concepts related to nonnegative matrix factorization and to
briefly discuss a few of the many practical applications. Several open problems remain, and we list just a few
of them.

• Preprocessing the data matrix Y . It has been observed, e.g. [25, 27], that noise removal or a particular
basis representation for Y can improve the effectiveness of algorithms for solving (1). This is an active
area of research and is unexplored for many applications.

• Initializing the factors. Methods for choosing, or seeding, the initial matrices U and V for various
algorithms (see, e.g., [30]) is a topic in need of further research.

• Uniqueness. Sufficient conditions for uniqueness of solutions to the NNMF problem can be considered
in terms of simplicial cones [1], and have been studied in [7]. Algorithms for computing the factors U
and V generally produce local minimizers of f(U, V ), even when constraints are imposed. It would thus
be interesting to apply global optimization algorithms to the NNMF problem.

• Updating the factors. Devising efficient and effective updating methods when columns are added to the
data matrix Y in (1) appears to be a difficult problem and one in need of further research.

Our survey in this short essay is of necessity incomplete, and we apologize for resulting omission of other
material or references. Comments by readers to the authors on the material are welcome.
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