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Abstract
Model updating concerns the modification of an existing but inaccurate model
with measured data. For models characterized by quadratic pencils, the
measured data usually involve incomplete knowledge of natural frequencies,
mode shapes, or other spectral information. In conducting the updating, it is
often desirable to match only the part of observed data without tampering with
the other part of unmeasured or unknown eigenstructure inherent in the original
model. Such an updating, if possible, is said to have no spillover. Model
updating with no spillover has been a very challenging task in applications.
This paper provides a complete theory on when such an updating with no
spillover is possible.

1. Introduction

Modelling is one of the most fundamental tools that we use to simulate the complex
world. The goal of modelling is to come up with a representation that is simple enough
for mathematical manipulation yet powerful enough for describing, inducing and reasoning
complicated phenomena. Nonetheless, precise mathematical models of physical systems
are rarely available in practice. Many factors, including inevitable disturbances to the
measurement and imperfect characterization of the model, contribute to the inexactitude. For
various reasons, it often becomes necessary to update a primitive model to attain consistency
with empirical results. This procedure of updating or revising an existing model is an essential
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ingredient for establishing an effective model. The emphasis of this paper is on the updating
of a self-adjoint quadratic model in the form,

Q(λ) := λ2M + λC + K, (1.1)

where M,C and K ∈ R
n×n are symmetric with M being positive definite and K positive

semi-definite. The quadratic matrix polynomial Q(λ) is generally known as a quadratic
pencil.

Self-adjoint quadratic pencils arise in many areas of important applications. Indeed, when
modelling physical properties in applied mechanics, electrical oscillation, vibro-acoustics,
fluid mechanics, signal processing, or discretizing PDEs by finite elements, one often has to
deal with a second-order differential system

M v̈ + Cv̇ + Kv = f (t), (1.2)

where specifications of the underlying physical system are embedded in the matrix coefficients
M,C and K. It is well known that if

v(t) = x eλt

represents a fundamental solution to (1.2), then the scalar λ and the vector x must solve the
quadratic eigenvalue problem (QEP)

(λ2M + λC + K)x = 0. (1.3)

The scalar λ ∈ C and x ∈ C
n are called, respectively, the eigenvalue and the eigenvector

corresponding to λ. Because of the connection that the bearing of the dynamical system (1.2)
usually can be interpreted via the eigenvalues and eigenvectors of the algebraic system (1.3),
considerable efforts have been devoted to the QEP in the literature. A good survey of many
applications, mathematical properties, and a variety of numerical techniques for the QEP can
be found in the treatise by Tisseur and Meerbergen [25]. For convenience, we shall refer to
the triplet (M,C,K) interchangeably as a quadratic pencil.

Two aspects of the quadratic pencil associated with the model (1.2) deserve attention. The
direct problem involves analysing and deriving the spectral information and, hence, inducing
the dynamical behaviour of a system from a priori known physical parameters such as mass,
length, elasticity, inductance, capacitance, and so on. The inverse problem involves validating,
determining, or estimating the parameters of the system according to its observed or expected
behaviour. The direct problem concerns manifesting the behaviour in terms of the parameters
whereas the inverse problem concerns expressing the parameters in terms of the behaviour.
Both problems are of significant importance in applications. We have seen in the above that
the QEP is a direct problem. Its counterpart, known as a quadratic inverse eigenvalue problem
(QIEP) can be formulated as follows:

(QIEP) Construct a nontrivial quadratic pencil Q(λ) = λ2M + λC + K so that its
matrix coefficients (M,C,K) are of a specified structure and Q(λ) has a specified
set {(λi, xi )}κi=1 as its eigenpairs.

Since we are only interested in real matrices, it is natural to expect that the prescribed
eigenpairs are closed under complex conjugation. Without loss of generality, we shall denote
the κ prescribed eigenpairs in the matrix form (�,X) where � ∈ R

κ×κ is a block diagonal
with at most 2×2 blocks along the diagonal wherever a complex-conjugate pair of eigenvalues
appear in the prescribed spectrum and X ∈ R

n×κ represents the ‘eigenvector matrix’ in the
sense that each pair of column vectors associated with a 2 × 2 block in � retains the real and
the imaginary part, respectively, of the original complex eigenvector. In this way, we may
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identify the given eigenpairs (�,X) as an element in R
κ ×R

n×κ . The QIEP therefore amounts
to solving the algebraic equation

MX�2 + CX� + KX = 0 (1.4)

for the matrices M,C and K subject to some structural constraints.
By a model updating for the quadratic pencil (1.1), we mean to replace a portion

of its original eigenstructure by some newly measured eigeninformation. Among current
developments for the quadratic model updating, one challenge that is of practical importance
is to update the model while maintaining current vibration parameters not related to the newly
measured parameters invariant. We state the model updating problem as follows:

(MUP) Given a quadratic pencil (M0, C0,K0) and a few of its associated eigenpairs
{(λj , xj )}kj=1 with k < n, assume that new eigenpairs {(σj , yj )}kj=1 have been
measured. Update the quadratic pencil (M0, C0,K0) to a new quadratic pencil
(M,C,K) such that

(i) the newly measured {(σj , yj )}kj=1 form k eigenpairs of the new model (M,C,K);
(ii) the remaining 2n − k eigenpairs of (M,C,K) are kept the same as those of the

original (M0, C0,K0).

The second condition above is known as the no spillover phenomenon [9] to the
unmeasured or unknown eigenstructure. We stress that, though similar in spirit, this spillover
described here is not to be confused with the spillover effect in the context of control of flexible
systems [1] where a reduced-order model including some lower modes is used to determine a
control law and the controller based on such a model interacts with the residual modes which
cannot synthesize the modal coordinates exactly and the ‘unmodelled’ mode might lead to
some excitement and instability. No spillover is required in the updating process either because
these parameters are proven to be acceptable in the previous model and engineers do not wish
to introduce new vibrations via updating or, more importantly, because engineers simply do
not know any information about these parameters. It is sensible to consider the MUP as a
special QIEP with the no spillover portion as the prescribed eigenstructure. However, keep in
mind that it is highly desirable to construct the update (M,C,K) without knowledge of the
remaining 2n − k eigeninformation.

Model updating problems emerged in the 90s as an important tool for the design,
construction and maintenance of mechanical systems [14, 21, 22]. The application intends
to correct errors in a finite element model by incorporating the measured modal data into
the analytical finite element model, producing an adjusted model on the mass, damping and
stiffness whose resulting behaviour closely matches the experimental data. Over the years, a
number of approaches has been proposed. We briefly review some of them below.

For undamped systems, i.e., C = 0, various techniques have been discussed by Baruch
[2], Baruch and Bar-Itzak [4], Bermann [5], Bermann and Nagy [7] and Wei [26–28]. For
damped systems, under the assumption of proportional damping, which seems to be sufficient
where damping levels are lower than 10% of being critical [15], identification techniques have
been developed by Pilkey [23] to estimate the damping matrices. For ‘strong’ damped systems,
the theory and computation were first proposed by Friswell, Inman and Pilkey [15, 23]. Along
a similar vein but employing the ideas in [2, 4] to minimize changes between the analytical and
updated model subject to the spectral constraints, Kuo, Lin and Xu [19] have recently proposed
a direct method which seems more efficient and reliable. Another line of thought is to update
with symmetric low-rank correction of damping and stiffness matrices [13, 18, 22, 29, 30]. All
these existing methods can reproduce the given set of measured data while keeping updated
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matrices symmetry, but cannot guarantee that the remaining eigenvalues and eigenvectors of
the QEP are invariant after the update.

On the other hand, one can consider the MUP from a control point of view. It is
sometimes desirable, such as averting some immediate danger, to alter the dynamical behaviour
of a certain physical system quickly and temporarily by making minimal changes in its
parameters while keeping the structure properties intact as much as possible. The resulting
mathematical problem, known as the partial pole-assignment problem in control theory [20],
is often solved by using feedback control techniques. Advances in this area include studies by
Srinathkumar [24], Datta, Elhay, Ram and Sarkissian [11–13], and Lin and Wang [16]. The
difficulty is that the feedback used in the second-order control system leads to a nonsymmetric
system. Recently an iterative scheme was suggested in [8] to reassign one eigenvalue at a time
preserving both symmetry and no spillover in the process. The trouble is that the algorithm
can break down prematurely and cannot guarantee that all desirable eigenvalues are updated.

Our main contribution in this paper is that we offer a complete theory on the solvability of
the MUP. We believe that our necessary and sufficient condition is new in the field and should
give considerable insight into the important model updating problem.

2. Preliminaries

In a previous study [9], we have shown that the QIEP with no damping, i.e., C = 0, can
be solved with any number of arbitrarily assigned eigenpairs. In this case, updating with
no spillover is entirely possible for undamped quadratic pencils. In contrast, the QIEP with
damping can be solved with up to kmax arbitrarily assigned eigenpairs where the maximal
allowable number kmax is given by

kmax =
{

3� + 1, if n = 2�,

3� + 2, if n = 2� + 1.
(2.1)

More specifically, we have proved the following theorem concerning the general solvability.

Theorem 2.1. Given any positive integer κ � kmax, let (�,X) represent κ arbitrarily
prescribed eigenpairs which are closed under complex conjugation. Then

(i) the self-adjoint QIEP associated with (�,X) is always solvable;
(ii) for almost all κ prescribed eigenpairs (�,X), the solutions to the corresponding self-

adjoint QIEP form a subspace of dimensionality 3n(n+1)

2 − nκ .

If more than kmax eigenpairs are prescribed, examples can be established to show that the
QIEP has no solution. Since the MUP can be considered as a QIEP with 2n − k eigenpairs
fixed (though maybe unknown) and k eigenpairs specified, this theorem seems to suggest
the MUP as unsolvable in general. In particular, let the eigenvectors and eigenvalues of
the original system (M0, C0,K0) be partitioned, in real-value form as we have described
before, as [X1, Z] ∈ R

n×2n and diag{�1, ϒ} ∈ R
2n×2n, respectively, where the portion

(�1, X1) ∈ R
k×k × R

n×k is to be updated by a newly measured eigenpair (�, Y ). Updating
with no spillover means finding symmetric matrices �M,�C and �K such that the equations,

(M0 + �M)Zϒ2 + (C0 + �C)Zϒ + (K0 + �K)Z = 0, (2.2)

(M0 + �M)Y�2 + (C0 + �C)Y� + (K0 + �K)Y = 0, (2.3)

are satisfied simultaneously. By (2.2), it is necessary that the incremental pencil,

�Q(λ) := λ2�M + λ�C + �K, (2.4)



Updating quadratic models with no spillover effect on unmeasured spectral data 247

has the κ = 2n − k eigenpairs (ϒ,Z) as part of its eigenstructure. It seems plausible to
conclude that if k < 2n − kmax, that is, if too few eigenpairs (�1, X1) of the original pencil
are to be updated, then the QIEP for �Q(λ) is over-determined and can have only trivial
solution. In other words, it appears that spillover for the damped quadratic pencil generally
is unavoidable. This notion, if true, would be quite disappointing because in practice it is
often the case that only the first few low frequencies and modes are measurable. It must be
emphasized, however, that in our setting for the MUP the original triplet (M0, C0,K0) is itself
a nontrivial solution to the QIEP associated with (ϒ,Z). The QIEP for �Q(λ), though over-
determined, does have nontrivial solutions and is not the generic QIEP described in theorem 2.1.
The question is how to characterize the general solution (�M,�C,�K) for (2.2) so as to
further specify conditions on (�, Y ) for (2.3). The purpose of this paper is to address the
solvability of the MUP with a more thorough analysis.

Without loss of generality, we shall adopt the following notation and make some basic
assumptions throughout the discussion.

A1. Assume that all eigenvalues of the original pencil Q0(λ) := λ2M0 + λC0 + K0 are simple.
A2. Assume that the number k of eigenpairs to be updated is less than n.
A3. Assume that the original (complete) eigenstructure (�,X) ∈ R

2n×2n × R
n×2n can be

partitioned into three parts of sizes as indicated,

� = diag{ �1︸︷︷︸
k×k

,

ϒ︷ ︸︸ ︷
�2︸︷︷︸

(n−k)×(n−k)

, �3︸︷︷︸
n×n

}, X = [ X1︸︷︷︸
n×k

,

Z︷ ︸︸ ︷
X2︸︷︷︸

n×(n−k)

. X3︸︷︷︸
n×n

],

and that �1 is invertible.
A4. Assume further that each block is closed under conjugation and, hence, we can write

�1 = diag
{
λ

[2]
1 , . . . , λ

[2]
�1

, λ2�1+1, . . . , λk

}
,

�2 = diag
{
λ

[2]
k+1, . . . , λ

[2]
k+�2

, λk+2�2+1, . . . , λn

}
,

�3 = diag
{
λ

[2]
n+1, . . . , λ

[2]
n+�3

, λn+2�3+1, . . . , λ2n

}
,

with λj ∈ R, λ
[2]
j = [

αj

−βj

βj

αj

]
, αj , βj ∈ R, βj > 0 and that both square matrices [X1, X2]

and X3 are nonsingular.

Assumption A2 is for practical purpose since typically n is large and k is small. It should
be noted, however, that assumptions A3 and A4 impose some mild limitation on the original
model (M0, C0,K0). For instance, the quadratic pencil

λ2I3 +

1 0 0
0 2 0
0 0 3


does not have such a 3-block partition with either k = 1 or 2.

It is easy to see that Q0(λ)x = 0 if and only if

L(λ)

[
x
z

]
= 0, (2.5)

where

L(λ) := λ

[
C0 M0

M0 0

]
−
[−K0 0

0 M0

]
,

and z = λx if M0 is nonsingular. By A1, it is well known that we can normalize the
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eigenvectors X in such a way that

[
X

X�

]� [
C0 M0

M0 0

] [
X

X�

]
= S = diag{S1, S2, S3}, (2.6)

[
X

X�

]� [−K0 0
0 M0

] [
X

X�

]
= S�, (2.7)

where

S1 = diag


[

1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]
︸ ︷︷ ︸

�1 copies

, ε2�1+1, . . . , εk

 ,

S2 = diag


[

1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]
︸ ︷︷ ︸

�2 copies

, εk+2�2+1, . . . , εn

 ,

S3 = diag


[

1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]
︸ ︷︷ ︸

�3 copies

, εn+2�3+1, . . . , ε2n

 ,

(2.8)

with εj = ±1. Note that there are equal numbers of positive and negative signs among the
εj ’s. We shall exploit this standard form to establish the solvability conditions for the MUP.
Specifically, with the definition

�̃ := diag{�1,�2}, X̃ := [X1, X2],

and by comparing the corresponding blocks on both sides of (2.6) and (2.7), respectively, we
obtain the relationships

X̃�C0X3 + �̃�X̃�M0X3 + X̃�M0X3�3 = 0, (2.9)

X�
3 C0X3 + ��

3 X�
3 M0X3 + X3M0X3�3 = S3, (2.10)

−X̃�K0X3 + �̃�X̃�M0X3�3 = 0, (2.11)

−X̃�K0X2 + �̃�X̃�M0X2�2 =
[

0
S2�2

]
. (2.12)

We also have the equalities

−X�
1 K0X2 + ��

1 X�
1 M0X2�2 = 0, (2.13)

−X�
1 K0X3 + ��

1 X�
1 M0X3�3 = 0. (2.14)
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3. General solution to the incremental pencil

The QIEP associated with the eigenpair (ϒ,Z) for the incremental pencil �Q(λ) defined
in (2.4) is equivalent to solving the following algebraic system,

�MX2�
2
2 + �CX2�2 + �KX2 = 0,

�MX3�
2
3 + �CX3�3 + �KX3 = 0,

�M� = �M,

�C� = �C,

�K� = �K,

(3.1)

for matrices �M,�C and �K . Obviously, the original pencil (M0, C0,K0) is already a
particular solution. We want to characterize the solution in general. Denote

�ij := eie�
j + ej e�

i , 1 � i, j � k, (3.2)

where ei is the standard ith unit vector. We first provide the following sufficient condition for
solving (3.1).

Theorem 3.1. Define

�Mij := −M0X1�ijX
�
1 M0, (3.3)

�Cij := M0X1�ij�
−�
1 X�

1 K0 + K0X1�
−1
1 �ijX

�
1 M0, (3.4)

�Kij := −K0X1�
−1
1 �ij�

−�
1 X�

1 K0. (3.5)

Then each triplet (�Mij ,�Cij ,�Kij ), 1 � i � j � k, is a solution to the system (3.1).

Proof. It is clear that �Mij ,�Cij and �Kij are all symmetric. By direct substitution and
using (2.13), we see that

�MijX2�
2
2 + �KijX2 = (−M0X1�ijX

�
1 M0

)
X2�

2
2 +
(−K0X1�

−1
1 �ij�

−�
1 X�

1 K0
)
X2

= (−M0X1�ij�
−�
1 X�

1 K0
)
X2�2 +

(−K0X1�
−1
1 �ijX

�
1 M0

)
X2�2

= −�CijX2�2.

Similarly, using (2.14), we see that every equation in (3.1) is satisfied. �

By the homogeneity of (3.1), any linear combination of (�Mij ,�Cij ,�Kij ), 1 � i �
j � k, is also a solution to (3.1). Note that if M0 is nonsingular, then it cannot be expressed
as a linear combination of �Mij which is rank deficient. It follows that the triplet

(�M,�C,�K) :=
∑

1�i�j�k

αij (�Mij ,�Cij ,�Kij ) + β(M0, C0,K0), (3.6)

where αij , β ∈ R are arbitrary constants, is also a solution to (3.1). We claim that for almost
all given original models (M0, C0,K0) any other solution to (3.1) is always of the form (3.6).
In other words, the set

{(M0, C0,K0)}
⋃

{(�Mij ,�Cij ,�Kij )}1�i�j�k (3.7)

forms a basis for the solution space of (3.1). Note that by construction the coefficients of these
incremental pencils are symmetric low-rank matrices.
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To see the necessity of (3.6), we break down the argument into several steps. We first
single out the second equation in (3.1) as a stand-alone QIEP associated with eigenpairs
(�3, X3) ∈ R

n×n × R
n×n. Introducing a free ‘parameter’

U := X�
3 �MX3 (3.8)

in terms of �M , we reformulate the QIEP as

U�2
3 +
(
X�

3 �CX3
)
�3 +

(
X�

3 �KX3
) = 0 (3.9)

for the coefficient matrices (U,X�
3 �CX3, X

�
3 �KX3). The following result which gives rise

to a parametric representation of the solution to (3.9) has been proved in [17, theorem 2.1].

Theorem 3.2. With U given in (3.8) as a parameter, the general solution to (3.9) is given by

X�
3 �CX3 = −(U�3 + ��

3 U + D
)
, (3.10)

X�
3 �KX3 = ��

3 U�3 + ��
3 D, (3.11)

where D is another parameter of the form

D = diag

{[
ξ1 η1

η1 −ξi

]
, . . . ,

[
ξ�3 η�3

η�3 −ξ�3

]
, ξ2�3+1, . . . , ξn

}
, (3.12)

with arbitrary constants ξi, ηj ∈ R.

The free parameters U and D must be further restricted in order to satisfy the first equation
in (3.1). Towards that end, denote

W := X−1
3 X2,

and rewrite the first equation after substitution as

UW�2
2 − (

U�3 + ��
3 U + D

)
W�2 +

(
��

3 U�3 + ��
3 D
)
W = 0. (3.13)

It will prove to be convenient to rewrite the parameter U as

U = X�
3 M0X̃�X̃�M0X3, (3.14)

where the new parameter � ∈ R
n×n is symmetric. Such a change of variables is permissible

because all three matrices X3,M0 and X̃ are nonsingular. Observe that

UW�2 = X�
3 M0X̃�X̃�M0X2�2

= X�
3 M0X̃��̃−�

(
X̃�K0X2 +

[
0

S2�2

])
= X�

3 M0X̃�(�̃−�X̃�K0)X2 + X�
3 M0X̃�

[
0

�−�
2 S2�2

]
= U�3W + X�

3 M0X̃�

[
0

�−�
2 S2�2

]
. (3.15)

In the above, the second equality follows from (2.12) whereas the fourth equality follows
from (2.11). Equation (3.13) therefore can be simplified to(

X�
3 M0X̃�

[
0

�−�
2 S2�2

]
− DW

)
�2 = ��

3

(
X�

3 M0X̃�

[
0

�−�
2 S2�2

]
− DW

)
. (3.16)

Because �2 and �3 have distinct eigenvalues, it must be that

X�
3 M0X̃�

[
0

�−�
2 S2�2

]
− DW = 0. (3.17)
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Partition the parameter matrix � into blocks,

� =
[
�11 �12

��
12 �22

]
,

with �11 ∈ R
k×k . We now gain some insight into the structure of the parameter matrix �.

Theorem 3.3. In order to satisfy the first equation in (3.1), the parameter U defined in (3.14)
cannot be totally free. While �11 can be any symmetric matrix in R

k×k , the other part of � is
completely determined by the parameter D through the relationship[

�12

�22

]
= X̃−1M−1

0 X−�
3 DW�−1

2 S−1
2 ��

2 . (3.18)

We need to further restrict D so that the resulting �22 ∈ R
(n−k)×(n−k) is symmetric. For

simplicity, let

P := (
X�

3 M0X̃
)−�

[
0

In−k

]
= [p1, . . . , pn−k] ∈ R

n×(n−k), (3.19)

Q := W�−1
2 S−1

2 ��
2 = [q1, . . . , qn−k] ∈ R

n×(n−k). (3.20)

Then for �22 to be symmetric, the parameter matrix D must satisfy the linear equation

P �DQ − Q�DP = 0n−k. (3.21)

Recall that D is of the diagonal form defined in (3.12). Introducing the operator δ : R
n → R

n×n

by

δ(t) := diag

{[
t1 t2

−t2 t1

]
, . . . ,

[
t2�3−1 t2�3

−t2�3 t2�3−1

]
, t2�3+1, . . . , tn

}
,

if t = [t1, . . . , tn]� ∈ R
n and the sequence of truncated matrices

Aj := [aj+1, . . . , an−k], j = 1, . . . n − k − 1,

if A = [a1, . . . , an−k] ∈ R
n×(n−k), we can rewrite the off-diagonal entries of system (3.21) in

the equivalent form

Bd = 0, (3.22)

where

B :=


P �

1 δ(q1) − Q�
1 δ(p1)

P �
2 δ(q2) − Q�

2 δ(p2)

...

P �
n−k−1δ(qn−k−1) − Q�

n−k−1δ(pn−k−1)

 ∈ R
(n−k)(n−k−1)

2 ×n, (3.23)

d := [ξ1, η1, ξ2, η2, . . . , ξ�3 , η�3 , ξ2�3+1, . . . , ξn]�. (3.24)

Any solution to (3.22) will guarantee a symmetric parameter matrix � which, in turn, will
lead to a solution to system (3.1). It remains to characterize the solution space to (3.22).

We make several observations.

Theorem 3.4. The system (3.22) has a nontrivial solution. That is, its solution space has
dimensionality at least one.
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Proof. If d = 0 is the only solution, then by (3.18) and (3.14) we find that every solution
(�M,�C,�K) to (3.1) must satisfy

�M = M0X1�11X
�
1 M0,

for some symmetric matrix �11 in R
k×k . On the other hand, we already know that (M0, C0,K0)

is also a solution to (3.1). This is an obvious contradiction because M0 is of full rank where
�M in the above form is of rank at most k. �

Indeed, we can be more specific about the dimension of the solution space. Let r denote
the rank of the matrix B. If k > n − 1+

√
8n−7
2 , that is, if k is sufficiently large (and note that

this is not of practical interest in MUP applications), then n − r � 2; otherwise, we will have
n − r � 1. In the latter case, recall the fact that rank deficient matrices of any fixed size, say,
m × n, form a measure zero subset in its ambient space R

m×n. The coefficient matrix B is
an algebraic function of the eigenvalues and eigenvectors of the original pencil (M0, C0,K0)

and is already rank deficient. The set of pencils that make the corresponding matrices B
further rank deficient to r < n − 1 should have measure zero. For almost all original pencils
(M0, C0,K0), the matrix B is of rank n − 1. We believe our first main result concluded below,
which precisely characterizes the solution to the QIEP for the incremental pencil, is new in
the field.

Theorem 3.5. If the coefficient matrix B defined in (3.23) is of rank r = n − 1 (this
automatically implies that k must be sufficiently small), then the general solution to (3.1) is
given by (3.6). That is, the solution space of (3.1) is spanned by the 1 + k(k+1)

2 matrices in (3.7).

As far as the MUP is concerned, we have just provided a basis for the possible incremental
pencils which maintain no spillover to the original pencil (M0, C0,K0). It is critically
important to note that the general solution (3.6) does not require any knowledge of the
remaining 2n − k eigeninformation (�2, X2) and (�3, X3) at all.

4. Solvability of the MUP

Suppose now that new eigenpairs (�, Y ) ∈ R
k×k × R

n×k are measured and we desire to
update the original model Q0(λ) = λ2M0 + λC0 + K0 by replacing (�1, X1) by (�, Y ) while
maintaining the remaining eigenpairs (ϒ,Z) invariant. We assume that X1 ∈ R

k×k is of full
rank. The goal of this section is to characterize the condition on (�, Y ) under which the MUP
is solvable.

For convenience, let S(A) denote the spectrum of the matrix A. We first observe that if
Q0(λ)x = λ2M0x + λC0x + K0x = 0 for some λ �= 0, then for any scalar τ we can write

Q0(τ )x = τ 2M0x + τC0x + K0x = τ 2M0x − τ

(
λM0x +

1

λ
K0x

)
+ K0x

= (τ − λ)

(
τM0x − 1

λ
K0x

)
.

It follows that if τ /∈ S(�), then

Q0(τ )−1

(
τM0x − 1

λ
K0x

)
= 1

τ − λ
x. (4.1)

Recall that in order to solve the MUP, both equations (2.2) and (2.3) must be satisfied
simultaneously. In the preceding section, we have already seen that generically the general
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solution to (2.2) is given by (3.6), provided k < n − 1+
√

8n−7
2 . In particular, the triplet

(�M̂,�Ĉ,�k̂) given by
�M̂ := −M0X1�11X

�
1 M0,

�Ĉ := M0X1�11�
−�
1 X�

1 K0 + K0X1�
−1
1 �11X

�
1 M0,

�K̂ := −K0X1�
−1
1 �11�

−�
1 X�

1 K0,

(4.2)

with an arbitrary �11 ∈ R
k×k solves (2.2). With this in mind, we now derive the necessary

condition for solving (2.3).

Theorem 4.1. Assume that in the newly measured eigenpairs (�, Y ) ∈ R
k×k × R

n×k the
matrix � has exactly the same block diagonal structure as that of �1. If

(M0 + �M̂)Y�2 + (C0 + �Ĉ)Y� + (K0 + �K̂)Y = 0, (4.3)

then there exists a matrix T ∈ R
k×k such that

Y = X1T . (4.4)

If Y is of full rank, then T is invertible. In this case, for the MUP to be solvable, it is necessary
that Range(Y ) = Range(X1).

Proof. Let

� := diag


1√
2

[
1 1
i −i

]
, . . . ,

1√
2

[
1 1
i −i

]
︸ ︷︷ ︸

�1 copies

, 1, . . . , 1︸ ︷︷ ︸
k−�1 copies

 .

It is easy to verify that � is a unitary matrix and has the effect of transforming real block
diagonal form to complex diagonal form. Write

�̂1 := �H �1� = diag{λ1, . . . , λk},
�̂ := �H�� = diag{σ1, . . . , σk}
Ŷ := Y� = [ŷ1, . . . , ŷk] ≡ [η1, η̄1, . . . ,ην, η̄ν,ην+1, . . . ,ηk]

X̂1 := X1� = [x̂1, . . . , x̂k],

�̂11 := �H �11�.

It follows from (4.3) that

Q0(σj )ŷj = −(σ 2
j �M̂0 + σj�Ĉ0 + �K̂0

)
ŷj

= (
σ 2

j M0X̂1�̂11X̂
H
1 M0 − σjM0X̂1�̂11�̂

−H
1 X̂H

1 K0

− σjK0X̂1�̂
−1
1 �̂11X̂

H
1 M0 + K0X̂1�̂

−1
1 �̂11�̂

−H
1 X̂H

1 K0
)
ŷj

= (
σjM0X̂1 − K0X̂1�̂

−1
1

)
�̂11

(
σj X̂

H
1 M0 − �̂−H

1 X̂H
1 K0

)
ŷj

=
[(

σjM0 − 1

λ1
K0

)
x̂1, . . . ,

(
σjM0 − 1

λk

K0

)
x̂k

]
�̂11

(
σj X̂

H
1 M0 − �̂−H

1 X̂H
1 K0

)
ŷj ,

for j = 1, . . . , k. Applying (4.1), we obtain

ŷj = X̂1 diag

{
1

σj − λ1
, . . . ,

1

σj − λk

}
�̂11

(
σj X̂

H
1 M − �̂H

1 X̂H
1 K

)
ŷj
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for j = 1, . . . , k. Upon substitution, it follows that

Y = Ŷ�H

= X1 � diag

{
1

σj − λ1
, . . . ,

1

σj − λk

}
�H�11

(
�X�

1 M0 − ��
1 X�

1 K0
)
Y︸ ︷︷ ︸

T

.

Note that � diag
{

1
σj −λ1

, . . . , 1
σj −λk

}
�H is in R

k×k , so T is real valued. �

Theorem 4.1 is important because it points out that, in order to perform the updating with
no spillover, the newly observed eigenvectors Y cannot be too arbitrary. The vectors of Y must
reside in the range space of the original eigenvectors X1. If this constraint is not satisfied, then
the model cannot be updated.

Suppose now that Y = X1T for some nonsingular matrix T ∈ R
k×k . It is interesting to ask

under what conditions a symmetric matrix �11 ∈ R
k×k can be determined so that equality (4.3)

holds. Towards this end, we denote

� := T �T −1 (4.5)

and make two additional assumptions which generally are true:

A5. Assume that S(�) and S
((

X�
1 M0X1,−X�

1 K0X1�
−1
1

))
are disjoint;

A6. Assume that 0 /∈ S
(
X�

1 M0X1� − �−�
1 X�

1 K0X1
)
.

From the fact that

C0X1 = −M0X1�1 − K0X1�
−1
1 ,

and the assumption Y = X1T , we can rewrite (4.3) as

M0X1

[� − �1 − �11
(
X�

1 M0X1� − �−�
1 X�

1 K0X1
)]︸ ︷︷ ︸

V

T �

 �̂ − K0X1�
−1
1

×

[� − �1 − �11
(
X�

1 M0X1� − �−�
1 X�

1 K0X1
)]︸ ︷︷ ︸

V

T �

 = 0. (4.6)

Assumption A5 implies that

V := � − �1 − �11
(
X�

1 M0X1� − �−�
1 X�

1 K0X1
) = 0, (4.7)

because, otherwise, V T � �= 0 and there would exist a nonzero column vector, say, vj , of the
matrix V T � and a scalar σj ∈ S(�) such that

σjM0X1vj − K0X1�
−1
1 vj = 0,

which would imply that σj is an eigenvalue of the linear pencil
(
X�

1 M0X1,−X�
1 K0X1�

−1
1

)
and would contradict assumption A5. It follows from assumption A6 that �11 is given by

�11 = (� − �1)
(
X�

1 M0X1� − �−�
1 X�

1 K0X1
)−1

. (4.8)

Obviously, not all nonsingular matrices T ∈ R
k×k are feasible. The resulting matrix �11

defined in (4.8) must be symmetric. With this in mind, we have finally consummated our
second main result which completely characterizes when the MUP is solvable.
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Theorem 4.2. Given newly measured eigenpairs (�, Y ), assume that Y = X1T for some
nonsingular T ∈ R

k×k and that the two assumptions A5 and A6 hold. Define � as in (4.5).
Then the MUP is solvable if and only if the matrix T (which ties � to �) is such that(
X�

1 M0X1 − X�
1 K0X1�

−1
1

)
(� − �1) = (

�� − ��
1

)(
X�

1 M0X1 − �−�
1 X�

1 K0X1
)
. (4.9)

In this case, the matrix �11 is given by (4.8) which defines the incremental pencil (4.2) for the
update.

Observe from (2.7) that

X�
1 K0X1 = ��

1 X�
1 M0X1�1 − S1�1.

Upon substitution into (4.8), we see that

�11 = (� − �1)
(
X�

1 M0X1(� − �1) + �−�
1 S1�1

)−1 = (
X�

1 M0X1 + S1(� − �1)
−1
)−1

.

It is worth mentioning that if the matrix T is S1-symplectic, that is, if T satisfies the relationship
T �S1T = S1 where S1 is defined in (2.8), then �11 is automatically symmetric for arbitrary �,
so long as the newly measured eigenvalue information � has exactly the same block structure
as �1 and the difference � − �1 is invertible. To see this point, note that

��S1 = S1�.

Together with the S1-symplecticity of T, it can easily be established that

T �(�� − ��
1

)
S1T = T �S1(� − �1)T ,

showing that �11 is symmetric. The special case when T = I is of particular interest, that
is, when the eigenvectors in Y are kept the same as those in X1, the quadratic model can be
updated with arbitrary eigenvalues so long as values in � are kept in the same block structure
as that in the original �1.

5. Conclusion

Model updating with no spillover has been a longstanding open problem. Many efforts have
been made, both theoretically and computationally, in response to the demand of its many
critical applications. Thus far, the results are limited and hardly satisfactory. One of the most
fundamental challenges is to characterize when this model updating problem with no spillover
is solvable.

This paper provides a complete theory on when such an updating with no spillover is
possible. In particular, we think two contributions made in this paper are worthy of attention.
First, we describe a formula for the basis of the solution space of the quadratic inverse
eigenvalue problem associated with the incremental pencil. An important characteristic in our
construction for this general solution is that it does not involve knowledge of the remaining
2n−k eigenstructure at all, nicely fitting in the situation where no such knowledge is available
in practice. Second, we develop a necessary and sufficient condition on the newly measured
eigenpair (�, Y ) that gives an account of whether the corresponding model updating problem
is solvable. A distinguishing feature in our condition of solvability is its simplicity—roughly
speaking, the newly measured eigenvectors Y need to be in the range space of the original
eigenvectors X1.

Because the model updating with no spillover has important applications in many areas of
discipline, we think that our results in this paper fully addressing the issue of solvability should
be of interest to the community. On the other hand, we want to point out that in practice the
coefficient matrices M,C and K are often structured or parametrized. Can such a structured
model be updated with no spillover? In addition to matching or maintaining the spectral data,
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can the adjustments be made with minimal norm or maximal robustness? Can the physical
feasibility of the updated M,C and K be maintained? These are some open questions that
might be worthy of further study.

References

[1] Balas M J 1978 Active control of flexible systems J. Optim. Theory Appl. 25 415–36
[2] Baruch M 1978 Optimization procedure to correct stiffness and flexibility matrices using vibration data AIAA J.

16 1208–10
[3] Baruch M 1982 Optimal correction of mass and stiffness matrices using measured modes AIAA J. 20 1623–6
[4] Baruch M and Bar-Itzack I Y 1978 Optimal weighted othogonalization of measured modes AIAA J. 16 346–51
[5] Berman A 1979 Comment on ‘Optimal weighted othogonalization of measured modes’ AIAA J. 17 927–8
[6] Berman A 1979 Mass matrix correction using an incomplete set of measured modes AIAA J. 17 1147–8
[7] Berman A and Nagy E J 1983 Improvement of a large analytical model using test data AIAA J. 21 1168–73
[8] Carvalho J, Datta B N, Lin W W and Wang C S 2006 Symmetric preserving eigenvalue embedding in finite

element model updating of vibrating structures J. Sound Vib. 290 839–64
[9] Chu M, Datta B, Lin W-W and Xu S-F 2006 The spillover phenomenon in quadratic model updating (submitted)

[10] Datta B N, Elhay s and Ram Y M 1997 Orthogonality and partial pole assignment for the symmetric definite
quadratic pencil Linear Algebr. Appl. 257 29–48

[11] Datta B N, Elhay S, Ram Y M and Sarkissian D R 2000 Partial eigenstructure assignment for the quadratic
pencil J. Sound Vib. 230 101–10

[12] Datta B N and Sarkissian D R 2001 Theory and computations of some inverse eigenvalue problems for the
quadratic pencil Matrices in Operator Theory, Control, and Signal and Image Processing (Providence, RI:
American Mathematical Society) pp 221–40

[13] Datta B N 2002 Finite element model updating, eigenstructure assignment and eigenvalue embedding for
vibrating structures Mech. Syst. Signal Process. (special issue/volume on Vibration Control) 16 83–96

[14] Friswell M I and Mottershead J E 1995 Finite Element Model Updating in Structural Dynamics (Dordrecht:
Kluwer)

[15] Friswell M I, Inman D J and Pilkey D F 1998 Direct updating of damping and stiffness matrices AIAA J. 36
491–3

[16] Lin W W and Wang J N 2005 Partial pole assignment for the quadratic pencil by output feedback control with
feedback designs Numer. Linear Algebr. Appl. 12 967–79

[17] Kuo Y C, Lin W W and Xu S F On a general solution of partially described inverse quadratic eigenvalue
problems and its applications SIAM J. Matrix Anal. Appl. at press

[18] Kuo Y C, Lin W W and Xu S F 2005 New model updating method for quadratic eigenvalue problems using a
symmetric eigenstructure assignment AIAA J. 43 2593–8

[19] Kuo Y C, Lin W W and Xu S F 2006 New methods for finite element model updating problems AIAA J. 44
1310–6

[20] Minas C and Inman D J 1987 Correcting finite element models with measured modal results using eigenstructure
assignment methods Proc. 4th IMAC Conf. (Union College, Schenectady, NY, Feb. 1987) pp 583–7

[21] Minas C and Inman D J 1990 Matching finite element models to model data ASME 112 84–92
[22] Mottershead J E and Friswell M I 1993 Model updating in structural dynamics: a survey J. Sound

Vib. 167 347–75
[23] Pilkey D F 1998 Computation of a damping matrix for finite element model updating Dissertation Virginia

Polytechnique Institute and State University
[24] Srinathkumar S 1978 Eigenvalue/eigenvector assignment using output feedback IEEE Trans. Autom.

Control AC-23 79–81
[25] Tisseur F and Meerbergen K 2001 The quadratic eigenvalue problem SIAM Rev. 43 235–86
[26] Wei F-S 1989 Structural dynamic model identification using vibration test data 7th IMAC (Las Vegas, NV)

pp 562–7
[27] Wei F-S 1990 Structural dynamic model improvement using vibration test data AIAA J. 28 175–7
[28] Wei F-S 1990 Mass and stiffness interaction effects in analytical model modification AIAA J. 28 1686–8
[29] Zimmerman D and Kaouk M 1992 Eigenstructure assignment approach for structural damage detection AIAA

J. 30 1848–55
[30] Zimmerman D and Widengren M 1990 Correcting finite element models using a symmetric eigenstructure

assignment technique AIAA J. 28 1670–6

http://dx.doi.org/10.1007/BF00932903
http://dx.doi.org/10.1016/j.jsv.2005.04.030
http://dx.doi.org/10.1016/S0024-3795(96)00036-5
http://dx.doi.org/10.1006/jsvi.1999.2620
http://dx.doi.org/10.1006/jsvi.1993.1340
http://dx.doi.org/10.1109/TAC.1978.1101685
http://dx.doi.org/10.1137/S0036144500381988

	1. Introduction
	2. Preliminaries
	3. General solution to the incremental pencil
	4. Solvability of the MUP
	5. Conclusion
	References

