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Abstract

This paper revisits the classical problem of finding the lbask-1 approximation to a generic tensor. The main
focus is on providing a mathematical proof for the conveogeof the iterates of an SVD-based algorithm. In

contrast to the conventional approach by the so callednatierg least squares (ALS) method that works to adjust
one factor a time, the SVD-based algorithms improve twooiagcsimultaneously. The ALS method is easy to

implement, but suffers from slow convergence and easy atagnat a local solution. It has been suggested
recently that the SVD-algorithm might have a better lingtinehavior leading to better approximations, yet a
theory of convergence has been elusive in the literatures fAdte proposes a simple tactics to partially close that

gap.
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1. Introduction
A real-valued tensor of orddrcan be represented bycavay array
T= [Til,...,ik] e RIvxlzx...xIy

with elements;, . ,, accessed via indices. A tensor of the form

yeeey

k
®u<g> —uPe.. .@uh = [ugll) e ugf)],
=1

where elements are the products of entries from veatftsec R’¢, ¢ = 1, ..., k, is said to be of rank one. The

problem of finding a best rank-1 approximationZds to determine unit vectors) € R, ¢ = 1,...k, and a
scalar) such that the functional

fOuu®, )y = |\T—/\®u(z)||% = Z (Tiy .. vin —/\ugll)...ul(-)]:))2 ()
=1 11,8250k
is minimized. For any fixed unit vectors, ..., u(*), the optimal value of\ for () is given precisely by the

length of the projection of the “vectof” onto the direction of the “unit vecto®;_, u) € Rl x%2x-xIk j e,

k
A=Au®, . u®) =1, Qu). 2)
=1
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Thus, minimizing the orthogonal componentbfas is desired i (1), is equivalent to maximizing the lerjgth

of the parallel component. In_[25], the expressiadn (2) isechthe generalized Rayleigh quotientBfrelative to
{u®, ... u®}. Switching the signs of the variables®) if necessary, we may restrict our attention without loss
of generality to the case that> 0 only.

Many efforts for finding the extreme values bf (2) have beedena the literature, yet the problem is still not
settled. See, for example, [3,/13) 14} 15,116,122, 25]. Thecdify is partly due to the curse of dimensionality,
whence the rapid growth of computational overhead, andyptht nonlinearity, whence the stagnation at a local
solution. For example, the alternating least squares (Ah&hod works on improving one factaf?) a time.
Assuming the form as a high-order power method, the ALS ig tasnplement and has been conventionally em-
ployed as the workhorse for low rank tensor approximatiooweler, the method suffers from slow convergence
and easy stagnation at a local solution. Thus it is appe#fiagmaybe alternating two factors simultaneously
by employing the singular value decomposition (SVD) as t&-in-one optimization mechanism could give rise
to better performance. The idea was mentionedlin [9, Se&i8hwith no particular elaboration, and was more
carefully postulated in [11] with numerical testing on sosyathetic and real data sets of third-order tensors. This
approach has the obvious advantage that, starting fromathe point, one step of SVD-based iteration is superior
to two consecutive steps of ALS iteration. There is no thexrgresent to support that the improvement by the
SVD-based iteration will continue to be superior in the long. Through numerical experiments, however, it
has been suggested that for large scale data the SVD-baseddmaight have better limiting behavior leading to
better approximations [11, Section 5].

This paper is not concerned about how fast the differentrialgos perform, nor what quality they achieve.
Rather, we are curious about the more fundamental quedtiwhether the iteration converges at all. Recall that
the convergence theory for the ALS method was establishexthtater than the method had been put into practice
[6, 21,122]. A similar concern is raised for the SVD-basedodthm — the convergence of the generalized
Rayleigh quotients is obvious, but the convergence armafgsithe iterates themselves has been elusive in the
literature [11, Page 947]. In this paper we provide a rigermathematical proof for the convergence of iterates
from a specific SVD-based algorithm, which thus complem#rggheory. We learn recently that an independent
work in the reporti[24] also investigates the convergenesith by using the tojasiewicz gradient inequality
[5,117,[18]. Indeed, we have employed a similar techniquedvipg the global convergence of the ALS method
in [22]. The tactics we develop in this paper for the SVD-lobakgorithm is an entirely different approach. Our
approach relies on only the continuity of singular vectard eeal analysis, which, in our opinion, is much more
straightforward.

This paper is organized as follows. We begin with a briefeavdf some basic operations in Sectidn 2 to
prepare for the discussion. We describe two variants of ®dBed algorithms in Sectigh 3. The difference is at
where the SVD is to be applied. Our main result is present&eatiori 4 where we explain the meaning of a tensor
being generic and argue the convergence for the most basiataim. Finally, though it is not the main objective
of this paper, we carry out some exploratory experimentgicti8n5 to compare performance between ours and
other types of SVD-based algorithms.

2. Basics

Tensors have multiple facets, so we need discern what kitehebr multiplication is taking place. To facilitate
the subsequent discussion, we first introduce a simpleiontsystem that generalizes what we already know from
the matrix theory. In the passing, we also mention a few usedls.

Let the symbo[m] denote henceforth the set of integéts. . . m} for a given positive integen. Suppose that
the set[k] is partitioned as the union of two disjoint nonempty subsets {a1,...,as} and8 = {1, ..., B},
wheres + ¢t = k. Choosing different partitions d] offers a convenient tool to dissect a high-dimensidghahd
exam its cross-sections from different perspectives. &meht in the tensdf € R+ */2x--*Ix can be identified
asT[(I"“ﬁ) whereZ := (iy,...,is) andJ := (j1,...,Jj:) contain those indices at locationsand3, respectively.
Each index in the arrayg and.7 should be within the corresponding range of integers, é.g5 [, ] and so
on. Without causing ambiguity, we abbreviate the elementasg,, when the reference to a specific partitioning
(o, B) is clear. The representatiofy| 7] is (o, 3) specific, but there is no preferenceafover 3. The partition
(e, B) may be regarded as generalizing the familiar notion of rawgs@lumns for matrices.

Given a fixed partitioningk] = « U 3, we shall regard an ordértensorT € R1*--xIx as a "matrix
representation” of a linear operator mapping orglénsors to ordet-tensorsi[22]. Specifically, we identify T
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with the linear map

yﬁ :Rlalx...xlas %nglx...xlgt’ (3)
such that for anys' € Rfe1 %+ *1as we have
Tp(S) :=T®g S = [(T0,....0,], 5)] € R -xTae (4)
where
Io,

URTAAN-) Z ZT% i [0 0] St i (5)

11=1 1s=1
is the Frobenius inner product generalized to multi-dinmme arrays. The3-product defined by {4) is a natural
generalization of the usual matrix-vector multiplicatiorthe sense that if an order-2 tengoe R™*" is regarded
as a matrix, and if the column is identified by the poirter {1} and the row by3 = {2} so thatr;; = T[(iﬁ]}’{l}),
then with respect to given column vectarg R™ andy € R™ we can write

Tz = T®sz,

o (6)
T'y = T®y.

This notation is handy in our convergence analysis later.

We should also carefully differentiate thiproduct®s from the so called-mode productx, used in the
literature [2, 16]. First, recall that thémode product of a tensor with a matrix maintains the samerastithe
original tensor, but th@-product reduces the order frotn= s + ¢ to t. Second, recall that th& mode product of
a tensor with a vector is indeed a contraction. Wisen of the formS = uV®...@u'®, then

(T®g S)e,...0 Z Z Tliro.. isul_,___ygt]ul(-ll) . ugf) =T Xg, uM xq, u® . x, ul®.

11=1 1s=1

However, we are not aware of a consistent way to defing4#tm@de product whef' is a general ordes-tensor.
The following basic facts will be used in the subsequentudision.

Lemma 2.1. Given a general tensdf € R/1*%2>xIx g partitioning [k] = o« U 3, and vectorsu®) ¢ R’,
{=1,...,k, thenit holds that

k s t
(T, ®u(4)> = (T®p ®u(m)’ ®u(ﬁj)>_ (7)
=1 i=1 j=1

Lemma 2.2. Given a general tensdf € R %% Ik arpitrary vectorsu(®) € R« i € [k — 2], v € Rls2,
andw € R’ | then

k—2

(T® 51,5 Qu*NEs v = (To(, a]}®u(‘“ ovo @ u™)a, u) ®)
=1 i=j+1
k—2 j—1 k—2

(T®5.60 Qu)Bs, W = (T9(a, 5} ®“(al aw® (&) u)ws, ul) 9)
i=1 i1 i—1

foranyj € [k — 2].

Lemma2.3. [19, Lemma 4.10] Assume that is an isolated accumulation point of a sequekieg} such that for
every subsequende; } converging ta:*, there is an infinite subsequenge;; } such thatay, +1 —ax; | — 0.
Then the whole sequen€e;, } converges ta*.

Lemma 2.4. [10] Given a matrixA € R™*", then the global maximum of the generalized Rayleigh guotie

max y ' Az (20)
yER™ |ly|=1
zeR", |z =1
is precisely the largest singular valug of A, where the global maximizegly,,z,) consists of precisely the
corresponding left and right singular vectors. The bestkdrapproximation tod is given byo,y 1z .
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3. SVD-based best rank-1 approximation

We now investigate a possible application of the singuldwev@ecomposition (SVD) to the best rank-1 ap-
proximation of a generic tensor. We shall explain the kinderfieric property we need in the context. Our goal is
to achieve the best rank-1 approximation by improving twmponents a time via the SVD.

3.1. SVD certification

Suppose that ®’;:1 a® is the best rank-1 approximation to a given oré¢ensor?’. By (2), the generalized
Rayleigh quotient = (T, ®§:1 ")) is positive and maximal. Consider an arbitrary partitignfa] = « U 3
with the cardinality|3| = 2. By Lemmd2.1l, we can write

k—2 2
A= (T®p ®ﬁ(ai)’®ﬁ(ﬁ )
i=1

The productCg = T®g ®f;12 (*) is a matrix inR’s1 /52 Since\ is the maximal generalized Rayleigh
quotient, by LemmB2]4, we conclude tif") anda®>) must be the left and the right singular vectors associated
with the largest singular valug of C for any 8. This is the SVD certification of the best rank-1 approximati

to a given tensof’.

We are thus motivated to formulate an SVD-based approachltulate the best rank-1 approximation by
iterations. Depending on the choice@fvhich dictates where the certification is to be checked, gpe@ach may
appear in different variants. For ordétensors, for example, only the two pajs= (1,2) and(3,4) are alter-
natingly checked in [24], whereas all six combinations ie trder3 = (1,2),(3,4),(1,3),(2,4),(1,4),(2,3)
are checked in [11]. We propose two alternatives. In Aldgponitl, we circulate through pairs of 3 in the order
(1,2),(2,3),...,(k —1,k) and(1, k). In Algorithm 2, we propose a random choice®f= (o%_1, o) whereo
is an arbitrary permutation df]. We do not think that there is a significant difference in teef@rmance among
the variants, but the true verdict is yet to be further inigegéed. In all algorithms, the most fundamental concern
is a proof of convergence for generic tensors.

3.2. Algorithm description

The most basic SVD-based approach is outlined in Algorfthriiio types of dynamics are involved in this
and all other algorithms. One is the dynamics of the objeatalues, of which the analysis is straightforward. The
other is the dynamics of the iterates, which is much hardeh&vacterize. We will discuss the convergence in the
next section.

To convey the idea, we adopt the subscjpin Algorithm[d to indicate the quantity at theth iteration. Each
sweep ofp at Line 1 in Algorithm[1 involves: pairs of 3 ranging circularly from(1,2),(2,3),...,(k — 1,k)

and(1, k). Itis tricky that last pair has to be in the ord@r, k), as the reversdk, 1) will not work Eachu ﬁiq]

is updated twice. The first updates o= 2, ..., k, denoted byu[ ) at Line 10, are not essential and can be

completely removed from the algorithm, but its presencepmbhdge the monotonicity. The updzﬁéﬁl]

temporarily overwritten au 1 at Line 9 for the computation (It' at Line 4 for¢ = 2,...,k — 1, but will
be updated again at Line 17 Jl'he switch of signs at Line 7 (tmm£d upon Line 6 is to ensure that the iterates
are aligned in one direction and thus avoid discontinuoogpg The continuity of the dominant singular value

and the associated singular vector is critical to convergeihe intermediate valu ﬁl] are registered in the

algorithm as well, even though o k-)ﬁ-l at the final stage is crucial.
The above algorithm is still alternating in nature, but iffedtent from the alternating least squares (ALS)
approach that has been popular for computing the best raagpfoximation|[i7, 14, 25]. The most significant

difference is that, since the dominant singular ventﬁﬁll andv[(ﬁ1 of the matrixC[(Zf]) gives rise to the absolute

maximal valuek(é) for the functional

[p+1]

k
(1)
(r, ®up+u®x®y® & ) (11)
=042
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Algorithm 1 (Best rank-1 approximation via SVD updating with cyclic gression.)

Require: An order% tensorl’ € R71>--*Ix andk starting unit vectorufél) e Rl (e [K]
Ensure: A local best rank-1 approximation 6

1: forp=0,1,---,do

22 for¢=1,2,---,k—1,do

3: 6@ = (ga £ + 1)
¢ -1 (i i : ;
4: C’[(p]) = Tep, @', ufp)ﬂ] ®®f:€+2 ufpi {A matrix of size I, x Iy}
5 [u,s,v] = svds(C[(Zf}), 1) {Dominant singular value triplet vidatlab routinesvds; assume
uniqueness}

6: if u; < 0then
7 u=-uv=-v {Assume the generic case that # 0; otherwise, use another entry.}
8: end if
9: u? = u {If £=1, this isi'") - otherwise this is the second updﬂt((é) if2<?¢<kl}

: (p+1] ’ [p+1]’ p+1]’ = )
10: ﬁfﬁﬁ]) = {Skipping this step will not aﬁecC[(zf]“) atLine 4.}

. 0 ._
11: /\[p 41 =8
12:  end for
13 B, =(1,k) {Not (k,1)1}
14: C[(If]) =T®g, ®f;21 “E;)H] {A matrix of size I x I}

15 [u,s,v] = svds(C[(Zf]), 1) {Dominant singular value triplet vidMatlab routinesvds; assume uniqueness}
(k)

160 up g =V {After adjusting the signs ofi andv properly as in Line 6.}
: 1 .

17: ([2;1] =

18: )‘[p+1] =35

19: end for

among all possible vectossandy, the mechanism of updatingandy simultaneously in Algorithrall is going
to increase the generalized Rayleigh quotient faster th@eambination of two applications of ALS approach to
x followed byy in one step, provided that the initial information is the sarthe two-in-one gain is also better
than the maximum of updating or y separately [11, Proposition 4]. We stress that such an aagarmappens
only when the comparison is made at the same point. Theregemeral theory at present to support that the SVD
update will continue to be superior to the power update iridhg run, once they depart toward different directions
from the same starting point.

Other than for systematically bookkeeping the progressfqgs, there is no particular reason that we have to
cycle through thé-loop as is indicated in Algorithid 1. An alternative way isstwuffle the columna™), ..., u(*)
by a random permutatianand generate a matriX for updating. This randomized procedure is modified at Line 7
in Algorithm[2. To avoid confusion with data generated frohg@ithm[d, we employ a slightly different notation
when describing the progression in this algorithm. For diicitp, we always choose to update the last two vectors
ulox-1) ule) after the permutation. It is known in probability theory thiae expected number of trials for a
permutation to recur i@. Nonetheless, by the time that a repetition of permutafipioccurs, the vectors
u™ ... u® should have been changed. Repeating the random permutatifficiently many times should get
the iteration to move forward. The concern of reiteratinghwihe same matrig’; at Line 7 should be nominal. It
is interesting to note from our numerical experiments inti®a@ that this randomized algorithm turns out to be
the most efficient when comparing with other variants.

4. Convergence analysis

In this section, we analyze the convergence for the abowwitigns. First, because the SVD at each update
always selects the dominant singular value and the cornelipg left and right singular vectors, each of the two
algorithms enjoys the property that the corresponding esecgl of the generalized Rayleigh quotients is bounded
and monotone increasing. The convergence of the objedives((2) is obvious.
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Algorithm 2 (Best rank-1 approximation via SVD updating with randortiaa.)

Require: An order generic tensof” andk starting unit vectora?), ..., u*) ¢ R®
Ensure: A local best rank-1 approximation 6
1.1+ 0
2: Ao« (T, ®}_, u®)
3: repeat
4. t+t+1
5. o + random permutation ofl, ..., k}
6: By (0k—1,0%)
7. G Tog, @7 ul)
8  [ug, s, ve] = svds(Cy, 1) {Dominant singular value triplet visdatlab routinesvds, assume uniqueness}
9:  if (uy)1 < Othen
10: u=—-u,v=-—v {Assume the general case tHat; ); # 0; otherwise, use another entry}
1. endif

12: At < S
130 u) g, ul) vy
14: until A, meets convergence criteria

Lemma 4.1. The scalars{)\fﬁ])} generated in Algorithri]1 form a monotone convergent sequiéarceach? =
1,...,k and all converge to the same value.

Lemma 4.2. The scalarg\;} generated in Algorithri]2 form a monotone convergent seqienc

It remains to prove the convergence of iterates themseh@sngeneric conditions [24, Assumption 3.1]. What
happens is that there are cases where the iterates do nergeift6], but these cases form algebraic varieties, i.e.,
zeros of a certain polynomial system, that are of measureinehe space of general tensors. The complement of
this zero measure set is open and dense under the Zarisko¢yp@0], which is what we referred to as generic.
To avoid using jargons from algebraic geometry, we shall beerspecific in the following argument when generic
properties are required.

We learn recently that authors of the report [24] indepetigdgmove the convergence of their variant of an
SVD-based algorithm by exploiting the monotone convergeﬁo/alueskfk]) and ;. Their proof relies on the
framework developed in[1] and utilizes the the tojasiewgcadient inequaﬂty. A similar idea has been employed
in our earlier work in[[22]. Our contribution in this paperdsew, shorter, and more direct proof. In either case,
the analysis should fulfill what was declared as "we do notetegomplete understanding when this will happen”
in [11, Page 947].

4.1. Convergence of Algorithm 1

The two SVD-based algorithms outlined in the proceedintj@ediffer by the wayg is specified. To convey
our idea, we first characterize the limiting behavior of Aiggam[I where3 is changed systematically in a cyclic
pattern. Observe that for each fixécbecausﬁufﬁ])HQ = 1forall p, the coIIection{uEﬁf} must have a convergent
subsequence. There are only finitely m&nyelecting a subsequence of a subsequence if necessamgmviad
a common subsdip;} of nonnegative integers so th@lfﬁj]} converges simultaneously for @l [&].

Lemma 4.3. If subsequence@fﬁi]} generated by Algorithil 1 converge simultaneously fo¢ all [k], then so

4 4
do subsequence{s?[(pj]} and{ufpzﬂ}}.
Proof. The simultaneous convergence{mffﬁz]} for ¢ = 3,...k implies that the subsequen(:é’[(;j)]} converges.
&)
[p;]
converges also since we have already aligned them in onetidine But then by definition{C[(Zi_)]} converges and,

By the continuity inherited in the SVD [4, 23], the subseqenf the left singular vectorfgﬁf;jm} of C

thus, so doe$uf§3+1]}. We can repeat this argument by cycling through#heop in Algorithm[1. At the end,
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the matrices{C[(zi)]} together with the corresponding left singular vect{mn%jﬂ]} and the right singular vectors
k
{ufp;H]} must also converge. O

Denote the respective limit points of the above subseqsemge

lim; 0 ufﬁi] = uéé),
. [
lim; 00 C[(p?} = C0,
~® ) ¢ e [k], (12)
lim; o 4 Uy = U,
. [ ¢
lim; 0 ufpiﬂ] = ué ),

where the subscriptis a handy way to distinguish, at least for now, that the lipuints corresponding to the
subsequencg; ;1) might be different from those, denoted by the subsggipf the original subsequengg;. By

the WayC[(If;] is defined, it follows that

-1
O = Twg, (RQuy’® ® @y (13)
1=1 1=0+2

We already point out in Lemnia4.1 that all matricg$), ¢ € [k] share the same dominant singular valuane
now explore the relationships among dominant singularorsaif allC'*) matrices.

With respect to a given convergent subsequence generat&igbgthm[, the following result asserts that all
dominant (left) singular vectors are the same.

Lemma4.4. Assume thal is such that, with respect to the given simultaneously dgtmtsubsequencénfﬁi]}

generated by Algorithi 1, the dominant singular valuef the corresponding limit poin®(“) € Rf*Te+1 defined
in (I2) is simple for all € [k]. Then the limit points defined in_(12) satisfy the relatidpstthat

WO — gl _ o
“ P o " ¢ e [k]. (14)
c® = T®p, (®z 1 Uy ®®z e Wy )

Proof. For convenience, we employ the abbreviatignsand ®- to |nd|cate, respectively, the row-matrix and
matrix-column multiplications already delineated [0 (8 reality, it must be noted that we are dealing with
multiplications of matrices and vectors of different sizes

By using Lemm& 2]2, we first observe the equalities

CO% ua® = A0 G

PP Yp+11 T A+, +1]
= (T®p, (u pj+1 ®®u[p +1)® ® [p ] )®1 u[p +1]
1=0+2
( ) - (%) (£+2)
. 1 % {42
= (T@ng [pj +1]®®up +1® ® u[pj]))®2 Yip,]
1=0+3
— c““)@ f”}”, (=2.. k-2 (15)
Similarly,
(1) A(l) _ (1) =(2)
Cp®1Up ) = AU, 41
- (1) (1)
i ~(1
= (T®ﬁ1 (® u[p]‘]))®1 u[PjJFl]
=3

~ (o, @) o @i enil) =)

(3)
[p;+1] [p ] = Ol ®2 U (16)

[p;]



The special "twist" at Lines 16-17 with, = (1, k) in Algorithm[1 allows us to have the identities

e @pul® = AP

[p;] [p;] [PJ]

k—1
i k
(T®f3k (® ufp)j}))®2 ufp:]
i=2

k
— (4) (1) u?
= (T®p, (® u[pj}))®2 u[p 1 C Uip,1- (17)
=3
Finally, we also have
(k—1) (k=1)  _ y(k=1) ~(k)
Cloy @1 p,01) = A1, 4]

(k—1)
(T®ﬂk 1 ( [p +1]®®up +1] )®1 u[l’j"'l]

B () B ()
= (Top, ®u[,, )@y = O @y, gy (18)

1=2

Taking the limits, then it follows by construction and coniity that we have the relationships:

) = cWeyul?, (by @) (19)

cWea = Ay =C@eu®,  (by (@18)) (20)
COu’ = Xa{tY = e, u(tP r=2,. k-2, (by(@®) (21)
D @y uY = Xﬁg’“) =CcW e a,  (byT8) (22)
c® el = . (by Lines 16-17 in Algorithrilll) (23)

By assumption, the dominantis simple and the corresponding singular vector is uniquswpsign change.
However, because in Lines 6 to 8 of Algoritith 1 we have alredpired that the first entry of the dominant
singular vector be positive, such a sign change does ndt &ti® best rank-1 approximation to the matfix®)
therefore is unique. Recursively, the above relationsimysy that the best rank-1 approximation to the matrix
C® can be expressed in two ways:

0~ P eu® = 6P ea?,
¢ ~ M’ eu™ = Xeu"V, (=2 k-1, (24)
ck )\uél)® é) = Xué”@ué).

By the uniqueness of dominant singular vectors®6? for each? € [k], the assertiori (14) follows frori(R4).00

The question is when the assumption imposed’an Lemmd4.4 will hold. Specifically, &R denote the set
of tensorT” € R+ x%2x--xIk where there exists a convergent subsequén{:ﬁé_]} such that the dominant singular
J

value of the limit pointC®) of the correspondingO[(ﬁ?]} C RIexIet1 s not simple. How large is the s@r
J
Consider the fact that symmetric matrices with multiplyexigalues form an algebraic variety of codimension
two [8]. For almost all matrices, therefore, the largestjsiar value is simple. For one particular limit poi@it?)

to have multiple dominant singular values, the subsequeﬁéfé]} that leads to it must approach arbitrarily close
J

to that variety of matrices with multiple dominant singwaues. But{C[(Ifj}} is defined in a specific algebraic

way as in Line 4 of AIg_orithrEll. Backward tracing, the occae ofC'“) with multiple dominant singular values

depends on the se{lufé]),i € [k]} of unit starting vectors, the particular subsequefige } selected, and the

underlyingT. Any change of the starting vectors could alter the coursieadtion. The choice of a different
8



subsequence could lead to a different limit point. When lsb#mges do not obliterate the appearance of dominant
singular values, the tensd@r itself must be something special. We thus conjecture tras#i2 should not be
generic. Such a reasoning, of course, does not constitusgreematical proof to support its genericity because we
do not know of an analytic way to quantify a gen€ficThus, at the moment, we can only call it an assumption to
be satisfied. Note that Lemra$.4 is subsequence depentdsstntlusion is with respect to only one particularly
given convergent subsequence. The following conditiondststronger than what we need in Lenimad 4.4.
Condition A. We say that a given ordértensorI” satisfies Condition A if for every convergent subsequences

{ug;]} generated by Algorithil1 and the corresponding subsequﬁﬂﬁg%}, ¢ € [k], the dominant singular

value ) of the limit pointC'¥) € R7e>Te+1 defined in[IR) is simple for all € [£].

We conjecture that Condition A holds for almost all ordetensors. Even if not, keep in mind that it will be
considered together with the Condition B which is generit aiil be described below.

By the way the iteration is defined, and if Lemmal4.4 holds, stagionary point of Algorithni]ll necessarily
satisfies the system of equations

-1 k
T, (Quie Q) u?) = (T, Quu®, e k. (25)
=1

k
i=0+1 (=1

The equation[{25) is a polynomial system in the unknownd), ..., u®) € R x ... x R* with leading
coefficients from entries df'. By the theory of parameter continuation|[20, Theorem T,Ivgé know that for
almost all tensofl” € C1**Ix except for an affine algebraic subset of codimension or@inx ... x C,
the solutions to[(25) are isolated. Together with the faatkhis dense inC under the Zariski topology, the real
solutions are also isolated.

Condition B. We say that a given ordértensorT" satisfies Condition B if the real solutions to the correspond
ing polynomial systeni (25) are isolated.

Lemma 4.5. For almost all tensord’, the accumulation points of the sequereg} generated by Algorithrin] 1
and Algorithni2 are geometrically isolated.

Finally, we are ready to claim our major result which servesh@ theoretic basis complementing the SVD-
based Algorithnill. We say that a tengor R+ >k js generic if it satisfies both generic conditions A and B.
The non-generic tensors must reside on some algebraidigaraad, hence, are of measure zero.

Theorem 4.6. For almost all orderk tensorsT” satisfying Condition A and for arbitrary starting pointbg vector

sequencé(u&), cey ugf]))} generated by Algorithfd 1 converges to a local maximizer®fjneralized Rayleigh

quotientA\(u®, ..., u®) defined in[(R).

Proof. Let {ufﬁi]} be any simultaneously convergent subsequencesddfk]. By Lemmd4.3B, the subsequences
{ufﬁzﬂl} also converges. Indeed, by Lemfnal4.4, both subsequencesrgea to the same limit point for all

¢ e [k]. Thus||uf2+1] — ufﬁ:&” — 0. On the other hand, by Lemnia #.5 we assume that the limit g®int
geometrically isolated. The convergence of the entire esaqel{ug;]} to the same limit point follows from
LemmdZ3. O

4.2. Convergence of Algorithinh 2
Now we argue the convergence of Algorittith 2 whe¢tés changed randomly. For clarity, enumerate the
column vectors at the end of Line 13 l{)ugl), . ,ugk)}. By construction, fot > 1, only two of these vectors

are updated by the dominate left and right singular vectar,ofrhile others remain the same. Now we establish
the following result.

Theorem 4.7. For almost all orderk tensorsI” and arbitrary starting points, the vector sequer{@agl), e u§k>)}
generated by Algorithin 2 converges to a local maximizer @fgneralized Rayleigh quotient definedih (2).
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Proof. Suppose tha{ugf)} is an arbitrary subsequence convergingitt simultaneously fo¢ € [k]. Suppose
also by Lemma&4]5 that the limit point&?), ¢ € [k], are geometrically isolated. By construction, i.e., Ling 7
Algorithm[2, the subsequen({é]t(fil} of matrices converges. By continuity, the subseque{ 11} must also

converge tai’”). In particular,Hugfirl - u§f> H — 0. The condition in Lemm&a 2] 3 therefore is satisfied. It follow

that the whole sequende.”’} converges tai”). O

We remark that in our recent work for symmetric tensors [0 have also proposed an SVD-based algorithm
by using a mechanism of random update similar to that addptédgorithm[2. The analysis there, in order to
maintain symmetry, is much more involved than what we hawsvshabove for non-symmetric tensors.

5. Numerical Experiments

The idea of updating two factors simultaneously by takingaatiage of the two-in-one global optimization
property of SVD is appealing. Thus we investigate to fur@sheoretic justification that the two variants of SVD-
based methods described in this paper indeed converge. destigns naturally arise. First, is there a significant
difference in performance among different SVD-based algms? Second, is the SVD-based algorithm always
superior to the conventional ALS method? Although rigoroumerical testing is not our objective in this paper,
we carry out some preliminary experiments with the hope difigdly satisfying our own curiosity.

Experiment 1. To our knowledge, there are at least five variants of SVD-thadgorithms. These are the
ASVD [11], the MASVD [11], the block SVD method [24], our Algithm 1 and Algorithm 2. Without delving
into the details to fine tune the programs, we implement &séhmethods based on what we understand from
the literature. We are interesting in comparing the CPU tietiired for the iterates to meet the same stopping
criteria — the iteration terminates automatically whengbkeeralized Rayleigh quotients do not vary more than the
tolerancel0—° in three consecutive iterations. As a general referenag gaiso included is the performance of the
conventional ALS method. To check the scalability, we cdesa the case where all factors are of same dimension
and vary the size of problem as= 2P where we choosg = 5,...,8 whenk = 3 andp = 3,...,6 whenk = 4.
Each case of is repeatedly tested 20 times with random starting unitorsctWe plot the average as the running
time in Figurdl. It should be pointed out that even from theeatarting points, different methods may converge
to different limit points because they involve differentdynics. Regardless, the comparison is based on the same
starting points subject to the same stopping criteria foweogence.

We can almost explain about why the performance of the varddgorithms is like what we have observed in
Figure[1. For problems of modest sizes, exg+ 2% whenk = 3 andn = 2* whenk = 4, the cost of SVD
computation outruns that of the high-order power methodusTthe ALS method uses less time. Even at these
modest dimensions, however, note that it amounts to a fdlldemse tensor with approximat@if to 2'® entries.

For odd order tensors, the block structure in the BSVD nexégaipdates one vector via the ALS algorithm,
which slows down its convergence. Thus we see that for dddensors, our Algorithm 2 outperforms the BSVD
whenp > 6. For order-4 tensors, both Algorithm 2 and the BSVD methofR#] update two distinct vectors
simultaneously, thus are about equally fast. On the othedl fthe cyclic progression of Algorithm 1 updates each
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Figure 2: Comparison of quality between SVD and ALS.

factor twice but only the second time counts. So, it litdsatgdates one factor a time. As such, it should always
be less effective than Algorithm 2. The MASVD requires npl#iASVD calculation, so it is more expensive than
ASVD. The ASVD checks through all possible permutationsits@erformance is about the same as that of the
Algorithm 1.

Experiment 2. In this experiment, we want to assess the quality of thet#srgenerated by the SVD-based
method and the ALS method. To fix the idea, we consider a givéara! tensor witth = 25. We use the ratio
Aswﬁ% as the measurement of quality. The idea is that the largeyeheralized Rayleigh quotient, the better
the quality of the iteration. A positive ratio means that 8\¢D method is improving better than the ALS method,
and vice versa. We perform the iteration 10, 50, and 100 tifoegach of the 20 randomly generated initial
vector for the same tensor and measure the ratios. Theseemsimbiterations are far less than those taken for
convergence to actually happen, but speak of an imporamdtPlotted in Figurlgl 2 are the histograms of ratios in
10 bins, when the comparison is made with respect to Algorithand Algorithm 2, respectively. Note that in the
initial 10 iterations, the (dark blue) lobe of ratios leaoward the right of 0, indicating that the SVD method gives
better improvement than the ALS method. However, when seiffity many iterations are taken, the statistics in
Figure[2 clearly shows that the (yellow) lobe shifts toward teft, indicating that the ALS method is gradually
catching up the quality. In certain case, the ratio is nggatndicating that the ALS method might lead to a better
local optimum eventually, although we have not seen thenali& convergence yet. Comparing the two drawings
in Figurel2, we also notice that Algorithm 2 generally keegsemositive ratios than Algorithm 1 does.

6. Conclusion

In contrast to the conventional ALS method that updates acif a time for the rank-1 tensor approximation,
the SVD-based method updates two factors simultaneouklg. paper proves that the iteration by such a mecha-
nism does converge for almost all tensors under Conditidhi&.conjectured that tensors satisfying Condition A
are generic, but an analytic proof is yet to be further ingaséd.

For large scale problems, numerical experiments suggasthith SVD-based methods do have the advantage
of saving the computational time. On the other hand, panily i the nonlinearity of the objective function, the
SVD-based methods do not necessarily provide a better gippation in the long run.
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