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Abstract

This paper revisits the classical problem of finding the bestrank-1 approximation to a generic tensor. The main
focus is on providing a mathematical proof for the convergence of the iterates of an SVD-based algorithm. In
contrast to the conventional approach by the so called alternating least squares (ALS) method that works to adjust
one factor a time, the SVD-based algorithms improve two factors simultaneously. The ALS method is easy to
implement, but suffers from slow convergence and easy stagnation at a local solution. It has been suggested
recently that the SVD-algorithm might have a better limiting behavior leading to better approximations, yet a
theory of convergence has been elusive in the literature. This note proposes a simple tactics to partially close that
gap.
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1. Introduction

A real-valued tensor of orderk can be represented by ak-way array

T = [τi1,...,ik ] ∈ R
I1×I2×...×Ik

with elementsτi1,...,ik accessed viak indices. A tensor of the form

k⊗

ℓ=1

u
(ℓ) = u

(1)⊗. . .⊗u(k) := [u
(1)
i1

. . . u
(k)
ik

],

where elements are the products of entries from vectorsu
(ℓ) ∈ RIℓ , ℓ = 1, . . . , k, is said to be of rank one. The

problem of finding a best rank-1 approximation toT is to determine unit vectorsu(ℓ) ∈ RIℓ , ℓ = 1, . . . k, and a
scalarλ such that the functional

f(λ,u(1), . . . ,u(k)) := ‖T − λ

k⊗

ℓ=1

u
(ℓ)‖2F =

∑

i1,i2,...,ik

(τi1,...,ik − λu
(1)
i1

. . . u
(k)
ik

)2 (1)

is minimized. For any fixed unit vectorsu(1), . . . ,u(k), the optimal value ofλ for (1) is given precisely by the
length of the projection of the “vector"T onto the direction of the “unit vector"

⊗k
ℓ=1 u

(ℓ) ∈ RI1×I2×...×Ik , i.e.,

λ = λ(u(1), . . . ,u(k)) = 〈T,

k⊗

ℓ=1

u
(ℓ)〉. (2)
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Thus, minimizing the orthogonal component ofT , as is desired in (1), is equivalent to maximizing the length|λ|
of the parallel component. In [25], the expression (2) is called the generalized Rayleigh quotient ofT relative to
{u(1), . . . ,u(k)}. Switching the signs of the variablesu(ℓ) if necessary, we may restrict our attention without loss
of generality to the case thatλ > 0 only.

Many efforts for finding the extreme values of (2) have been made in the literature, yet the problem is still not
settled. See, for example, [3, 13, 14, 15, 16, 22, 25]. The difficulty is partly due to the curse of dimensionality,
whence the rapid growth of computational overhead, and partly the nonlinearity, whence the stagnation at a local
solution. For example, the alternating least squares (ALS)method works on improving one factoru(ℓ) a time.
Assuming the form as a high-order power method, the ALS is easy to implement and has been conventionally em-
ployed as the workhorse for low rank tensor approximation. However, the method suffers from slow convergence
and easy stagnation at a local solution. Thus it is appealingthat maybe alternating two factors simultaneously
by employing the singular value decomposition (SVD) as the two-in-one optimization mechanism could give rise
to better performance. The idea was mentioned in [9, Section3.3] with no particular elaboration, and was more
carefully postulated in [11] with numerical testing on somesynthetic and real data sets of third-order tensors. This
approach has the obvious advantage that, starting from the same point, one step of SVD-based iteration is superior
to two consecutive steps of ALS iteration. There is no theoryat present to support that the improvement by the
SVD-based iteration will continue to be superior in the longrun. Through numerical experiments, however, it
has been suggested that for large scale data the SVD-based method might have better limiting behavior leading to
better approximations [11, Section 5].

This paper is not concerned about how fast the different algorithms perform, nor what quality they achieve.
Rather, we are curious about the more fundamental question of whether the iteration converges at all. Recall that
the convergence theory for the ALS method was established much later than the method had been put into practice
[6, 21, 22]. A similar concern is raised for the SVD-based algorithm — the convergence of the generalized
Rayleigh quotients is obvious, but the convergence analysis for the iterates themselves has been elusive in the
literature [11, Page 947]. In this paper we provide a rigorous mathematical proof for the convergence of iterates
from a specific SVD-based algorithm, which thus complementsthe theory. We learn recently that an independent
work in the report [24] also investigates the convergence theory by using the Łojasiewicz gradient inequality
[5, 17, 18]. Indeed, we have employed a similar technique in proving the global convergence of the ALS method
in [22]. The tactics we develop in this paper for the SVD-based algorithm is an entirely different approach. Our
approach relies on only the continuity of singular vectors and real analysis, which, in our opinion, is much more
straightforward.

This paper is organized as follows. We begin with a brief review of some basic operations in Section 2 to
prepare for the discussion. We describe two variants of SVD-based algorithms in Section 3. The difference is at
where the SVD is to be applied. Our main result is presented inSection 4 where we explain the meaning of a tensor
being generic and argue the convergence for the most basic algorithm. Finally, though it is not the main objective
of this paper, we carry out some exploratory experiments in Section 5 to compare performance between ours and
other types of SVD-based algorithms.

2. Basics

Tensors have multiple facets, so we need discern what kind oftensor multiplication is taking place. To facilitate
the subsequent discussion, we first introduce a simple notation system that generalizes what we already know from
the matrix theory. In the passing, we also mention a few useful tools.

Let the symbolJmK denote henceforth the set of integers{1, . . .m} for a given positive integerm. Suppose that
the setJkK is partitioned as the union of two disjoint nonempty subsetsα = {α1, . . . , αs} andβ = {β1, . . . , βt},
wheres+ t = k. Choosing different partitions ofJkK offers a convenient tool to dissect a high-dimensionalT and
exam its cross-sections from different perspectives. An element in the tensorT ∈ RI1×I2×...×Ik can be identified
asτ (α,β)

[I|J ] whereI := (i1, . . . , is) andJ := (j1, . . . , jt) contain those indices at locationsα andβ, respectively.
Each index in the arraysI andJ should be within the corresponding range of integers, e.g.,i1 ∈ JIα1

K and so
on. Without causing ambiguity, we abbreviate the element asτ[I|J ], when the reference to a specific partitioning
(α,β) is clear. The representationτ[I|J ] is (α,β) specific, but there is no preference ofα overβ. The partition
(α,β) may be regarded as generalizing the familiar notion of rows and columns for matrices.

Given a fixed partitioningJkK = α ∪ β, we shall regard an order-k tensorT ∈ RI1×...×Ik as a "matrix
representation" of a linear operator mapping order-s tensors to order-t tensors [22]. Specifically, we identify T
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with the linear map
Tβ : RIα1

×...×Iαs → R
Iβ1

×...×Iβt , (3)

such that for anyS ∈ RIα1
×...×Iαs , we have

Tβ(S) := T⊛β S = [〈τ[:|ℓ1,...,ℓt], S〉] ∈ R
Iβ1

×...×Iβt (4)

where

〈τ[:|ℓ1,...,ℓt], S〉 :=

Iα1∑

i1=1

. . .

Iαs∑

is=1

τ[i1,...,is|ℓ1,...,ℓt]si1,...,is (5)

is the Frobenius inner product generalized to multi-dimensional arrays. Theβ-product defined by (4) is a natural
generalization of the usual matrix-vector multiplicationin the sense that if an order-2 tensorT ∈ Rm×n is regarded
as a matrix, and if the column is identified by the pointerα = {1} and the row byβ = {2} so thatτij = τ

({2},{1})
[i|j] ,

then with respect to given column vectorsz ∈ Rn andy ∈ Rm we can write




Tz = T⊛2 z,

T⊤
y = T⊛1 y.

(6)

This notation is handy in our convergence analysis later.
We should also carefully differentiate thisβ-product⊛β from the so calledd-mode product×d used in the

literature [2, 16]. First, recall that thed-mode product of a tensor with a matrix maintains the same order of the
original tensor, but theβ-product reduces the order fromk = s+ t to t. Second, recall that thed-mode product of
a tensor with a vector is indeed a contraction. WhenS is of the formS = u

(1)⊗. . .⊗u(s), then

(T⊛β S)ℓ1,...,ℓt =

Iα1∑

i1=1

. . .

Iαs∑

is=1

τ[i1,...,is|ℓ1,...,ℓt]u
(1)
i1

. . . u
(s)
is

= T ×α1
u
(1) ×α2

u
(2) . . .×αs

u
(s).

However, we are not aware of a consistent way to define thed-mode product whenS is a general order-s tensor.
The following basic facts will be used in the subsequent discussion.

Lemma 2.1. Given a general tensorT ∈ RI1×I2×...×Ik , a partitioningJkK = α ∪ β, and vectorsu(ℓ) ∈ RIℓ ,
ℓ = 1, . . . , k, then it holds that

〈T,

k⊗

ℓ=1

u
(ℓ)〉 = 〈T⊛β

s⊗

i=1

u
(αi),

t⊗

j=1

u
(βj)〉. (7)

Lemma 2.2. Given a general tensorT ∈ RI1×I2×...×Ik , arbitrary vectorsu(αi) ∈ RIαi , i ∈ Jk − 2K, v ∈ RIβ2 ,
andw ∈ RIβ1 , then

(T⊛{β1,β2}

k−2⊗

i=1

u
(αi))⊛β1

v = (T⊛{β1,αj}

j−1⊗

i=1

u
(αi)⊗v⊗

k−2⊗

i=j+1

u
(αi))⊛β1

u
(αj) (8)

(T⊛{β1,β2}

k−2⊗

i=1

u
(αi))⊛β2

w = (T⊛{αj ,β2}

j−1⊗

i=1

u
(αi)⊗w⊗

k−2⊗

i=j+1

u
(αi))⊛β2

u
(αj) (9)

for anyj ∈ Jk − 2K.

Lemma 2.3. [19, Lemma 4.10] Assume thata∗ is an isolated accumulation point of a sequence{ak} such that for
every subsequence{akj

} converging toa∗, there is an infinite subsequence{akji
} such that|akj i

+1 − akji
| → 0.

Then the whole sequence{ak} converges toa∗.

Lemma 2.4. [10] Given a matrixA ∈ Rm×n, then the global maximum of the generalized Rayleigh quotient

max
y ∈ R

m, ‖y‖ = 1
z ∈ R

n, ‖z‖ = 1

y
⊤Az (10)

is precisely the largest singular valueσ1 of A, where the global maximizer(y1, z1) consists of precisely the
corresponding left and right singular vectors. The best rank-1 approximation toA is given byσ1y1z

⊤
1 .

3



3. SVD-based best rank-1 approximation

We now investigate a possible application of the singular value decomposition (SVD) to the best rank-1 ap-
proximation of a generic tensor. We shall explain the kind ofgeneric property we need in the context. Our goal is
to achieve the best rank-1 approximation by improving two components a time via the SVD.

3.1. SVD certification

Suppose thatλ
⊗k

ℓ=1 u
(ℓ) is the best rank-1 approximation to a given order-k tensorT . By (2), the generalized

Rayleigh quotientλ = 〈T,
⊗k

ℓ=1 u
(ℓ)〉 is positive and maximal. Consider an arbitrary partitioning JkK = α ∪ β

with the cardinality|β| = 2. By Lemma 2.1, we can write

λ = 〈T⊛β

k−2⊗

i=1

u
(αi),

2⊗

j=1

u
(βj)〉.

The productCβ := T⊛β

⊗k−2
i=1 u

(αi) is a matrix inRIβ1
×Iβ2 . Sinceλ is the maximal generalized Rayleigh

quotient, by Lemma 2.4, we conclude thatu
(β1) andu(β2) must be the left and the right singular vectors associated

with the largest singular valueλ of Cβ for anyβ. This is the SVD certification of the best rank-1 approximation
to a given tensorT .

We are thus motivated to formulate an SVD-based approach to calculate the best rank-1 approximation by
iterations. Depending on the choice ofβ which dictates where the certification is to be checked, the approach may
appear in different variants. For order-4 tensors, for example, only the two pairsβ = (1, 2) and(3, 4) are alter-
natingly checked in [24], whereas all six combinations in the orderβ = (1, 2), (3, 4), (1, 3), (2, 4), (1, 4), (2, 3)
are checked in [11]. We propose two alternatives. In Algorithm 1, we circulate throughk pairs ofβ in the order
(1, 2), (2, 3), . . . , (k − 1, k) and(1, k). In Algorithm 2, we propose a random choice ofβ = (σk−1, σk) whereσ
is an arbitrary permutation ofJkK. We do not think that there is a significant difference in the performance among
the variants, but the true verdict is yet to be further investigated. In all algorithms, the most fundamental concern
is a proof of convergence for generic tensors.

3.2. Algorithm description

The most basic SVD-based approach is outlined in Algorithm 1. Two types of dynamics are involved in this
and all other algorithms. One is the dynamics of the objective values, of which the analysis is straightforward. The
other is the dynamics of the iterates, which is much harder tocharacterize. We will discuss the convergence in the
next section.

To convey the idea, we adopt the subscript[p] in Algorithm 1 to indicate the quantity at thep-th iteration. Each
sweep ofp at Line 1 in Algorithm 1 involvesk pairs ofβ ranging circularly from(1, 2), (2, 3), . . . , (k − 1, k)

and(1, k). It is tricky that last pair has to be in the order(1, k), as the reversal(k, 1) will not work. Eachu(ℓ)
[p+1]

is updated twice. The first updates forℓ = 2, . . . , k, denoted bŷu(ℓ)
[p+1] at Line 10, are not essential and can be

completely removed from the algorithm, but its presence helps bridge the monotonicity. The updateû(1)
[p+1] is

temporarily overwritten asu(1)
[p+1] at Line 9 for the computation ofC(ℓ)

[p] at Line 4 forℓ = 2, . . . , k − 1, but will
be updated again at Line 17. The switch of signs at Line 7 conditioned upon Line 6 is to ensure that the iterates
are aligned in one direction and thus avoid discontinuous jumps. The continuity of the dominant singular value
and the associated singular vector is critical to convergence. The intermediate valuesλ(ℓ)

[p+1] are registered in the

algorithm as well, even though onlyλ(k)
[p+1] at the final stage is crucial.

The above algorithm is still alternating in nature, but is different from the alternating least squares (ALS)
approach that has been popular for computing the best rank-1approximation [7, 14, 25]. The most significant
difference is that, since the dominant singular vectoru

(ℓ)
[p+1] andv(ℓ)

[p+1] of the matrixC(ℓ)
[p] gives rise to the absolute

maximal valueλ(ℓ)
[p+1] for the functional

g(x,y) := 〈T,

ℓ−1⊗

i=1

u
(i)
[p+1]⊗x⊗y⊗

k⊗

i=ℓ+2

u
(i)
[p]〉 (11)
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Algorithm 1 (Best rank-1 approximation via SVD updating with cyclic progression.)

Require: An order-k tensorT ∈ RI1×...×Ik andk starting unit vectorsu(ℓ)
[0] ∈ RIℓ , ℓ ∈ JkK

Ensure: A local best rank-1 approximation toT

1: for p = 0, 1, · · · , do
2: for ℓ = 1, 2, · · · , k − 1, do
3: βℓ = (ℓ, ℓ+ 1)

4: C
(ℓ)
[p] = T⊛βℓ

⊗ℓ−1
i=1 u

(i)
[p+1]⊗

⊗k
i=ℓ+2 u

(i)
[p] {A matrix of sizeIℓ × Iℓ+1}

5: [u, s,v] = svds(C(ℓ)
[p] , 1) {Dominant singular value triplet viaMatlab routinesvds; assume

uniqueness}
6: if u1 < 0 then
7: u = −u,v = −v {Assume the generic case thatu1 6= 0; otherwise, use another entry.}
8: end if
9: u

(ℓ)
[p+1]

:= u {If ℓ = 1, this isû(1)
[p+1]; otherwise this is the second updateu

(ℓ)
[p+1], if 2 ≤ ℓ < k.}

10: û
(ℓ+1)
[p+1]

:= v {Skipping this step will not affectC(ℓ+1)
[p] at Line 4.}

11: λ
(ℓ)
[p+1]

:= s

12: end for
13: βk = (1, k) {Not (k, 1)!}
14: C

(k)
[p] = T⊛βk

⊗k−1
i=2 u

(i)
[p+1] {A matrix of sizeI1 × Ik}

15: [u, s,v] = svds(C(k)
[p] , 1) {Dominant singular value triplet viaMatlab routinesvds; assume uniqueness}

16: u
(k)
[p+1]

:= v {After adjusting the signs ofu andv properly as in Line 6.}

17: u
(1)
[p+1]

:= u

18: λ
(k)
[p+1]

:= s

19: end for

among all possible vectorsx andy, the mechanism of updatingx andy simultaneously in Algorithm 1 is going
to increase the generalized Rayleigh quotient faster than the combination of two applications of ALS approach to
x followed byy in one step, provided that the initial information is the same. The two-in-one gain is also better
than the maximum of updatingx or y separately [11, Proposition 4]. We stress that such an advantage happens
only when the comparison is made at the same point. There is nogeneral theory at present to support that the SVD
update will continue to be superior to the power update in thelong run, once they depart toward different directions
from the same starting point.

Other than for systematically bookkeeping the progressionof β, there is no particular reason that we have to
cycle through theℓ-loop as is indicated in Algorithm 1. An alternative way is toshuffle the columnsu(1), . . . ,u(k)

by a random permutationσ and generate a matrixC for updating. This randomized procedure is modified at Line 7
in Algorithm 2. To avoid confusion with data generated from Algorithm 1, we employ a slightly different notation
when describing the progression in this algorithm. For simplicity, we always choose to update the last two vectors
u
(σk−1),u(σk) after the permutation. It is known in probability theory that the expected number of trials for a

permutation to recur isk(k−1)
2 . Nonetheless, by the time that a repetition of permutationβt occurs, the vectors

u
(1), . . . ,u(k) should have been changed. Repeating the random permutations sufficiently many times should get

the iteration to move forward. The concern of reiterating with the same matrixCt at Line 7 should be nominal. It
is interesting to note from our numerical experiments in Section 5 that this randomized algorithm turns out to be
the most efficient when comparing with other variants.

4. Convergence analysis

In this section, we analyze the convergence for the above algorithms. First, because the SVD at each update
always selects the dominant singular value and the corresponding left and right singular vectors, each of the two
algorithms enjoys the property that the corresponding sequence of the generalized Rayleigh quotients is bounded
and monotone increasing. The convergence of the objective values (2) is obvious.
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Algorithm 2 (Best rank-1 approximation via SVD updating with randomization.)

Require: An order-k generic tensorT andk starting unit vectorsu(1), . . . ,u(k) ∈ Rn

Ensure: A local best rank-1 approximation toT

1: t← 0
2: λ0 ← 〈T,

⊗k
ℓ=1 u

(ℓ)〉
3: repeat
4: t← t+ 1
5: σ ← random permutation of{1, . . . , k}
6: βt ← (σk−1, σk)

7: Ct ← T⊛βt

⊗k−2
i=1 u

(σi)

8: [ut, st,vt] = svds(Ct, 1) {Dominant singular value triplet viaMatlab routinesvds, assume uniqueness}
9: if (ut)1 < 0 then

10: u = −ut,v = −vt {Assume the general case that(ut)1 6= 0; otherwise, use another entry}
11: end if
12: λt ← st
13: u

(σk−1) ← ut,u
(σk) ← vt

14: until λt meets convergence criteria

Lemma 4.1. The scalars{λ(ℓ)
[p]} generated in Algorithm 1 form a monotone convergent sequence for eachℓ =

1, . . . , k and all converge to the same value.

Lemma 4.2. The scalars{λt} generated in Algorithm 2 form a monotone convergent sequence.

It remains to prove the convergence of iterates themselves under generic conditions [24, Assumption 3.1]. What
happens is that there are cases where the iterates do not converge [16], but these cases form algebraic varieties, i.e.,
zeros of a certain polynomial system, that are of measure zero in the space of general tensors. The complement of
this zero measure set is open and dense under the Zariski topology [20], which is what we referred to as generic.
To avoid using jargons from algebraic geometry, we shall be more specific in the following argument when generic
properties are required.

We learn recently that authors of the report [24] independently prove the convergence of their variant of an
SVD-based algorithm by exploiting the monotone convergence of valuesλ(k)

[p] andλt. Their proof relies on the
framework developed in [1] and utilizes the the Łojasiewiczgradient inequality. A similar idea has been employed
in our earlier work in [22]. Our contribution in this paper isa new, shorter, and more direct proof. In either case,
the analysis should fulfill what was declared as "we do not have a complete understanding when this will happen"
in [11, Page 947].

4.1. Convergence of Algorithm 1

The two SVD-based algorithms outlined in the proceeding section differ by the wayβ is specified. To convey
our idea, we first characterize the limiting behavior of Algorithm 1 whereβ is changed systematically in a cyclic
pattern. Observe that for each fixedℓ, because‖u(ℓ)

[p]‖2 = 1 for all p, the collection{u(ℓ)
[p]}must have a convergent

subsequence. There are only finitely manyℓ. Selecting a subsequence of a subsequence if necessary, we can find
a common subset{pj} of nonnegative integers so that{u(ℓ)

[pj ]
} converges simultaneously for allℓ ∈ JkK.

Lemma 4.3. If subsequences{u(ℓ)
[pj ]
} generated by Algorithm 1 converge simultaneously for allℓ ∈ JkK, then so

do subsequences{C(ℓ)
[pj ]
} and{u(ℓ)

[pj+1]}.

Proof. The simultaneous convergence of{u(ℓ)
[pj ]
} for ℓ = 3, . . . k implies that the subsequence{C(1)

[pj ]
} converges.

By the continuity inherited in the SVD [4, 23], the subsequence of the left singular vectors{û(1)
[pj+1]} of C(1)

[pj ]

converges also since we have already aligned them in one direction. But then by definition,{C(2)
[pj ]
} converges and,

thus, so does{u(2)
[pj+1]}. We can repeat this argument by cycling through theℓ-loop in Algorithm 1. At the end,
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the matrices{C(k)
[pj ]
} together with the corresponding left singular vectors{u(1)

[pj+1]} and the right singular vectors

{u
(k)
[pj+1]}must also converge.

Denote the respective limit points of the above subsequences by




limj→∞ u
(ℓ)
[pj ]

= u
(ℓ)
♮ ,

limj→∞ C
(ℓ)
[pj ]

= C(ℓ),

limj→∞ û
(ℓ)
[pj+1] = û

(ℓ)
♯ ,

limj→∞ u
(ℓ)
[pj+1] = u

(ℓ)
♯ ,

ℓ ∈ JkK, (12)

where the subscript♯ is a handy way to distinguish, at least for now, that the limitpoints corresponding to the
subsequence[pj+1] might be different from those, denoted by the subscript♮, of the original subsequence[pj ]. By

the wayC(ℓ)
[pj ]

is defined, it follows that

C(ℓ) = T⊛βℓ
(

ℓ−1⊗

i=1

u
(i)
♯ ⊗

k⊗

i=ℓ+2

u
(i)
♮ ). (13)

We already point out in Lemma 4.1 that all matricesC(ℓ), ℓ ∈ JkK share the same dominant singular valueλ̃. We
now explore the relationships among dominant singular vectors of allC(ℓ) matrices.

With respect to a given convergent subsequence generated byAlgorithm 1, the following result asserts that all
dominant (left) singular vectors are the same.

Lemma 4.4. Assume thatT is such that, with respect to the given simultaneously convergent subsequences{u(ℓ)
[pj ]
}

generated by Algorithm 1, the dominant singular valueλ̃ of the corresponding limit pointC(ℓ) ∈ RIℓ×Iℓ+1 defined
in (12) is simple for allℓ ∈ JkK. Then the limit points defined in (12) satisfy the relationships that





u
(ℓ)
♮ = û

(ℓ)
♯ = u

(ℓ)
♯ ,

C(ℓ) = T⊛βℓ
(
⊗ℓ−1

i=1 u
(i)
♮ ⊗

⊗k
i=ℓ+2 u

(i)
♮ ),

ℓ ∈ JkK. (14)

Proof. For convenience, we employ the abbreviations⊛1 and⊛2 to indicate, respectively, the row-matrix and
matrix-column multiplications already delineated in (6).In reality, it must be noted that we are dealing with
multiplications of matrices and vectors of different sizes.

By using Lemma 2.2, we first observe the equalities

C
(ℓ)
[pj ]

⊛1 u
(ℓ)
[pj+1] = λ

(ℓ)
[pj+1]û

(ℓ+1)
[pj+1]

= (T⊛βℓ
(û

(1)
[pj+1]⊗

ℓ−1⊗

i=2

u
(i)
[pj+1]⊗

k⊗

i=ℓ+2

u
(i)
[pj ]

))⊛1 u
(ℓ)
[pj+1]

= (T⊛βℓ+1
(û

(1)
[pj+1]⊗

ℓ⊗

i=2

u
(i)
[pj+1]⊗

k⊗

i=ℓ+3

u
(i)
[pj ]

))⊛2 u
(ℓ+2)
[pj ]

= C
(ℓ+1)
[pj ]

⊛2 u
(ℓ+2)
[pj ]

, ℓ = 2 . . . k − 2. (15)

Similarly,

C
(1)
[pj ]

⊛1 û
(1)
[pj+1] = λ

(1)
[pj+1]û

(2)
[pj+1]

= (T⊛β1
(

k⊗

i=3

u
(i)
[pj ]

))⊛1 û
(1)
[pj+1]

= (T⊛β2
(û

(1)
[pj+1]⊗

k⊗

i=4

u
(i)
[pj ]

))⊛2 u
(3)
[pj ]

= C
(2)
[pj ]

⊛2 u
(3)
[pj ]

. (16)
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The special "twist" at Lines 16-17 withβk = (1, k) in Algorithm 1 allows us to have the identities

C
(k)
[pj−1]⊛2 u

(k)
[pj ]

= λ
(k)
[pj ]

u
(1)
[pj ]

= (T⊛βk
(

k−1⊗

i=2

u
(i)
[pj ]

))⊛2 u
(k)
[pj ]

= (T⊛β1
(

k⊗

i=3

u
(i)
[pj ]

))⊛2 u
(2)
[pj ]

= C
(1)
[pj ]

⊛2 u
(2)
[pj ]

. (17)

Finally, we also have

C
(k−1)
[pj ]

⊛1 u
(k−1)
[pj+1] = λ

(k−1)
[pj+1]û

(k)
[pj+1]

= (T⊛βk−1
(û

(1)
[pj+1]⊗

k−2⊗

i=2

u
(i)
[pj+1]))⊛1 u

(k−1)
[pj+1]

= (T⊛βk
(

k−1⊗

i=2

u
(i)
[pj+1]))⊛1 û

(1)
[pj+1] = C

(k)
[pj ]

⊛1 û
(1)
[pj+1]. (18)

Taking the limits, then it follows by construction and continuity that we have the relationships:

λ̃u
(1)
♮ = C(1)

⊛2 u
(2)
♮ , (by (17)) (19)

C(1)
⊛1 û

(1)
♯ = λ̃û

(2)
♯ = C(2)

⊛2 u
(3)
♮ , (by (16)) (20)

C(ℓ)
⊛1 u

(ℓ)
♯ = λ̃û

(ℓ+1)
♯ = C(ℓ+1)

⊛2 u
(ℓ+2)
♮ , ℓ = 2, . . . , k − 2, (by (15)) (21)

C(k−1)
⊛1 u

(k−1)
♯ = λ̃û

(k)
♯ = C(k)

⊛1 û
(1)
♯ , (by (18)) (22)

C(k)
⊛1 u

(1)
♯ = λ̃u

(k)
♯ . (by Lines 16-17 in Algorithm 1) (23)

By assumption, the dominantλ̃ is simple and the corresponding singular vector is unique upto a sign change.
However, because in Lines 6 to 8 of Algorithm 1 we have alreadyrequired that the first entry of the dominant
singular vector be positive, such a sign change does not exist. The best rank-1 approximation to the matrixC(ℓ)

therefore is unique. Recursively, the above relationshipsimply that the best rank-1 approximation to the matrix
C(ℓ) can be expressed in two ways:





C(1) ≈ λ̃u
(1)
♮ ⊗ u

(2)
♮ = λ̃û

(1)
♯ ⊗ û

(2)
♯ ,

C(ℓ) ≈ λ̃û
(ℓ)
♯ ⊗ u

(ℓ+1)
♮ = λ̃u

(ℓ)
♯ ⊗ û

(ℓ+1)
♯ , ℓ = 2, . . . , k − 1,

C(k) ≈ λ̃û
(1)
♯ ⊗ û

(k)
♯ = λ̃u

(1)
♯ ⊗ u

(k)
♯ .

(24)

By the uniqueness of dominant singular vectors forC(ℓ) for eachℓ ∈ JkK, the assertion (14) follows from (24).

The question is when the assumption imposed onT in Lemma 4.4 will hold. Specifically, letΩ denote the set
of tensorT ∈ RI1×I2×...×Ik where there exists a convergent subsequence{u

(ℓ)
[pj ]
} such that the dominant singular

value of the limit pointC(ℓ) of the corresponding{C(ℓ)
[pj ]
} ⊂ RIℓ×Iℓ+1 is not simple. How large is the setΩ?

Consider the fact that symmetric matrices with multiply eigenvalues form an algebraic variety of codimension
two [8]. For almost all matrices, therefore, the largest singular value is simple. For one particular limit pointC(ℓ)

to have multiple dominant singular values, the subsequence{C
(ℓ)
[pj ]
} that leads to it must approach arbitrarily close

to that variety of matrices with multiple dominant singularvalues. But{C(ℓ)
[pj ]
} is defined in a specific algebraic

way as in Line 4 of Algorithm 1. Backward tracing, the occurrence ofC(ℓ) with multiple dominant singular values
depends on the set{u(i)

[0] , i ∈ JkK} of unit starting vectors, the particular subsequence{[pj]} selected, and the
underlyingT . Any change of the starting vectors could alter the course ofiteration. The choice of a different
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subsequence could lead to a different limit point. When bothchanges do not obliterate the appearance of dominant
singular values, the tensorT itself must be something special. We thus conjecture that the setΩ should not be
generic. Such a reasoning, of course, does not constitute a mathematical proof to support its genericity because we
do not know of an analytic way to quantify a genericT . Thus, at the moment, we can only call it an assumption to
be satisfied. Note that Lemma 4.4 is subsequence dependent. Its conclusion is with respect to only one particularly
given convergent subsequence. The following condition is much stronger than what we need in Lemma 4.4.

Condition A. We say that a given order-k tensorT satisfies Condition A if for every convergent subsequences
{u

(ℓ)
[pj ]
} generated by Algorithm 1 and the corresponding subsequence{C

(ℓ)
[pj ]
}, ℓ ∈ JkK, the dominant singular

valueλ̃ of the limit pointC(ℓ) ∈ RIℓ×Iℓ+1 defined in (12) is simple for allℓ ∈ JkK.
We conjecture that Condition A holds for almost all order-k tensors. Even if not, keep in mind that it will be

considered together with the Condition B which is generic and will be described below.
By the way the iteration is defined, and if Lemma 4.4 holds, anystationary point of Algorithm 1 necessarily

satisfies the system of equations

T⊛ℓ (

ℓ−1⊗

i=1

u
(i)⊗

k⊗

i=ℓ+1

u
(i)) = 〈T,

k⊗

ℓ=1

u
(ℓ)〉u(ℓ), ℓ ∈ JkK. (25)

The equation (25) is a polynomial system in the unknowns(u(1), . . . ,u(k)) ∈ RI1 × . . . × RIk with leading
coefficients from entries ofT . By the theory of parameter continuation [20, Theorem 7.1.1], we know that for
almost all tensorT ∈ CI1×...×Ik , except for an affine algebraic subset of codimension one inCI1 × . . . × CIk ,
the solutions to (25) are isolated. Together with the fact thatR is dense inC under the Zariski topology, the real
solutions are also isolated.

Condition B. We say that a given orderk tensorT satisfies Condition B if the real solutions to the correspond-
ing polynomial system (25) are isolated.

Lemma 4.5. For almost all tensorsT , the accumulation points of the sequence{ut} generated by Algorithm 1
and Algorithm 2 are geometrically isolated.

Finally, we are ready to claim our major result which serves as the theoretic basis complementing the SVD-
based Algorithm 1. We say that a tensorT ∈ RI1×...×Ik is generic if it satisfies both generic conditions A and B.
The non-generic tensors must reside on some algebraic varieties and, hence, are of measure zero.

Theorem 4.6. For almost all order-k tensorsT satisfying Condition A and for arbitrary starting points, the vector
sequence{(u(1)

[p] , . . . ,u
(k)
[p] )} generated by Algorithm 1 converges to a local maximizer of the generalized Rayleigh

quotientλ(u(1), . . . ,u(k)) defined in (2).

Proof. Let {u(ℓ)
[pj]
} be any simultaneously convergent subsequences forℓ ∈ JkK. By Lemma 4.3, the subsequences

{u
(ℓ)
[pj+1]} also converges. Indeed, by Lemma 4.4, both subsequences converges to the same limit point for all

ℓ ∈ JkK. Thus‖u(ℓ)
[pj+1] − u

(ℓ)
[pj ]
‖ → 0. On the other hand, by Lemma 4.5 we assume that the limit pointis

geometrically isolated. The convergence of the entire sequence{u(ℓ)
[pj ]
} to the same limit point follows from

Lemma 2.3.

4.2. Convergence of Algorithm 2

Now we argue the convergence of Algorithm 2 whereβ is changed randomly. For clarity, enumerate the

column vectors at the end of Line 13 by
{
u
(1)
t , . . . ,u

(k)
t

}
. By construction, fort ≥ 1, only two of these vectors

are updated by the dominate left and right singular vector ofCt while others remain the same. Now we establish
the following result.

Theorem 4.7. For almost all order-k tensorsT and arbitrary starting points, the vector sequence{(u(1)
t , . . . ,u

(k)
t )}

generated by Algorithm 2 converges to a local maximizer of the generalized Rayleigh quotient defined in (2).
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Figure 1: Comparison of CPU time among different methods.

Proof. Suppose that{u(ℓ)
ti
} is an arbitrary subsequence converging tou

(ℓ) simultaneously forℓ ∈ JkK. Suppose
also by Lemma 4.5 that the limit pointsu(ℓ), ℓ ∈ JkK, are geometrically isolated. By construction, i.e., Line 7in

Algorithm 2, the subsequence{C(ℓ)
ti+1} of matrices converges. By continuity, the subsequence

{
u
(ℓ)
ti+1

}
must also

converge tou(ℓ). In particular,
∥∥∥u(ℓ)

ti+1 − u
(ℓ)
ti

∥∥∥→ 0. The condition in Lemma 2.3 therefore is satisfied. It follows

that the whole sequence{u(ℓ)
t } converges tou(ℓ).

We remark that in our recent work for symmetric tensors [12],we have also proposed an SVD-based algorithm
by using a mechanism of random update similar to that adoptedin Algorithm 2. The analysis there, in order to
maintain symmetry, is much more involved than what we have shown above for non-symmetric tensors.

5. Numerical Experiments

The idea of updating two factors simultaneously by taking advantage of the two-in-one global optimization
property of SVD is appealing. Thus we investigate to furnisha theoretic justification that the two variants of SVD-
based methods described in this paper indeed converge. Two questions naturally arise. First, is there a significant
difference in performance among different SVD-based algorithms? Second, is the SVD-based algorithm always
superior to the conventional ALS method? Although rigorousnumerical testing is not our objective in this paper,
we carry out some preliminary experiments with the hope of partially satisfying our own curiosity.

Experiment 1. To our knowledge, there are at least five variants of SVD-based algorithms. These are the
ASVD [11], the MASVD [11], the block SVD method [24], our Algorithm 1 and Algorithm 2. Without delving
into the details to fine tune the programs, we implement all these methods based on what we understand from
the literature. We are interesting in comparing the CPU timerequired for the iterates to meet the same stopping
criteria – the iteration terminates automatically when thegeneralized Rayleigh quotients do not vary more than the
tolerance10−5 in three consecutive iterations. As a general reference point, also included is the performance of the
conventional ALS method. To check the scalability, we consider a the case where all factors are of same dimension
and vary the size of problem asn = 2p where we choosep = 5, . . . , 8 whenk = 3 andp = 3, . . . , 6 whenk = 4.
Each case ofp is repeatedly tested 20 times with random starting unit vectors. We plot the average as the running
time in Figure 1. It should be pointed out that even from the same starting points, different methods may converge
to different limit points because they involve different dynamics. Regardless, the comparison is based on the same
starting points subject to the same stopping criteria for convergence.

We can almost explain about why the performance of the various algorithms is like what we have observed in
Figure 1. For problems of modest sizes, e.g.,n = 26 whenk = 3 andn = 24 whenk = 4, the cost of SVD
computation outruns that of the high-order power method. Thus the ALS method uses less time. Even at these
modest dimensions, however, note that it amounts to a full and dense tensor with approximately216 to 218 entries.
For odd order tensors, the block structure in the BSVD necessarily updates one vector via the ALS algorithm,
which slows down its convergence. Thus we see that for order-3 tensors, our Algorithm 2 outperforms the BSVD
whenp > 6. For order-4 tensors, both Algorithm 2 and the BSVD method in[24] update two distinct vectors
simultaneously, thus are about equally fast. On the other hand, the cyclic progression of Algorithm 1 updates each
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Figure 2: Comparison of quality between SVD and ALS.

factor twice but only the second time counts. So, it literately updates one factor a time. As such, it should always
be less effective than Algorithm 2. The MASVD requires multiple ASVD calculation, so it is more expensive than
ASVD. The ASVD checks through all possible permutations, soits performance is about the same as that of the
Algorithm 1.

Experiment 2. In this experiment, we want to assess the quality of the iterates generated by the SVD-based
method and the ALS method. To fix the idea, we consider a given order 4 tensor withn = 26. We use the ratio
λSV D−λALS

‖T‖ as the measurement of quality. The idea is that the larger thegeneralized Rayleigh quotient, the better
the quality of the iteration. A positive ratio means that theSVD method is improving better than the ALS method,
and vice versa. We perform the iteration 10, 50, and 100 timesfor each of the 20 randomly generated initial
vector for the same tensor and measure the ratios. These numbers of iterations are far less than those taken for
convergence to actually happen, but speak of an important trend. Plotted in Figure 2 are the histograms of ratios in
10 bins, when the comparison is made with respect to Algorithm 1 and Algorithm 2, respectively. Note that in the
initial 10 iterations, the (dark blue) lobe of ratios leans toward the right of 0, indicating that the SVD method gives
better improvement than the ALS method. However, when sufficiently many iterations are taken, the statistics in
Figure 2 clearly shows that the (yellow) lobe shifts toward the left, indicating that the ALS method is gradually
catching up the quality. In certain case, the ratio is negative, indicating that the ALS method might lead to a better
local optimum eventually, although we have not seen the ultimate convergence yet. Comparing the two drawings
in Figure 2, we also notice that Algorithm 2 generally keeps more positive ratios than Algorithm 1 does.

6. Conclusion

In contrast to the conventional ALS method that updates one factor a time for the rank-1 tensor approximation,
the SVD-based method updates two factors simultaneously. This paper proves that the iteration by such a mecha-
nism does converge for almost all tensors under Condition A.It is conjectured that tensors satisfying Condition A
are generic, but an analytic proof is yet to be further investigated.

For large scale problems, numerical experiments suggest that the SVD-based methods do have the advantage
of saving the computational time. On the other hand, partly due to the nonlinearity of the objective function, the
SVD-based methods do not necessarily provide a better approximation in the long run.
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