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Abstract

The problem of best approximating a given real matrix in the Frobenius
norm by real� normal matrices subject to a prescribed spectrum is consid�
ered� The approach is based on using the projected gradient method� The
projected gradient of the objective function on the manifold of constraints
can be formulated explicitly� This gives rise to a descent �ow that can be
followed numerically� The explicit form also facilitates the computation of
the second order optimality condition from which some interesting proper�
ties of the stationary points are related to the well�known Wielandt�Ho�man
Theorem�



� Introduction

A matrix A � Cn�n is normal if and only if A�A � AA�� Normality�
as it includes the Hermitian� unitary and skew�Hermitian matrices� de�nes
a rather general and important class of matrices� In ��	 seventy equivalent
conditions are listed to characterize a normal matrix� This again re�ects that
normality may arise in many di�erent ways�

One interesting question that has received considerable attention is the
determination of a closest normal matrix to a given square complex matrix�
This problem has only recently been completely solved 
in the Frobenius
norm� in ��	� and independently in ��	� It turns out that �nding a nearest
normal matrix is equivalent to �nding a unitary similarity transformation
which makes the sum of squares of moduli of the diagonal elements as large
as possible ��	� The Jacobi algorithm� therefore� may be derived from this
perspective to solve the nearest to normality problem�

In this paper we assume the following situation happens� Experimental
data has been collected in the matrix A which� by some prior knowledge�
should be a normal matrix with known spectrum� Generally� due to mea�
surement errors� A will not satisfy these requirements� Since A still contains
some useful information� we would like to retrieve its least squares approxi�
mation that satis�es these requirements�

In practice� one may well be interested in real matrices� It is well known
��� p���	 that a real normal matrix is always orthogonally similar to a real
quasi�diagonal matrix

diag

��
�� ��

��� ��

�
� � � � �

�
�q �q

��q �q

�
� ��q��� � � � � �n

�

�

where �k� �k are real numbers and �k �� � 
k � � �� � � � � q�� Therefore� we
consider the following problem in this paper�

Problem A Given a matrix A � Rn�n and a set of eigenvalues f�� �
i��� � � � � �q�i�q� ��q��� � � � � �ng where �k� �k are real numbers and �k �� �
k �
� �� � � � � q�� �nd an orthogonal matrix Q that minimizes the function

F 
Q� ��


�
jjQT�Q�Ajj� 
��





where � is the quasi�diagonal matrix given by 
� and jj � jj means the Frobe�
nius matrix norm�

A special case of Problem A has been considered in ��	� There it is shown
that when A is symmetric and when � is diagonal with distinct elements
arranged in descending order� the columns of the optimal QT should be the
normalized eigenvectors of A corresponding to eigenvalues arranged in the
descending order� In this paper we study the extension to more general
classes of matrices�

Our idea is closely related to the setting in �	� Our approach is parallel
to that in ��	� Without using the Lagrangian function� we �rst formulate
explicitly the projection of the gradient of the objective function F onto the
the feasible set O
n� �� fQ � Rn�njQTQ � Ig� This formula gives rise
to the construction of a descent �ow that can be followed numerically� We
then derive the so called projected Hessian on the tangent space of O
n��
Wherever possible� we classify the stationary points from the second�order
condition� Finally we discuss the connection between our results and the well
known Wielandt�Ho�man theorem ��	�

�



� Preliminaries

Let hA�Bi denote the Frobenius inner product of two matrices A�B �
Rn�n�

hA�Bi �� trace
ABT � �
X
i�j

aijbij� 
��

We �rst consider the function F in 
�� to be de�ned everywhere in Rn�n�
For Z�H � Rn�n� the Fr�echet derivative of F at Z acting on H is calculated
to be

F �
Z�H � hZT�Z �A�HT�Z � ZT�Hi

� h
�Z�
ZT�Z �A�T �Hi � h
�TZ�
ZT�Z �A��Hi� 
��

In the second equation above we have used the adjoint property

� A�BC ��� BTA�C ��� ACT � B �

to rearrange terms� With respect to the Frobenius inner product� the equa�
tion 
�� suggests that the gradient of F at a general matrix Z � Rn�n may
be interpreted as the matrix

rF 
Z� �� 
�Z�
ZT�Z �A�T � 
�TZ�
ZT�Z �A�� 
��

Let S
n� denote the subspace of all symmetric matrices in Rn�n� It is
easy to see that the tangent space TQO
n� of the feasible set O
n� is given
by ��	

TQO
n� �� QS
n�� 
��

where S
n��� the orthogonal complement of S
n� in Rn�n� is precisely the
subspace of all skew�symmetric matrices� It is also easy to see that the
orthogonal complement of TQO
n� is the subspace

NQO
n� �� QS
n�� 
��

Therefore� an orthogonal matrix Q is a stationary point of Problem A only
if


�Q�
QT�Q�A�T � 
�TQ�
QT�Q�A� � QS
n�� 
��

�



For convenience� we de�ne in the sequel

X �� QT�Q� 
��

Then 
�� is equivalent to

X
XT �AT � �XT 
X �A� � S
n�� 
��

or
XAT �XTA � AXT �ATX� 
�

Let �A�B	 �� AB �BA denote the Lie bracket� It follows that

Lemma ��� A necessary condition for Q � O
n� to be a stationary point
for Problem A is that the matrix �X�AT 	 with X de�ned by ��� is symmetric�

We remark that if A is symmetric and � is diagonal� then X is symmetric
and �X�AT 	 is skew�symmetric� In this case� we conclude� from Lemma ���
that at a stationary point the matrix X must commute with A� This is one
of the results discussed in ��	�

The projected gradient of F on the manifold O
n� can be calculated
without any di�culty� Mainly this is due to the understanding that for any
�xed Q � O
n��

Rn�n � TQO
n� �NQO
n� � QS
n�� �QS
n�� 
��

Any matrix Z � Rn�n has a unique orthogonal splitting

Z � Q
�


�

QTZ � ZTQ�

�
�Q

�


�

QTZ � ZTQ�

�

��

as the sum of elements from TQO
n� and NQO
n�� Accordingly� the pro�
jection g
Q� of rF 
Q� onto the tangent space TQO
n� can be calculated
explicitly as follows�

g
Q� �
Q

�

n
QTrF 
Q��rF 
Q�TQ

o

�
Q

�

n
QTf
�Q�
QT�Q�A�T � 
�TQ�
QT�Q�A�g

�f
�Q�
QT�Q�A�T � 
�TQ�
QT�Q�A�gTQ
o

� �
Q

�

n
�QT�Q�AT 	� �QT�Q�AT 	T

o
� 
��

�



It is clear that the vector �eld

dQ

dt
�� �g
Q� �

Q

�

n
�QT�Q�AT 	� �QT�Q�AT 	T

o

��

de�nes a steepest descent �ow Q
t� on the manifold O
n� for the objective
function F in 
��� Upon substitution� the corresponding X
t� is governed by
the ordinary di�erential equation�

dX

dt
��

dQT

dt
�Q�QT�

dQ

dt

�

�
X�

�X�AT 	� �X�AT 	T

�

�
� 
��

Starting with an appropriate initial value� say X
�� � �� the positive orbit of

�� marches to a limit point which is a 
local� least squares normal matrix
approximation to A�

We remark again that if A is symmetric and � is diagonal� then the �ow

�� is reduced to

dX

dt
� �X� �X�A		 
��

which is analyzed in ��	�
It is worth mentioning that the second term in the bracket of 
�� is skew�

symmetric� Therefore� the solution �ow X
t� of 
�� naturally is isospec�
tral ��	 to the initial value X
��� In particular� we have jjX
t�X
t�T �
X
t�TX
t�jj � jjX
��X
��T�X
��TX
��jj for all t� Thus� apart from numer�
ical errors induced when solving the di�erential equation 
�� on computers�
the deviation of normality of X
t� will remain the same as that of X
���

The function g in 
�� is de�ned for orthogonal matrices only� We now
derive an explicit formula for the projected Hessian of the objective function
F without utilizing the Lagrangian Multiplier� Readers are referred to ��	
for an explanation of why this technique works� Obviously we may extend g
smoothly to cover the entire space Rn�n simply by de�ning

G
Z� ��
Z

�

n
�ZT�Z�AT 	T � �ZT�Z�AT 	

o
� 
��

The Fr�echet derivative of G can easily be calculated� In particular� at any
stationary point Q of Problem A and for every tangent vector QK where

�



K � S
n��� it holds that

hG�
Q�QK�QKi � h
��X�K	� AT 	T � ��X�K	� AT 	

�
�Ki

� �h��X�K	� AT 	�Ki

� h�X�K	� �A�K	i� 
��

It can be proved that formula 
�� is precisely the evaluation of the pro�
jected Hessian of the Lagrangian function of Problem A ��� p��	� Thus a
necessary condition 
and a su�cient condition if the strict inequality holds�
for a stationary point Q to be a local minimum is that

h�X�K	� �A�K	i � � for every K � S
n��� 
���

�



� Application I � Real Eigenvalues

We now apply the �rst order condition 
� and the second order condition

��� to classify the stationary points for Problem A� It will prove useful if we
de�ne

E �� QAQT � 
��

We observe that the �rst order condition 
� and the second order condition

��� are equivalent to

�ET � �TE � E�T � ET� 
���

and
h���K	� �E�K	i � � for every K � S
n��� 
���

respectively�
In this section we �rst consider the case when � has only real eigenvalues�

It follows that the matrix X � QT�Q must be symmetric for any Q � O
n��
For any general matrix A � Rn�n� let

AS ��


�

A�AT � 
���

and

AK ��


�

A�AT � 
���

denote the symmetric and skew�symmetric parts of A� respectively� We ob�
serve that

jjX �Ajj� � jjX �ASjj
� � jjAKjj

�� 
���

Since the second term in 
��� is �xed once A is given� a least squares approx�
imation to A amounts to a least square approximation to AS� Therefore� it
su�ces to consider the case when A is symmetric�

Suppose A is symmetric� We shall arrange eigenvalues of A in the natural
ordering

�� � �� � � � � � �n� 
���

We further divide our discussions according to whether or not � has simple
eigenvalues�

�



Case � 
� has only distinct eigenvalues�
For clarity� we shall assume the diagonal elements of � are arranged in

the descending order
�� � �� � � � � � �n� 
���

The following theorem completely classi�es all the stationary points�

Theorem ��� Suppose A is symmetric and has eigenvalues arranged as in
����� Suppose � is diagonal and has elements arranged as in ����� Then the
stationary points of Problem A are classi�ed as follows�

	� An orthogonal matrix Q is a stationary point of F only if columns
q�� � � � � qn of QT are orthonormal eigenvectors of A�

�� A stationary point Q is a minimizer �or
 a maximizer� of F only if
columns q�� � � � � qn of QT correspond with eigenvalues ��� � � � � �n �or

the reverse order�
respectively� All other stationary points are saddle
points�

�� Any least squares approximation X to A is of the form

X � ��q�q
T
� � � � �� �nqnq

T
n � 
���

The least squares approximation X is unique if A itself has distinct
eigenvalues�

�� The minimal value of F is equal to �
�

Pn
i��
�i � �i���

� Local extreme points are also global extreme points�


pf�� The proof of this theorem can be found in ��	� The main point is
that the simplicity of eigenvalues of � and the condition 
��� require that E
be a diagonal matrix �� p��	�

Case � 
� has multiple eigenvalues�
When multiple eigenvalues occur� the analysis becomes more complicated

because the matrixE is not necessarily a diagonal matrix� For demonstration
purpose� we shall only consider the special case when all eigenvalues� except
the one which has multiplicity �� of � are simple�

�



We shall assume the diagonal elements of � are arranged in the ordering

�� � � � � � �k � �k�� � � � � � �n 
���

with  � k � n � � Then the �rst order condition 
��� implies that at a
stationary point E must be a quasi�diagonal matrix of the form �	

E � diag

�
e�� � � � � ek���

�
ek e�
e� ek��

�
� ek��� � � � � en

�
� 
��

It follows from 
�� that e�� � � � � ek��� ek��� � � � � en must be n � � eigenval�
ues of A 
Note that we are assuming A be symmetric�� and that columns
q�� � � � � qk��� qk��� � � � � qn of the matrix QT must be the corresponding or�
thonormal eigenvectors� Obviously� the �� � matrix

R ��

�
ek e�
e� ek��

�
� 
���

determines the remaining two eigenvalues� denoted by �s and �t� of A� The
columns qk and qk�� are two orthonormal vectors in the space spanned by
eigenvectors of �s and �t�

It is not di�cult to see that

h���K	� �E�K	i � �
X
i�j

i��k�k��
j ��k�k��


�i � �j�
ei � ej�k
�
ij

��
X

k���j


�k � �j�
n

ek � ej�k

�
kj � �e�kkjkk���j � 
ek�� � ej�k

�
k���j

o

��
X
i�k


�i � �k�
n

ei � ek�k

�
ik � �e�kikki�k�� � 
ei � ek���k

�
i�k��

o
� 
���

We note that the three summations in 
��� are mutually exclusive� Therefore�
h���K	� �E�K	i � � for every K � S
n�� if and only if every single term in

��� is nonnegative� Because of the speci�ed ordering of the eigenvalues
�i� we conclude that for a stationary point Q to be a local minimizer� it is
necessary that

e� � e� � � � � � ek�� � ek�� � � � � � en� 
���

�



and that the matrices�
ei � ek �e�
�e� ei � ek��

�
� eiI �R� for every i � k

�
ek � ej e�
e� ek�� � ej

�
� R� ejI� for every k �  � j 
���

be positive semi�de�nite� From the above� we have proved that

Theorem ��� Suppose A is symmetric and has eigenvalues arranged as in
����� Suppose � is diagonal and has elements arranged as in ����� Then the
stationary points of Problem A are classi�ed as follows�

	� An orthogonal matrix Q is a stationary point of F only if columns
q�� � � � � qk��� qk��� � � � � qn of the matrix QT are n�� orthonormal eigen�
vectors of A
 and qk� qk�� are linear combinations of the remaining two
orthonormal eigenvectors�

�� A stationary point Q is a local minimizer of F only if columns q�� � � � � qk��
of QT correspond with eigenvalues ��� � � � � �k��
 and qk��� � � � � qn cor�
respond with eigenvalues �k��� � � � � �n
 and qk� qk�� are linear combi�
nations of eigenvectors corresponding with eigenvalues �k� �k��� Simi�
larly
 a stationary point Q is a maximizer of F only if the above corre�
spondence is in the reverse order� All other stationary points are saddle
points�

�� Any least squares approximation X to A is of the form

X � ��q�q
T
� � � � � � �k
qkq

T
k � qk��q

T
k��� � � � � � �nqnq

T
n � 
���

The choice of qk and qk�� is immaterial� The least squares approxima�
tion is unique if the �rst k �  and the last n� k �  eigenvalues of A
are distinct�

�� The minimal value of F is equal to �
�

Pn
i��
�i � �i���

� Local extreme points are also global extreme points�

We remark that the proof for the above theorem can be generalized to
cover other cases of multiple eigenvalues� The details are left to the readers�

�



� Application II � Complex Eigenvalues

One of the di�culties associated with this case is that there is no clear
way to order the eigenvalues� Even so� we have made some interesting ob�
servations �

Case � 
A is a �� � matrix��
The simple �� � case o�ers considerable insights into the understanding

of higher dimensional problems� Let it be denoted

� �

�
� �

�� �

�
� 
���

For any E � R���� it is easy to see that the matrix �ET � �TE is always
symmetric� This is to say that any Q � O
�� is a stationary point� Indeed�
we �nd that

X �� QT�Q 	

�
�� if detQ � 
�T � if detQ � ��


���

So the least squares approximation problem is trivial� The objective function
value is given by

F 
Q� 	


�

�
a�� � ��� � 
a�� � ��� � 
a�� 
 ��� � 
a�� � ���

�

���

depending upon detQ � �� respectively� It is readily seen from 
��� that the
signs of � and a��� a�� determine which one of � or �T better approximates
A�

Case � 
A is a symmetric matrix��
Again� for demonstration purpose� we shall consider only the case when

� is of the form

� � diagf��� � � � �

�
�k ��

��� �k

�
� � � � � �ng 
���

where
�� � �� � � � � � �n� 
��





and �� � �� Since A is symmetric� so is E� We write � � �S��K as the sum
of its own symmetric and skew�symmetric parts� The �rst order condition

��� requires


�T � ��E � E
�T � ��� 
���

Because �T �� � ��S is diagonal� it follows that E must be a quasi�diagonal
matrix of the form 
��� Furthermore� we know

h���K	� �E�K	i � h��S�K	� �E�K	i 
���

since ��K�K	 is skew symmetric and �E�K	 is symmetric� We state that

Theorem ��� Suppose A is symmetric and has eigenvalues arranged as in
����� Suppose � is quasi�diagonal and has elements arranged as in ���� and
��	�� Then the stationary points of Problem A are classi�ed as follows�

	� An orthogonal matrix Q is a stationary point of F only if columns
q�� � � � � qk��� qk��� � � � � qn of the matrix QT are n�� orthonormal eigen�
vectors of A
 and qk� qk�� are linear combinations of the remaining two
orthonormal eigenvectors�

�� A stationary point Q is a local minimizer of F only if columns q�� � � � � qk��
of QT correspond with eigenvalues ��� � � � � �k��
 and qk��� � � � � qn cor�
respond with eigenvalues �k��� � � � � �n
 and qk� qk�� are linear combi�
nations of eigenvectors corresponding with eigenvalues �k� �k��� Simi�
larly
 a stationary point Q is a maximizer of F only if the above corre�
spondence is in the reverse order� All other stationary points are saddle
points�

�� Any least squares approximation X to A is of the form

X � ��q�q
T
� �� � ���k
qkq

T
k �qk��q

T
k������
qkq

T
k���qk��q

T
k ��� � ���nqnq

T
n �


���
The choice of qk and qk�� is immaterial� The least squares approxima�
tion is unique if the �rst k �  and the last n� k �  eigenvalues of A
are distinct�

�� The minimal value of F is equal to ��� �
�
�

Pn
i��
�i � �i���

� Local extreme points are also global extreme points�

�




pf�� The analysis of stationary points for this case is essentially identical
to that of Case � in the preceding section�

Case � 
A is a normal matrix��
Obviously we should suppose A has complex eigenvalues� otherwise A

would be symmetric� Now we have real di�culty in the analysis of the
stationary points� In fact� we even do not have a clear way in identifying all
stationary points� We can only report some partial results�

For simplicity� we shall assume that � is given by 
��� and that 
��
holds� We partition � into three blocks � � �� � �� � �� where

�� � diagf��� � � � � �k��g

�� �

�
�k ��

��� �k

�

���

�� � diagf�k��� � � � � �ng� 
���

It can be veri�ed easily that any E of the form

E � E� � E� � E� 
���

satis�es the �rst order condition 
��� if Ei � ET
i is a diagonal matrix for

i � � � and E� � R���� This� of course� is only a su�cient condition of being
a stationary point�

We consider a simple �� � example� Let

A �

�
	
 ���������������� ���������������� ���������������

���������������� ���������������� ���������������
����������������� ��������������� ��������������

�
�

and

� �

�
	
 ��� ��� ���

��� ���� ���
��� ���� ����

�
� �

We calculate that jjAAT�ATAjj � ������������ So up to the �th digitA is
a normal matrix whose eigenvalues are f��i���g� Starting with X
�� � ��
we follow the descent �ow 
�� by using the subroutine ODE in ��	� The
local error tolerancies set at ����� We count convergence has occurred and

�



stop the integration whenever the di�erence between two consecutive output
values is less than ����� At t � ���� we obtain an approximate limit point

X �

�
	


������������ ����������� �������������
������������ ������������� ��������������

��������������� �������������� �������������

�
� �

for the �ow 
��� The corresponding stationary point is approximated by

Q �

�
	
 ������������� ��������������� ������������
�������������� ������������ ��������������
����������� �������������� ��������������

�
� �

We calculate that jjXXT �XTXjj � ������������ jjQTQ� Ijj � ������
����� So X and Q are reasonably normal and orthogonal� respectively� The
corresponding matrix E �� QAQT is given by

E �

�
	
 �������������� ������������� ������������

������������ ��������������� ��������������
�������������� ��������������� ��������������

�
� �

We calculate that jj�ET ��TE�E�T �ET�jj � ����������� So we may
say that up to the numerical error the matrix E satis�es the equation 
����
But obviously E is not of the form 
���� We think this complication is due to
the fact that the spectra of A and � are �incompatible�� i�e�� the two triangles
in the complex plane connecting eigenvalues of A and �� respectively� point
to opposite directions�

In perturbation theory� one should not expect the spectrum of � to be
distributed in a signi�cantly di�erent pattern from that of A� In part� this
is because eigenvalues depend continuously upon components of the matrix�
In part� this is because A� representing a sensible empirical data� should
more or less re�ect the physical reality� Now that � is assumed to be of the
form 
���� let us suppose that A also has only one pair of complex conjugate
eigenvalues� Thus A can be reduced to the matrix

E �� diag

�
e�� � � � �

�
ek e�

�e� ek

�
� � � � � en

�
� 
���

�



Now we shall see how the ordering of fe�� � � � � eng a�ect the de�niteness of
the projected Hessian of F at such a point� By direct computation� we obtain

h���K	� �E�K	i � �
X
i�j

i��k�k��
j ��k�k��


�i � �j�
ei � ej�k
�
ij

��
X
i�k


k�ik � k�i�k���

ei � ek�
�i � �k� � v�e��

��
X

k���j


k�kj � k�k���j�

ek � ej�
�k � �j� � v�e��� 
���

Every single term in 
��� needs to be nonnegative in order that the projected
Hessian of F is positive semi�de�nite� This� of course� will be the case if the
ordering of fe�� � � � � eng is �compatible� with 
��� that is� if

e� � e� � � � � � en 
���

and e� � �� We� therefore� has established a result of the su�cient condition�

Lemma ��� Suppose A is normal� Suppose A can be reduced by orthogonal
transformation Q to the canonical form E ���� whose elements are arranged
as in ���� Suppose � is a quasi�diagonal in the form of ���� whose elements
are arranged as in ��	�� Then

	� The orthogonal matrix Q is a local minimizer of F �

�� The local optimal value of F is given by �
� jj��Ejj��

Remark In the ��� numerical example above� we have�� � e� � e� � �
Thus 
��� is positive only if e� � 
e�� e��
�� � ������ � ���� Since e� � ��
in our example� we �nd that our descent �ow X cannot converge to an E in
the form of 
���� In fact� it turns out that such an E is a local maximum for
F �

In contrast to the preceding three theorems� it is rather surprising that
when A has complex eigenvalues the di�erential equation 
�� may have
multiple limit points� This phenomenon can be observed numerically by
starting with di�erent initial values on the surface M
�� �� fQT�QjQ �

�



O
n�g� For instance� if we start with X
�� � �T �M
�� for the above �� �
example� the �ow converges to another limit point

X �

�
	
 ������������� �������������� ��������������
������������� �������������� �������������
������������� ����������� ��������������

�
�

which is quite di�erent from the one obtained earlier� The least squares
distances from these two distinct limit points to A� nevertheless� are the
same� We have experimented with many other numerical examples� It seems
true that when A is normal and has complex eigenvalues� Problem A does
not have a unique solution� Di�erent least squares approximations to A may
result in di�erent optimal values of F � Problem A� therefore� has multiple
local solutions�

At this point� it is worthwhile to look at Problem A from another aspect�
The following general perturbation problem ��	 is of signi�cant importance
in many areas�

Problem B Suppose one knows exactly the eigenvalues of the matrix A
and that A is perturbed to become A�B� How do the eigenvalues change�

Usually one is interested in �nding bounds of the perturbed eigenvalues in
terms of the perturbing matrixB� In application it is not uncommon to have
a situation in which both the original matrix A and the perturbing matrix
B are real and symmetric� In this case� and in the more general situation in
which both A and A�B are normal� a comprehensive bound� known as the
Wielandt�Ho�man Theorem 
See� ��	� ��� p���	 and ��� p��	�� is available
on the perturbation to all the eigenvalues�

Theorem ��� Let A�B � Cn�n� Assume that A and A�B are both normal�
Let ��� � � � � �n be the eigenvalues of A in some given order
 and let ��� � � � � �n
be the eigenvalues of A�B in some order� Then there exists a permutation
�
i� of the integers � �� � � � � n such that

nX
i��

j���i� � �ij
� � jjBjj�� 
��

In Problem A we have the situation that all the eigenvalues 
the original
ones and the perturbed ones� are known and that we want to minimize the
norm of the perturbing matrix B�

�



What we have shown in Theorems �� and ��� is that� in the real and
symmetric case� the minimum of jjBjj is attained if A � B � QT�Q where
columns of QT are orthogonal eigenvectors of A in a certain order� In this
case� the equality in 
�� holds� In other words� we have shown that the
bound in 
�� for eigenvalues is sharp� This is a reproof of the Wielandt�
Ho�man theorem� We think our proof� being di�erent from both the original
proof of ��	 and the one given in ��	� is of interest in its own right�

When the matrix A is real and normal� one can see immediately that
the proof given in ��	 for Theorem ��� breaks down if the perturbed matrix
A� B is restricted to be only real and normal� Problem A in which we try
to minimize the right�hand side of the inequality 
�� becomes an interesting
but di�cult question� In Lemma �� we have proved that if eigenvalues of A
and A�B 
both real and normal� are �compatible�� then again the equality
in 
�� holds� Our numerical experiments seem to indicate� however� that
generally the minimal jjBjj may be far larger than any rearrangement of
eigenvalues on the left�hand side of the inequality 
�� if only real matrices
are allowed in the perturbation� Taking the � � � example to demonstrate
our point� we calculate jjX �Ajj� � ����� in comparison with the eigenvalue
variation

min
�

nX
i��

j���i� � �ij
� � ���

Case � 
A is a general matrix��
Given a quasi�diagonal matrix � as in 
�� an arbitrary matrix A � Rn�n

and let X �� QT�Q� we have established that necessary conditions for Q �
O
n� to be a local minimizer for Problem A are

XAT �XTA � AXT �ATX� 
���

h�X�K	� �A�K	i � � for every K � S
n��� 
���

If the strict inequality holds in 
���� then the above conditions are su�cient
for Q � O
n� to be a strong local minimizer of Problem A�

Thus far� we are able to characterize an analytical solution of Problem A
from 
��� and 
��� for the following cases�

� All eigenvalues of � are real� and A � Rn�n is arbitrary�

�� � has complex conjugate eigenvalues� and A � Rn�n is symmetric�

�



�� � has complex conjugate eigenvalues� and A � Rn�n is normal but not
symmetric� 
Indeed� only partial results are obtained for this case��

For a general non�normal matrix A� the analytic comprehension of solutions
satisfying both 
��� and 
��� becomes a much harder problem�

We have pointed out 
Case �� that when n � �� all orthogonal matrices
Q � O
�� are stationary points and the corresponding X can only be either �
or �T � From here� we might be able to characterize some stationary points for
higher dimensional cases� For example� suppose � is given by 
���� Suppose
A can be reduced by orthogonal similarity to the matrix

E �� diag

�
e�� � � � �

�
e
����
k e

����
k

e
����
k e

����
k

�
� � � � � en

�

���

which is conformal with � except that e
�ij�
k �  � i� j � � are arbitrary real

numbers� Then one can show that the equation 
��� is satis�ed� This� of
course� is just one special type of stationary points�

Recently� the Wielandt�Ho�man Theorem has been generalized to non�
defective matrices ��� �	�

Theorem ��� Let A�B � Cn�n� Suppose both A and A�B are nondefective

i�e�
 suppose there exist nonsingular matrices S and T such that

S��AS � diagf��� � � � � �ng

T��
A�B�T � diagf��� � � � � �ng�

Then there exists a permutation �
i� of intergers � �� � � � � n such that

nX
i��

j���i� � �ij
� � 
	�
S�	�
T ��

�jjBjj� 
���

where 	�
S� �� jjSjj�jjS��jj� is the condition number of S and jj�jj� means
��norm�

In the context of our discussion� the matrix A�B is required to be a real and
normal matrix� In this case� clearly 	�
T � � � Suppose the given matrix A
is nondefective� then the inequality 
��� becomes

nX
n��

j���i� � �ij
� � 	�
S�jjBjj

�� 
���

�



The inequality 
�� suggests that when A is a general non�normal matrix�
the minimum value of jjX�Ajj may be smaller than the so called eigenvalue
variation� That it indeed is the case can be seen from the � � � matrix
considered in Case � � Supposee a�� � �� a�� � �� � � �� Then it holds that

min
�

�X
i��

j���i� � �ij
� � 
a�� � ��� � 
a�� � ��� � ��� 
���

while

min
Q�O���

jjQT�Q�Ajj� � 
a�� � ��� � 
a�� � ��� � 
a�� � ��� � ��� 
���

Obviously� the value in 
��� is less than that in 
��� if a�� � ��� This ob�
servation is interesting when compared with the Wielandt�Ho�man Theorem
for normal matrices� In the latter case� the minimum value of jjX � Ajj is
always bounded below by the eigenvalue variation�

Although closed forms of solutions of 
��� and 
��� are di�cult to obtain
in general� our approach o�ers an alternative way to solve Problem A� We
note that the di�erential equation 
��� derived from the projected gradient
of the objective function F � is numerically traceable for arbitrary matrix A�
Thus� by following trajectories of 
��� we may locate stationary solutions of
the least squares problem numerically� Di�erent starting points may lead to
di�erent stationary points� The asymptotic rate of convergence is expected
to be similar to that of the usual steepest descent method� But the �ow�
by its de�nition� is guaranteed to converge regardless of the location of the
starting point� Our numerical experience is that the �ow usually reaches a
stable equilibrium point within a reasonable interval of integration�

�
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