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Abstract

The problem of best approximating a given real matrix in the Frobenius
norm by real, normal matrices subject to a prescribed spectrum is consid-
ered. The approach is based on using the projected gradient method. The
projected gradient of the objective function on the manifold of constraints
can be formulated explicitly. This gives rise to a descent flow that can be
followed numerically. The explicit form also facilitates the computation of
the second order optimality condition from which some interesting proper-
ties of the stationary points are related to the well-known Wielandt-Hoffman
Theorem.



1 Introduction

A matrix A € C™" is normal if and only if A*A = AA*. Normality,
as it includes the Hermitian, unitary and skew-Hermitian matrices, defines
a rather general and important class of matrices. In [7] seventy equivalent
conditions are listed to characterize a normal matrix. This again reflects that
normality may arise in many different ways.

One interesting question that has received considerable attention is the
determination of a closest normal matrix to a given square complex matrix.
This problem has only recently been completely solved (in the Frobenius
norm) in [4], and independently in [12]. It turns out that finding a nearest
normal matrix is equivalent to finding a unitary similarity transformation
which makes the sum of squares of moduli of the diagonal elements as large
as possible [8]. The Jacobi algorithm, therefore, may be derived from this
perspective to solve the nearest to normality problem.

In this paper we assume the following situation happens: Experimental
data has been collected in the matrix A which, by some prior knowledge,
should be a normal matrix with known spectrum. Generally, due to mea-
surement errors, A will not satisfy these requirements. Since A still contains
some useful information, we would like to retrieve its least squares approxi-
mation that satisfies these requirements.

In practice, one may well be interested in real matrices. It is well known
[5, p284] that a real normal matrix is always orthogonally similar to a real
quasi-diagonal matrix
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where Ag, v are real numbers and v, # 0 (k = 1,2,...,q). Therefore, we
consider the following problem in this paper:

Problem A Given a matrix A € R™" and a set of eigenvalues {A; +

Wi,y Ag T, Aagi1, - - -, An} Where g, vk, are real numbers and v, # 0(k =
1,2,...,9), find an orthogonal matrix @ that minimizes the function

F(Q)+= 5]IQ7AQ ~ AIF 2)



where A is the quasi-diagonal matrix given by (1) and || - || means the Frobe-
nius matrix norm.

A special case of Problem A has been considered in [3]. There it is shown
that when A is symmetric and when A is diagonal with distinct elements
arranged in descending order, the columns of the optimal Q7 should be the
normalized eigenvectors of A corresponding to eigenvalues arranged in the
descending order. In this paper we study the extension to more general
classes of matrices.

Our idea is closely related to the setting in [1]. Our approach is parallel
to that in [3]. Without using the Lagrangian function, we first formulate
explicitly the projection of the gradient of the objective function F' onto the
the feasible set O(n) = {@ € RV"|QTQ = I}. This formula gives rise
to the construction of a descent flow that can be followed numerically. We
then derive the so called projected Hessian on the tangent space of O(n).
Wherever possible, we classify the stationary points from the second-order
condition. Finally we discuss the connection between our results and the well
known Wielandt-Hoffman theorem [9].



2 Preliminaries

Let (A, B) denote the Frobenius inner product of two matrices A, B €
(A, B) := trace ABT Za” i (3)

We first consider the function F' in (2) to be defined everywhere in R™*™.
For Z, H € R**", the Fréchet derivative of F' at Z acting on H is calculated
to be
F'(Z)H = (ZTAZ — A HTAZ + ZTAH)
= ((AZ)(Z"AZ — A", H) + (A"Z)(Z"AZ — A),H). (4)

In the second equation above we have used the adjoint property
< A,BC >=< BTA,C >=< ACT,B >

to rearrange terms. With respect to the Frobenius inner product, the equa-
tion (4) suggests that the gradient of F' at a general matrix Z € R™™ may
be interpreted as the matrix

VF(Z):=(AZ)(ZTAZ — A)T + (ATZ)(ZTAZ - A). (5)

Let S(n) denote the subspace of all symmetric matrices in R™*™. It is
easy to see that the tangent space ToO(n) of the feasible set O(n) is given

by [3]
TeO(n) := QS(n)* (6)

where S(n)*, the orthogonal complement of S(n) in R™ ", is precisely the
subspace of all skew-symmetric matrices. It is also easy to see that the
orthogonal complement of TogO(n) is the subspace

NoO(n) := QS(n). ()

Therefore, an orthogonal matrix ¢ is a stationary point of Problem A only
if

(AQ)QTAQ — A)T + (ATQ)(QTAQ — 4) € QS(n). (8)



For convenience, we define in the sequel

X :=QTAQ. (9)
Then (8) is equivalent to
X(XT - AT) + XT(X — A) € S(n), (10)
or
XAT + XTA=AXT 4+ ATX. (11)

Let [A, B] := AB — BA denote the Lie bracket. It follows that

Lemma 2.1 A necessary condition for @ € O(n) to be a stationary point
for Problem A is that the matriz [ X, AT] with X defined by (9) is symmetric.

We remark that if A is symmetric and A is diagonal, then X is symmetric
and [X, AT] is skew-symmetric. In this case, we conclude, from Lemma 2.1,
that at a stationary point the matrix X must commute with A. This is one
of the results discussed in [3].

The projected gradient of F' on the manifold O(n) can be calculated
without any difficulty. Mainly this is due to the understanding that for any
fixed @ € O(n),

™™ = Tq0(n) & NoO(n) = QS(n)* © QS(n). (12)
Any matrix Z € R™"™ has a unique orthogonal splitting
z=e{ @ z-7Qlrels@zr @) W)

as the sum of elements from ToO(n) and NoO(n). Accordingly, the pro-
jection ¢(Q) of VF(Q) onto the tangent space TpO(n) can be calculated
explicitly as follows:

oQ) = 2{Q"VF(Q)- VF(Q)Q)

_ g {QT{(AQ)(Q7AQ — A) + (ATQ)(QTAQ — A)}
—{(AQ)(QTAQ — AT + (ATQ)(QTAQ — A)}TQ}
= - 2{17AQ, A7) - [Q7AQ, AT} (19)
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It is clear that the vector field

% =—9(Q) = %{[@TAQ,AT] - [QTAQ, AT} (15)

defines a steepest descent flow Q(t) on the manifold O(n) for the objective
function F in (2). Upon substitution, the corresponding X(t) is governed by
the ordinary differential equation:

dX  dQT . dQ
o T g ATy
T ™T

Starting with an appropriate initial value, say X (0) = A, the positive orbit of
(16) marches to a limit point which is a (local) least squares normal matrix
approximation to A.

We remark again that if A is symmetric and A is diagonal, then the flow

(16) is reduced to

dX
E = [Xa [XaA]] (17)

which is analyzed in [3].

It is worth mentioning that the second term in the bracket of (16) is skew-
symmetric. Therefore, the solution flow X(¢) of (16) naturally is isospec-
tral [2] to the initial value X(0). In particular, we have ||X(¢)X(¢)T —
XOTX(®)| = |1X(0)X(0)T - X(0)TX(0)|| for all . Thus, apart from numer-
ical errors induced when solving the differential equation (16) on computers,
the deviation of normality of X(t) will remain the same as that of X(0).

The function g in (14) is defined for orthogonal matrices only. We now
derive an explicit formula for the projected Hessian of the objective function
F without utilizing the Lagrangian Multiplier. Readers are referred to [3]
for an explanation of why this technique works. Obviously we may extend g
smoothly to cover the entire space R™*™ simply by defining

G(Z) = g{[ZTAZ, ATIT — [27A2Z, AT} (18)

The Fréchet derivative of G can easily be calculated. In particular, at any
stationary point ¢} of Problem A and for every tangent vector Q K where
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K € §(n)*, it holds that

<GI(Q)QK, QK> — <[[X7 K]7AT]T2_ [[X7 K]aAT]
= _<[[X7K]7AT]7K>
= <[X7K]7[A7K]> (19)

7K>

It can be proved that formula (19) is precisely the evaluation of the pro-
jected Hessian of the Lagrangian function of Problem A [6, p80]. Thus a
necessary condition (and a sufficient condition if the strict inequality holds)
for a stationary point @) to be a local minimum is that

([X, K], [A, K]) > 0 for every K € S(n)". (20)



3 Application I — Real Eigenvalues

We now apply the first order condition (11) and the second order condition
(20) to classify the stationary points for Problem A. It will prove useful if we
define

E := QAQ". (21)

We observe that the first order condition (11) and the second order condition
(20) are equivalent to

AET 4+ ATE = EAT + ETA (22)

and

(A, K], [E,K]) > 0 for every K € S(n)*. (23)

respectively.

In this section we first consider the case when A has only real eigenvalues.
It follows that the matrix X = QT AQ must be symmetric for any @ € O(n).
For any general matrix A € R™", let

Ag = %(A + AT (24)

and

Ag = %(A AT (25)

denote the symmetric and skew-symmetric parts of A, respectively. We ob-
serve that

1X = AJl* = [IX — As|* + [| Ax]|*. (26)

Since the second term in (26) is fixed once A is given, a least squares approx-
imation to A amounts to a least square approximation to Ag. Therefore, it
suffices to consider the case when A is symmetric.

Suppose A is symmetric. We shall arrange eigenvalues of A in the natural
ordering

P12 o 20 2 fin. (27)

We further divide our discussions according to whether or not A has simple
eigenvalues.



Case 1 (A has only distinct eigenvalues)
For clarity, we shall assume the diagonal elements of A are arranged in
the descending order

AL > A > > A (28)

The following theorem completely classifies all the stationary points.

Theorem 3.1 Suppose A is symmetric and has eigenvalues arranged as in
(27). Suppose A is diagonal and has elements arranged as in (28). Then the
stationary points of Problem A are classified as follows:

1. An orthogonal matriz Q) 1s a stationary point of F only if columns
q1,-..,qn of QT are orthonormal eigenvectors of A.

2. A stationary point Q) is a minimizer (or, a mazimizer) of F only if

columns qu,...,q, of QT correspond with eigenvalues wy,...,pn (o,
the reverse order) respectively. All other stationary points are saddle
points.

3. Any least squares approzimation X to A is of the form
X = )‘1Q1qf +oe Tt )‘nqan' (29)

The least squares approzimation X s unique if A itself has distinct
eigenvalues.

4. The minimal value of F is equal to 3 37— (A — ).
5. Local extreme points are also global extreme points.

(pf): The proof of this theorem can be found in [3]. The main point is
that the simplicity of eigenvalues of A and the condition (22) require that E
be a diagonal matrix [11, p416].

Case 2 (A has multiple eigenvalues)

When multiple eigenvalues occur, the analysis becomes more complicated
because the matrix E is not necessarily a diagonal matrix. For demonstration
purpose, we shall only consider the special case when all eigenvalues, except
the one which has multiplicity 2, of A are simple.



We shall assume the diagonal elements of A are arranged in the ordering
AL > > A = Apyr > > A, (30)

with 1 < k < n — 1. Then the first order condition (22) implies that at a
stationary point £ must be a quasi-diagonal matrix of the form [11]

E = diag{el,...,ek_l, l Gk Cx ] ,ek+2,...,en}. (31)

€x €r41

It follows from (21) that e,...,ex_1,€kt2,...,6, must be n — 2 eigenval-
ues of A (Note that we are assuming A be symmetric), and that columns
Q1,3 Qk—1,9k42, - - -, qn Of the matrix QT must be the corresponding or-
thonormal eigenvectors. Obviously, the 2 x 2 matrix

R::[ek e*]. (32)

€x €r41

determines the remaining two eigenvalues, denoted by u, and p¢, of A. The
columns g and ¢y are two orthonormal vectors in the space spanned by
eigenvectors of u, and p;.

It is not difficult to see that

<[A7K]7[E7K]>:2 Z ()‘i_)‘j)(ei_ej)kizj

i<
1#k,k+1
j#kk+1
+2 30 (= X5) {(er — € )k + 2eakishiyng + (ersn — ek}
k+1<y
—|—2 Z()‘Z — )\k) {(!3Z — ek)kfk — Ze*kikki,k-l—l —|— (ei — ek-l-l)kiz,k-l—l} . (33)
<k

We note that the three summations in (33) are mutually exclusive. Therefore,
([A,K],[E,K]) > 0 for every K € S(n)* if and only if every single term in
(33) is nonnegative. Because of the specified ordering of the eigenvalues
A;, we conclude that for a stationary point @) to be a local minimizer, it is
necessary that

612622"'2%—1Z€k+22"'26m (34)



and that the matrices

e;— e —e .
Lk * =el — R, for every 1 < k
—€x €; — €k+1

€ €k+1 — €5

[ek—ej Ex ] =R—¢;I, forevery k+1<j (35)

be positive semi-definite. From the above, we have proved that

Theorem 3.2 Suppose A is symmetric and has eigenvalues arranged as in
(27). Suppose A is diagonal and has elements arranged as in (30). Then the
stationary points of Problem A are classified as follows:

1. An orthogonal matriz Q) 1s a stationary point of F only if columns
Q1,3 Qk—1, k42, - - - , Gn Of the matriz QT are n — 2 orthonormal eigen-
vectors of A, and qg, qrr1 are linear combinations of the remaining two
orthonormal eigenvectors.

2. A stationary point Q s a local minimizer of F' only if columns q1, ..., qr_1
of QT correspond with eigenvalues p1, ..., pug—1, and gria,...,qn coT-
respond with eigenvalues pgia, ..., Un, ond qg,qr+1 are linear combi-

nations of eigenvectors corresponding with eigenvalues pg, pgy1. Stmi-
larly, a stationary point Q) is a mazimizer of F' only if the above corre-
spondence is in the reverse order. All other stationary points are saddle
points.

3. Any least squares approzimation X to A is of the form
X =Maqigi + -+ Mlqrde + Gr19i) + T Andngn- (36)

The choice of q and g1 s immaterial. The least squares approzima-
tion is unique if the first k — 1 and the last n — k — 1 eigenvalues of A
are distinct.

4. The minimal value of F is equal to 337 (A — ps)?.
5. Local extreme points are also global extreme points.

We remark that the proof for the above theorem can be generalized to
cover other cases of multiple eigenvalues. The details are left to the readers.
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4 Application IT — Complex Eigenvalues

One of the difficulties associated with this case is that there 1s no clear
way to order the eigenvalues. Even so, we have made some interesting ob-
servations .

Case 3 (A is a 2 X 2 matrix.)
The simple 2 x 2 case offers considerable insights into the understanding
of higher dimensional problems. Let it be denoted

=) (37)

For any E € R**? it is easy to see that the matrix AET + ATE is always
symmetric. This is to say that any @ € O(2) is a stationary point. Indeed,

we find that
A if det@ =1
— N7 — )
X:=@ AQ_‘{AT,if&ﬁQ::—L (38)

So the least squares approximation problem is trivial. The objective function
value is given by

F(Q) == (an — A + (az2 — A + (a12 F #)? + (am £ v)?) (39)

depending upon det @ = +1, respectively. It is readily seen from (39) that the
signs of v and a15 — ay; determine which one of A or AT better approximates

A.

Case 4 (A is a symmetric matrix.)
Again, for demonstration purpose, we shall consider only the case when
A is of the form

)\k Vg

A:diag{)\l,...,[ _y )\k

],...,An} (40)

where

AL > A > > A (41)
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and v, > 0. Since A is symmetric, so is E. We write A = Ag+ Ag as the sum
of its own symmetric and skew-symmetric parts. The first order condition
(22) requires

(AT + A)E = E(AT + 7). (42)

Because AT+ A = 2A¢ is diagonal, it follows that E must be a quasi-diagonal
matrix of the form (31). Furthermore, we know

<[A7K]7[E7K]>:<[A57K]7[E7K]> (43)
since [Ak, K| is skew symmetric and [E, K| is symmetric. We state that

Theorem 4.1 Suppose A is symmetric and has eigenvalues arranged as in
(27). Suppose A is quasi-diagonal and has elements arranged as in (40) and
(41). Then the stationary points of Problem A are classified as follows:

1. An orthogonal matriz Q) 1s a stationary point of F only if columns
Q1,3 Qk—1, k42, - - - , Gn Of the matriz QT are n — 2 orthonormal eigen-
vectors of A, and qg, qrr1 are linear combinations of the remaining two
orthonormal eigenvectors.

2. A stationary point Q s a local minimizer of F' only if columns q1, ..., qr_1
of QT correspond with eigenvalues p1, ..., pug—1, and gria,...,qn coT-
respond with eigenvalues pgia, ..., Un, ond qg,qr+1 are linear combi-

nations of eigenvectors corresponding with eigenvalues pg, pgy1. Stmi-
larly, a stationary point Q) is a mazimizer of F' only if the above corre-
spondence is in the reverse order. All other stationary points are saddle
points.

3. Any least squares approzimation X to A is of the form

X = Maq1g] + - A e(0kGe Tk 10k 1)V (GG G414k )T Anndy -

(44)
The choice of q and g1 s immaterial. The least squares approzima-
tion is unique if the first k — 1 and the last n — k — 1 eigenvalues of A
are distinct.

4. The minimal value of F is equal to v2 + 3 37 (X — pi)?.

5. Local extreme points are also global extreme points.
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(pf): The analysis of stationary points for this case is essentially identical
to that of Case 2 in the preceding section.

Case 5 (A is a normal matrix.)

Obviously we should suppose A has complex eigenvalues, otherwise A
would be symmetric. Now we have real difficulty in the analysis of the
stationary points. In fact, we even do not have a clear way in identifying all
stationary points. We can only report some partial results.

For simplicity, we shall assume that A is given by (40) and that (41)
holds. We partition A into three blocks A = A; @ Ay @ Az where

Al = diag{)\l, ceey )‘k—l}

A Vs
Ay, = [ _V’i n ] (45)
A3 = diag{)\k+2, ceey )‘n} (4:6)

It can be verified easily that any E of the form
E=E®E, ¢ E; (47)

satisfies the first order condition (22) if E; + E'ZT i1s a diagonal matrix for
1 =1,3 and E, € R?*?. This, of course, is only a sufficient condition of being
a stationary point.

We consider a simple 3 x 3 example. Let

—0.44910244205626 —2.69770357656912 —0.84185971635958
A= 0.02746606843380 —0.23010080980457 —2.76631903691207
—2.82587649838907 —0.61291990656488 —1.32079674813917

and

A= 0.0 —=3.0 12.0

0.0 —-12.0 —-3.0

We calculate that || AAT— AT A|| ~ 4.5540x 107**. So up to the 14th digit A4 is
a normal matrix whose eigenvalues are {142z, —4}. Starting with X(0) = A,
we follow the descent flow (16) by using the subroutine ODE in [13]. The
local error tolerancies set at 1073, We count convergence has occurred and

15.0 0.0 0.0 ]
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stop the integration whenever the difference between two consecutive output
values is less than 107!2. At ¢ ~ 0.5, we obtain an approximate limit point

5.047565112549 —12.481140871140 —1.983297617463
X = 1.946294703163 0.447719348364 12.759402874230
—12.486964555620  —3.288091746472  3.504715539087

for the flow (16). The corresponding stationary point is approximated by

0.668645609196 —0.437652789090 —0.601143148929
@ = | 0.437652789090  0.885212316658 —0.157667975945
0.601143148929 —0.157667975945  0.783433292538

We calculate that || X XT — XTX|| ~ 2.7084 x 1071°, ||QTQ — I|| ~ 1.3866 x
107!, So X and @ are reasonably normal and orthogonal, respectively. The
corresponding matrix E := QAQT is given by

0.644444444445 —0.801988510684  2.173413906502
E = 2.314685340881 —0.608926976624 —1.676627286676 | .
—0.095631338793 —2.743293953342 —2.035517467820

We calculate that ||[AET + ATE — EAT + ETA|| ~ 1.2299 x 1071, So we may
say that up to the numerical error the matrix E satisfies the equation (22).
But obviously E is not of the form (47). We think this complication is due to
the fact that the spectra of A and A are "incompatible”, i.e., the two triangles
in the complex plane connecting eigenvalues of A and A, respectively, point
to opposite directions.

In perturbation theory, one should not expect the spectrum of A to be
distributed in a significantly different pattern from that of A. In part, this
is because eigenvalues depend continuously upon components of the matrix.
In part, this is because A, representing a sensible empirical data, should
more or less reflect the physical reality. Now that A is assumed to be of the
form (40), let us suppose that A also has only one pair of complex conjugate
eigenvalues. Thus A can be reduced to the matrix

E::diag{el,...,[ Gk e*],...,en}. (48)

—€yx €L
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Now we shall see how the ordering of {ey,...,e,} affect the definiteness of
the projected Hessian of F' at such a point. By direct computation, we obtain

<[A7K]7[E7K]>:2 Z ()‘i_)‘j)(ei_ej)kizj

1<J
ik k41
F A
+2 (kG 4 klpr)((ei — ex)(Ai — Ak) + vaes)
1<k
+2 > (ki 4 koypy ;) ((er — €5) (M — Aj) + vaes). (49)
k+1<j

Every single term in (49) needs to be nonnegative in order that the projected
Hessian of F'is positive semi-definite. This, of course, will be the case if the
ordering of {es,...,en} is "compatible” with (41), that is, if

e1 > ey > ... > e, (50)
and e, > 0. We, therefore, has established a result of the sufficient condition:

Lemma 4.1 Suppose A is normal. Suppose A can be reduced by orthogonal
transformation @ to the canonical form E (48) whose elements are arranged
as in (50). Suppose A is a quasi-diagonal in the form of (40) whose elements
are arranged as in (41). Then

1. The orthogonal matriz @ is a local minimaizer of F'.
2. The local optimal value of F is given by 3||A — E||*.

Remark In the 3x3 numerical example above, we have —4 = e; < e; = 1.
Thus (49) is positive only if e, > (e2 — e1)(A1 — A3)/ve = 7.5. Since e, = £2
in our example, we find that our descent flow X cannot converge to an E in
the form of (47). In fact, it turns out that such an E is a local maximum for
F.

In contrast to the preceding three theorems, it is rather surprising that
when A has complex eigenvalues the differential equation (16) may have
multiple limit points. This phenomenon can be observed numerically by
starting with different initial values on the surface M(A) := {QTAQ|Q €

15



O(n)}. For instance, if we start with X(0) = AT € M(A) for the above 3 x 3

example, the flow converges to another limit point

13.442778205310 —0.124823985983  —6.168244962433
X = | —5.831716696280 —2.460547718025 —10.728214876180
—2.013431726775 12.210156961630 —1.982230487286

which is quite different from the one obtained earlier. The least squares
distances from these two distinct limit points to A, nevertheless, are the
same. We have experimented with many other numerical examples. It seems
true that when A is normal and has complex eigenvalues, Problem A does
not have a unique solution. Different least squares approximations to A may
result in different optimal values of F'. Problem A, therefore, has multiple
local solutions.

At this point, it is worthwhile to look at Problem A from another aspect.
The following general perturbation problem [15] is of significant importance
in many areas:

Problem B Suppose one knows exactly the eigenvalues of the matrix A
and that A is perturbed to become A + B. How do the eigenvalues change?

Usually one is interested in finding bounds of the perturbed eigenvalues in
terms of the perturbing matrix B. In application it is not uncommon to have
a situation in which both the original matrix A and the perturbing matrix
B are real and symmetric. In this case, and in the more general situation in
which both A and A + B are normal, a comprehensive bound, known as the
Wielandt-Hoffman Theorem (See, [9], [10, p368] and [15, pl04]), is available

on the perturbation to all the eigenvalues.

Theorem 4.2 Let A, B € C™™. Assume that A and A+ B are both normal.
Let py, ..., un be the eigenvalues of A in some given order, and let A1,..., A,
be the eigenvalues of A+ B in some order. Then there exists a permutation
o(2) of the integers 1,2,...,n such that

> oy — mal? < ||BJJ. (51)
=1

In Problem A we have the situation that all the eigenvalues (the original
ones and the perturbed ones) are known and that we want to minimize the
norm of the perturbing matrix B.

16



What we have shown in Theorems 3.1 and 3.2 is that, in the real and
symmetric case, the minimum of ||B|| is attained if A + B = QTAQ where
columns of QT are orthogonal eigenvectors of A in a certain order. In this
case, the equality in (51) holds. In other words, we have shown that the
bound in (51) for eigenvalues is sharp. This is a reproof of the Wielandt-
Hoffman theorem. We think our proof, being different from both the original
proof of [9] and the one given in [15], is of interest in its own right.

When the matrix A is real and normal, one can see immediately that
the proof given in [9] for Theorem 4.2 breaks down if the perturbed matrix
A + B is restricted to be only real and normal. Problem A in which we try
to minimize the right-hand side of the inequality (51) becomes an interesting
but difficult question. In Lemma 4.1 we have proved that if eigenvalues of A
and A+ B (both real and normal) are ”compatible”, then again the equality
in (51) holds. Our numerical experiments seem to indicate, however, that
generally the minimal ||B|| may be far larger than any rearrangement of
eigenvalues on the left-hand side of the inequality (51) if only real matrices
are allowed in the perturbation. Taking the 3 x 3 example to demonstrate
our point, we calculate || X — A||? ~ 496.2 in comparison with the eigenvalue
variation

rr}rinz [ Ao(iy — pal® = 461.
1=1

Case 6 (A is a general matrix.)

Given a quasi-diagonal matrix A as in (1), an arbitrary matrix A € R™*"
and let X := QTAQ, we have established that necessary conditions for Q €
O(n) to be a local minimizer for Problem A are

XAT + XTA = AXT 4 ATX; (52)
([X,K],[A,K]) > 0 forevery K € S(n)*. (53)

If the strict inequality holds in (53), then the above conditions are sufficient
for @ € O(n) to be a strong local minimizer of Problem A.
Thus far, we are able to characterize an analytical solution of Problem A

from (53) and (53) for the following cases:
1. All eigenvalues of A are real, and A € R™*™ is arbitrary.

2. A has complex conjugate eigenvalues, and A € R™™ is symmetric.
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3. A has complex conjugate eigenvalues, and A € R™*™ is normal but not
symmetric. (Indeed, only partial results are obtained for this case.)

For a general non-normal matrix A, the analytic comprehension of solutions
satisfying both (53) and (53) becomes a much harder problem.

We have pointed out (Case 3) that when n = 2, all orthogonal matrices
@ € O(2) are stationary points and the corresponding X can only be either A
or AT. From here, we might be able to characterize some stationary points for
higher dimensional cases. For example, suppose A is given by (40). Suppose
A can be reduced by orthogonal similarity to the matrix

65611) 65612)

FE = d1ag {61; ceey [ 35621) 65622)

,...,en} (54)

which is conformal with A except that egc”),l < 2,7 < 2 are arbitrary real
numbers. Then one can show that the equation (53) is satisfied. This, of
course, is just one special type of stationary points.

Recently, the Wielandt-Hoffman Theorem has been generalized to non-

defective matrices [14, 16]:

Theorem 4.3 Let A, B € C™*™. Suppose both A and A+ B are nondefective,
1.e., suppose there ezist nonsingular matrices S and T such that
ST'AS = diag{ps,..., tn}
TY A+ B)T = diag{)1,...,\}.

Then there ezists a permutation o(3) of intergers 1,2,...,n such that
2 o) — wal® < (m2(S)ma(T))°]|BI? (55)
=1
where k3(S) = ||S]]2]|S7|2 4s the condition number of S and ||||2 means
2—norm.

In the context of our discussion, the matrix A+ B is required to be a real and
normal matrix. In this case, clearly ko(T) = 1. Suppose the given matrix A
is nondefective, then the inequality (55) becomes

> oty — mal® < ra(S)1BI. (56)
n=1
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The inequality (56 suggests that when A is a general non-normal matrix,
the minimum value of || X — A|| may be smaller than the so called eigenvalue
variation. That it indeed is the case can be seen from the 2 x 2 matrix
considered in Case 3 — Supposee az; = 0,a12 > 0, > 0. Then it holds that

2
min ) | [Aeq) — pal® = (a1 — A)* + (222 — A)* + 207 (57)
=1

while

min ||QTAQ — Al = (a11 — A)? + (a2 — A’ + (a2 — v)> + 2. (58)

Qe0(2)

Obviously, the value in (58) is less than that in (57) if a;2 < 2v. This ob-
servation is interesting when compared with the Wielandt-Hoffman Theorem
for normal matrices. In the latter case, the minimum value of || X — Al is
always bounded below by the eigenvalue variation.

Although closed forms of solutions of (53) and (53) are difficult to obtain
in general, our approach offers an alternative way to solve Problem A. We
note that the differential equation (16), derived from the projected gradient
of the objective function F', is numerically traceable for arbitrary matrix A.
Thus, by following trajectories of (16), we may locate stationary solutions of
the least squares problem numerically. Different starting points may lead to
different stationary points. The asymptotic rate of convergence is expected
to be similar to that of the usual steepest descent method. But the flow,
by its definition, is guaranteed to converge regardless of the location of the
starting point. Our numerical experience is that the flow usually reaches a
stable equilibrium point within a reasonable interval of integration.
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