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Abstract
The differential equation % = [X, k(X)] where k is a Toeplitz annihilator has been
suggested as a means to solve the inverse Toeplitz eigenvalue problem. Starting with
the diagonal matrix whose entries are the same as the given eigenvalues, the solution
flow has been observed numerically to always converge a symmetric Toeplitz matrix as
t —> o0o. This paper is an attempt to understand the dynamics involved in the case

n=3.



1. Introduction.
Consider the differential system
dX
1 — = [X, k(X
(1) X k)
where X = X(t) € R™", t € R, k stands for a certain matrix-valued operator such
that the action k(X) on X is skew-symmetric, and

(2) [A,B]:= AB — BA

denotes the Lie bracket. It is easy to see that the subspace S(n) of all symmetric
matrices in R™™ is invariant under (1). Associated with (1) is the initial value problem:

(3) 2 Qrx)

(4) Q) = I.

Since k is skew-symmetric and Q(0) = I, the solution Q(¢) stays in the group O(n) of
orthogonal matrices. It is important to observe that X(t) and Q(¢) are related by

(3) X(t) = Q)" X (0)Q(2).

For this reason, we may rewrite (3) so that the flow Q(t) is determined independently
of X(t), except X(0). Another important consequence of (5) is that the solution X (¢) is
orthogonally similar to the initial value X(0) and, hence, X(t) is defined and (Frobenius)
norm-preserved for all t € R.

With appropriately formulated k&, the differential system (1) has found a variety
of applications in the field of linear algebra. Tactics on how to construct & for solving
eigenvalue value problems, singular value problems, spectrally constrained least squares
approximation problems, inverse eigenvalue problems, nearest normal matrix problem,
quadratic programming problems, and simultaneous reduction problems can be found
in [4]. In certain cases there exist discrete counterparts which happen to be well-
known numerical algorithms and, hence, the differential equation approach enable us
to better understand the dynamical behavior of these algorithms. But what is more
significant is when the underlying linear algebra problem seems impossible to be tackled
by any conventional discrete method, the differential equation approach can generate
a path that leads to a solution. Inverse Toeplitz eigenvalue problem (ITEP), where a
symmetric Toeplitz matrix is to be constructed from a prescribed set of eigenvalues, is
such an example of applications.

There are two questions involved in the (ITEP). The first is the existence question of
whether symmetric Toeplitz matrices can have arbitrary real eigenvalues. To this date,
the problem remains open when n > 5 [6]. The second is the computation question of
numerically constructing the Toeplitz matrix. To this purpose, very few algorithms are
available and mostly converge only locally. See, for example, [11].



Recently, we have proposed to solve the (ITEP) by using (1) where &k is an anni-
hilator of the subspace 7 of all symmetric Toeplitz matrices. That is, we want k to be
such that

(6) k(X)=0if and only if X € 7.

In view of the dimensions of the three subspaces involved, the construction of a linear
map k : S(n) — S(n)* with property (6) is possible. In fact, there are many ways to
define such a linear map k with property (6). See [4]. Perhaps the simpliest way is by
defining

(7) kijiz 0, lflé’szé’n

Ti11,5 — Ti5-1, fl1<i< ] <n
Tio15— Tijp1, H1<7<21<n

where k;; denotes the (7, j)-component of k(X).
Our idea is motivated by the following intuitive thinking: The flow of (1) starting
with X(0) = A := diag{A1,..., A\n} stays on the isospectral manifold

(8) M(A) :={QTAQ|Q € O(n)}.

Generically, the prescribed eigenvalues Aq,..., A, should be distinct. In this case,
[X,k(X)] = 0 if and only if k(X) is a polynomial of X [9] and, therefore, k(X) €
S(n)NS(n)t = {0}. If condition (6) holds, then all equilibria of the flow X(¢) are nec-
essarily in 7. Since | X(¢)|| = ||A]| for all ¢ € R, X(¢) must have a non-empty invariant
w-limit set [3]. From this, we raise the hope that X (¢) might converge to a single point
X ast — 00 [1, Theorem?2.3,page23] and, in this way, the (ITEP) is solved.

Needless to say, the argument outlined above is incomplete in many aspects. For
example, nothing seems to be wrong when the subspace 7 in (6) is replaced by an
arbitrary n-dimensional subspace U of S(n) and then the equation (1) is applied to
solve the inverse eigenvalue problem (IEP) on &. However, we can easily construct a
subspace U on which the (IEP) is not solvable. Thus the solvability of the (ITEP) by
using (1) must somehow be reflected in the special structure of 7.

On the other hand, we have experimented the differential system (1), with X(0) = A
and with k defined by (7), extensively on various sets of spectral data for the (ITEP).
We have observed that the orbit always converges to an equilibrium point. Thus, we
conjecture that the (ITEP) is always solvable. What remains to be proved, however,
is that the solution of (1) does has a simple asymptotic behavior as t — oco. In this
way, the existence question of the (ITEP) could have been settled. Unfortunately, the
analysis of dynamical behavior is just as difficult as the (ITEP) itself. At the present
time we still do not have the answer. Despite of the theoretical difficulty, we suggest
that following the solution flow of (1) is a feasible numerical method for solving the
(ITEP).

The dynamical system involved in (1) with k& defined by (7) is of theoretical inter-
est in its own right even for small n — The vector field is described by a system of
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homogeneous polynomials of degree 2 and its solution is norm preserving. We recall
that our situation is quite similar to a much smaller system discussed in [2, Example 4,
pagel93],

dy1
—— = Y2y3 + Ysys — 2Y2Ys,
dt
dyz
— = Y3Ys + Y1Y5 — 2Y3y1,
dt
dy3

(9) o Yy + Y2y1 — 2Y2Y4,
dy4
— = Y1Ys5 + Y2Y3 — 2ys5Y3,
dt
dy5
d = YoU1 + Y3Ys — 2Y1Y4,

only that the behavior of (9) was conjectured to be random. It is curious to ask what
can happen to our system.
For n = 2, the differential system (1) with k& defined by (7) can be written as

(10) d_X — 2$12($11 — :1122) _(mll _ m22)2
dt —(%11 — ®22)?  —2z12(T11 — T22)

As the trace remains constant for all ¢, we may assume, without loss of generality, that
A1 + A2 = 0. We then see trivially from (10) that z;, decreases monotonically to —|A;]
and z1; converges to 0. For n > 3, the analysis becomes much more complicated. The
primary goal of this paper is to discuss some of the properties we have observed for the
case when n = 3.

This paper is organized as follows: We first give an interpretation of our differential
system in terms of rigid body motion. Then we classify the stability of all critical
points. We study several possible invariant sets from which we discover the existence of
periodic solutions. We illustrate the orbital unstability of the period solutions. Finally,
we summarize our conjectures. Many of our observations can be generalized to higher
dimensional space. It is hoped that the exposition in this paper would stir up further
discussion that would ultimately settle the existence question for the (ITEP).



2. Rigid Body Motion.

From now on, we shall restrict our attention to the case when n = 3.

The dual system (3) has an interesting physical interpretation in terms of rigid
body motion. Let k(t) be written as

(11) k(t) = | —ws(t) 0 wi(t)

and define
(12) w(t) := wi(t), wa(t), wa(t)]".
Also let the transpose of Q(t) be written in columns

(13) Q(t)T = [pl(t),pz(t),pg(t)].

Then the dual system (3) implies, for ¢ = 1,2, 3,

dp;
ci w X p;
(14) pi(0) = e

where e; is the ¢-th standard unit basis vector in R® and X denotes the usual cross-
product in R3. The differential equation in (14) describes the linear velocity of the vector
pi(t) and the vector w(t) may be interpreted as the angular velocity of the motion. As a
whole, the dual system then describes the rotation of an orthogonal coordinate system
about the origin. From (7), it is trivial to see that the differential equation in (1) is
invariant under the translation X + oI. Shifting A + ol by large enough o € R if
necessary, we may assume the initial matrix A is positive definite. In this case, X(¢)
stays to be positive definite and may be interpreted as the moment of inertia tensor of
a rigid body motion [10]. The total kinetic energy of motion is then given by [10]

(15) T(t) = %w(t)TX(t)w(t).

If the kinetic energy is dissipated to zero as ¢ — oo the motion will come to a stop,
which is the case that we have observed.



3. Critical Points.

We now take a closer look at the differential system (1) with & defined by (7).

Because of symmetry, only the upper triangular part of a matrix needs to be con-
sidered. For simplicity, we assume henceforth that

Since the trace is identically zero for all ¢, we eliminate one more dimension by setting
(17) L22 — —T11 — T33.

With entries arranged in the order (zi11, Z12, Z13, Z23, Z33), the differential system in-
volved is equivalent to the following system in R®:

d11111

d = 4213211 + 2T12%33 — 2213%23 + 2511133112;
delg

2 2 2

d = —451111 — 4x11233 — 2213T33 — T13%11 — T35 — Th3 T T23%12,

d11113
(18) TR 3Z11%23 + 3T12%33,

dess _ 2 _4 2 _4q? 9

d = X23%12 — Tqg — 2L11T33 — Lq1 — L33 — 4£L13T11 — L13T33,
d11133

7t = 2213%T23 — 2%13T12 + 4T23T33 + 2211%23.

The right-hand side of (18) is still a system of homogeneous polynomials of degree
2. The scalar multiplication of any non-trivial solution of a homogeneous system is also
a solution. We, therefore, do not expect any isolated equilibrium for the differential
system (18). In fact,

LEMMA 3.1. The differential system (18) has only two kinds of real equilibria:

(19) 11 =¢1, 12 = 0, 13 = —3¢1, 23 =0, z33 = ¢4
or
(20) T11 = 0, Z12 = C2, T13 = €3, T23 = C2, L33 = 0

where ¢;, 1 = 1,2,3 are arbitrary real constants.

Proof. The result follows from a tedious but straightforward computation by using
the theory of Grébner bases [12]. O

The local stability of these critical points is easy to comprehend. The coefficient
matrix of a linearized system at (¢1,0,—3¢1,0,¢1) has eigenvalues:

(21) 0, £3v/6c1, £6v/2|cys.
while that at (0, ¢g, 3, ¢2,0) has eigenvalues:

(22) 0, 0, 602, 2(02 + 03), 2(02 — 03).
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Thus, except the trivial case where ¢; = 0, the first kind of equilibria can never be
stable. Near such an equilibrium, (21) also indicates that there are periodic solutions.
We shall investigate this situation later. The second kind of equilibria can be stable
only if

(23) ¢ <0 and |ca| > ca.

It is interesting to note that an equilibrium of the second kind corresponds to a Toeplitz

matrix
0 Cy C3
Cy 0 Cy
C3 Co 0

whose eigenvalues are:

c3 — 4/c3 + 8c2 c3 +4/c2 + 8c2
2

in ascending order whereas the equality in (23) corresponds to the case of multiple
eigenvalues. The two zero eigenvalues in (22) simply indicate that the the entire Toeplitz
matrices (with trace 0) form a 2-dimensional manifold of equilibria.



4. Invariant Sets.

We now consider invariant sets of the differential system (1) with & defined by (7).

We first observe that

LEMMA 4.1. IfT is an invariant set for the differential equation (1), then so is
the set oI := {aX|X € I} for arbitrary real constant a.

Proof. If X(t) satisfies the differential equation then, due to the homogeneity of
the vector field, so does Y (¢) := 2X(£) for any real constant a. [

We have already found that

1. For each given A, we have already seen that the isospectral surface M(A) is an
invariant set.
2. The manifolds of equilibria (19) and (20) are invariant.

A matrix is said to be (skew-) persymmetric if it is (skew-) symmetric about its
northeast-southwest diagonal. We now claim that

LEMMA 4.2. The subspace W of all symmetric and persymmetric matrices 1is
invariant under the differential equation (1).

Proof. 1t is easy to see that if X is symmetric and persymmetric, then k(X)) with
k defined by (7) is skew-symmetric and skew-persymmetric. It follows that [X, k(X)]
stays symmetric and persymmetric. 0

In our setting, because of the additional condition (16), we think of W as a 3-
dimensional subspace:

W = {(z11, %12, T13, T12, T11)|T11, T12, T13 € R}.

Note that the subspace 7 subject to condition (16) is embedded in W with z1; = 0.
A direct computation shows that, for any given {1, Ay, A3} satisfying (16), the
intersection of W and M(A) consists of three ”ellipses”:

A3 1 2
2 2 22142 ]
(211 — =)+ ==z = M; T13 = T11 — As;

4 912 T 16
A 1
(24) (z11 — Zl)z + 53152 = %LZ; T13 = 11 — A1;
A+ A 1 _
(211 + 14 3)2‘|‘§'£§2 = A116>\327 T13 = T11 + A1 + As.

It is interesting to note that the projections of these ellipses onto the (211, z12)-plane
must be such that one circumscribes the other two. Typical cases are shown in Figure 1.
By counting the zis-intercepts of these ellipses, it is readily proved that
LEMMA 4.3. Forn = 3 the (ITEP) has ezactly four real solutions if all given
eigenvalues are distinct, and two real solutions if one eigenvalue has multiplicity 2.
The dynamics of (18) restricted to W, on the other hand, is governed by:

d11111

d = 6511113112;
dz
(25) d;z = —935%1 — 3z11T13,
dz
d;g 621112
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Thus it i1s clear that W itself consists of layers of 2-dimensional invariant affine sub-

spaces. Each affine subspace is determined by

(26) Tiz = T11 1 C4

for a certain real constant cy. For any given ¢4, the integral curves on the invariant
affine subspace are determined by

c 1
(27) (11 + 14)2 + 5“’32 =c}

for real constants cs. These elliptic orbits are concentric with the center (—%,0, ?%)
which is an equilibrium of the first kind. It is also clear that there are periodic solutions
near that equilibrium. On the other hand, for large enough ¢} (i.e., [cs| > |%]), a non-
periodic solution of (25) will converge as shown in Figure 2. The limit point corresponds

-4 i ‘ i i i I i
-3 -2 -1 0 1 2 3 4

Fi1c. 2. Flows in the persymmetric subspace (with x13 suppressed).

to an equilibrium of the second kind (0, —4/2¢2 — %, Cqy —1/ 262 — %, 0) which, according

to the condition (23), will be stable with respect to the system (18) only if

9c?
2 2> 24
(8) c5— 16
9



1s satisfied.

Finally we conclude that

THEOREM 4.4. For any given {A1, Aa, Az} satisfying (16), the surface M(A) can
have one and only one equilibrium which is stable for the differential system (18).

Proof. The proof is simply by checking the z;5—intercepts of the ellipses (24)
against the condition (28). [
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5. Orbital Stability.

The existence of periodic solutions discovered in the preceding sections is disap-
pointing. If any of these closed orbits were proved to be the w-limit set of other solution
flows, then our plan of setting up (7) to solve the (ITEP) would have failed.

Figure 3 is a computer plot of z15(t) versus z11(¢) for a single trajectory of (18)
for 0 < ¢ < 11.05. The initial conditions, z11(0) = 1.0, 212(0) = 1.0,213 = —3.0, 214 =
1.0,z15 = 1.0, indicate that the true trajectory should be an ellipse.

O
a1
T
I

-
a1
\

i

-3 I I
-15 -1 -0.5 0 0.5 1 15 2

F1G. 3. Plot of £11(t) versus z12(t) for a single trajectory

Despite the high accuracy (107'*) we have demanded from the package ODE [13],
Figure 3 clearly shows that the numerical solution even fails to stay close to the ellipse.
Once the solution is off the track even by a small amount, the errors quickly accumulate
to the extent that the solution leaves the ellipse entirely. This is a strong indication
that the periodic solution is not orbitally stable [5, Page323].

It 1s worth noting that although the numerical solution fails to track down the ellip-
tic orbit, it stays close to the surface M(A). Figure 4 plots the difference of eigenvalues
(measured in the 2-norm) between X(0) and X(t). The error is certainly acceptable
within machine roundoff. It is amazing to see that although the numerical solution is
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meaningless to the original initial value problem, the final false limit point does solve

the (ITEP).

x10-13

14

0.8

0.6

norm of eigenvalue error

0 2 4 6 8 10 12

Fi1G. 4. Errors of eigenvalues between X(0) end X (¢)

The orbital unstability can be confirmed by calculating the characteristic exponents
of the linearized system of (18) at a periodic solution. The theory can be found, for
example, in [5, Theorem 2.2, Chapter 13]. For the above example, we first estimate
by numerical experiments that the period is about w = 1.04719755120 (accurate up
to the 11-th digit). Then we calculate a fundamental matrix ®(¢) satisfying ®(0) = I
for the linearized system of (18) at the periodic solution. Since ®(w) = e“F for a
certain constant matrix R [5, Theorem5.1, Chapter 3], the corresponding characteristic
exponents are estimated to be:

+7.8998, +£2.0222 x 107°, 4.5297 x 10~ **

The last small number should be regarded as machine zero. It is the first positive
characteristic exponent 7.8998064636 that clearly confirms the orbital unstability.
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6. Other Observations.

There are some other interesting facts about the differential system (1) with %
defined by (7.

We have observed a special property of symmetry as stated below:

LEMMA 6.1. The diagonals of the solution X(t) with initial value X(0) = A
alternate with symmetry of evenness and oddness. More precisely, all the entries on the
main diagonal of X(t) are even functions, and those on the first super-diagonal are odd
functions, and so on.

Proof. Replace entries of a matrix by symbols e or o, respectively, depending upon
if they are even or odd functions. If

0
0o e o
0
e o
L O e -
then by the definition of & it is easy to check that
[0 e o |
0
0o e o
(X, k(X)] =
0
L e O -

Note that A obviously has the symmetric structure (29). It follows that the Picard’s
iteration [5],

(30) Xmia(t) i= A+ [ [Xn(s), H(Xm(s))] s

with Xo(¢) = A will have the same symmetric structure. The well-known Picard-
Lindel6f theorem guarantees that {X,,(t)} converges uniformly to the unique solution
X(t). The assertion follows. 0O

Let W+ denote the orthogonal complement of W in the space S(n) with respect
to the Frobenius norm. That is, W+ is the subspace of all symmetric and skew-
persymmetric matrices. Identifying X € S(n) as the direct sum

Y41 P2 P3 81 82 0
X)) = pr —2p1 p2 |+ | s2 0 —s
P3 P2 Y41 0 —s3 —5
(31) = P(t)® S(t)
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with P € W and S € W™, we may then split the vector field of (7) as the direct sum of

(32) o = [PA(P)]+ [5,K(S)
(33) B PKS) + (5. KP))

Equation (33) clearly reproves Lemma 4.2 when S = 0.
For n = 3 case, the solution flow must satisfy the equation

(34) 6p7 + 4p5 + 2p3 + 257 + 4s2 = || X(0)|]?

because || X (t)|| = || X(0)||. We have observed that generally ||S(¢)|| is not a monotone
function because

(35) S >= —12s5183p1 + 1281p38y + 4pgsf + 8pgs§.

< =
dt

changes signs. When X(0) = A, however, numerical experimentation seems to indicate

that < %, S >< 0 for £ > 0. If this is true, then we have the global convergence.
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7. Conclusion.

The matrix differential equation (1) offers a new avenue of attacking the inverse
Toeplitz eigenvalue problem. Numerical experimentation suggests that this differential
equation approach is globally convergent and that the (ITEP) is always solvable. We
have studied the dynamics for the case n = 3 with the discovery of several interesting
facts.

From a mathematical point of view, the differential system (1) is of theoretical
interest in its own right. On the other hand, while very few methods are available
for solving the (ITEP) numerically, we suggest integrating (1) with X(0) = A by any
available ODE solver as a feasible numerical approach.
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