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   In the present paper the ORTHOMAX rotation problem is reconsidered. It is 

shown that its solution can be presented as a steepest ascent flow on the manifold of 

orthogonal matrices. A matrix formulation of the ORTHOMAX problem is given as an 

initial value problem for matrix differential equation of first order. The solution can be 

found by any available ODE numerical integrator. Thus the paper proposes a conver

gent method for direct matrix solution of the ORTHOMAX problem. 
The well-known first order necessary condition for the VARIMAX maximizer is 

reestablished for the ORTHOMAX case without using Lagrange multipliers. Addition

ally new second order optimality conditions are derived and as a consequence an explicit 

second order necessary condition for further classification of the ORTHOMAX maxim

izer is obtained.
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1. Introduction 

   In factor analysis a decomposition of the sample n x n covariance/correlation 
matrix C is sought in the form : 

                        C=AA T+0, 

where A is n x p(n>>p) matrix of factor loadings and 0 is n x n diagonal positive 
definite matrix of unique variances. Such a representation is not unique. Let Q be 
any orthogonal p x p matrix and B=AQ. Then BB T =AQQTAT =AA', which 
means that the matrix of the factor loadings B yields the same covariance/correla
tion matrix as A. This indeterminicity of the factor solution leads to the problem 
of finding the "best" transformation (rotation) Q of the factor loadings such that the 
rotated factors to have a structure, which to be as simple as possible for interpreta
tion. Detailed consideration of the factor simplicity concept and many different 
methods for factor rotation can be found in Mulaik (1972). 

   The VARIMAX rotation method (Kaiser, 1958; Mulaik, 1972) is the most 

popular one to achieve an orthogonal simple structure solution. The core of the 
method is to make most of the loadings in each factor of near zero magnitude and



only few of them of near unity. In VARIMAX this purpose is realized by the 

maximizing the sum of the within-factor variances of squared factor loadings. Let 

A be an n x p matrix of initial factor loadings. The VARIMAX method seeks an 

p x p orthogonal matrix such that the matrix of transformed factor loadings B=AQ 
maximizes the function :

v2=~vj=~ 1 ~(b~.)2 12(ibj)2]. 
      _1 ;_1n i=1 n Z=i (1)

   The first algorithm for finding the maximum of the VARIMAX function works 

iteratively, rotating in turn all possible pairs (planar rotation) of factors and 

maximizing their VARIMAX functions. In the mid sixties P. Horst and R. Sherin 

(Mulaik, 1972) offered independently, in the same time, a matrix formulation of the 
VARIMAX function and derived a SVD-based iterative algorithm for rotation of 

all factors simultaniously. Unfortunately, the matrix iterative process has not 

been given a rigorous proof of convergence. Also its computational advantages 

over the standard VARIMAX are quite unclear ; see for details ten Berge (1984). 

Further simulation comparison of the two approaches showed the planar rotation 

to be computationaly more effecient than the matrix one (ten Berge, et al., 1988). 

   More elaborative matrix formulation of the VARIMAX rotation problem has 

been given by Neudecker (1981) (see also Magnus, J.R., & Neudecker, H., 1988). 

The work also includes a first order necessary condition for the VARIMAX 

maximizer. Ten Berge (1984) facilitated this matrix formulation of the VARIMAX 

problem by avoiding Hadamard products, reestablished the Neudecker's necessary 
condition and gave additionally second order optimality conditions. The VAR

IMAX rotation problem, as formulated by ten Berge (1984), is concerned with the 

following constrained optimization problem :

n Maximize F(Q)=n-'trace ±(diag(QTEZQ))2]                  1i=1
Subject to QERI"p, QTQ=QQT=In

(2)

(3)

where Ei=ATA-naiaT, aT denotes the i-th row of A and diag (QTE1Q) denotes a 
diagonal matrix containing the main diagonal of QTEiQ. In these notations the 
VARIMAX problem is equivalent to the problem for simultaneous diagonalization 
of symmetric matrices. In (ten Berge, et al., 1988) this approach has been spread 
over the ORTHOMAX rotation family-a set of rotation methods optimizing 
certain criterial functions, for which it has been proven by Mulaik (1972) to form 
one-parameter family. It has been demonstrated that the ORTHOMAX family 
deals with the maximizing (2) subject to (3) for Ei(A)=RATA naiaT, where A(= [0, 1]. 
For example, A=1 yields the VARIMAX method, A =0-QUARTIMAX method and 
e.t.c. By means of this ORTHOMAX formulation the Horst-Sherin SVD-based 
iterative algorithm has been generalized and reconsidered and its convergence has 
been proven in case of positive/negative semi-definite Ei for all i. It has been also 
shown how after "repairment" of the indefinite Eis the same algorithm can serve



still convergently, even "painfuly slowly". Ten Berge, et al. (1988) concluded that 

the SVD-approach is of no practical value as rotation procedure and pointed out as 

its possible application the solving of INDSCAL with orthogonality constraints. 

Kiers (1990) proposed a majorization algorithm for solving the ORTHOMAX 

rotation problem which is monotone convergent regardless of the nature of the 

matrices E, and thus is a generalizatoin of (ten Berge, et al., 1988). 

   In the present paper the ORTHOMAX rotation problem is reconsidered. It is 

shown that its solution can be presented as a steepest ascent flow on the manifold 

of orthogonal matrices. This approach has been applied successfully in the analy

sis of certain discrete numerical methods. A short list of such considerations can 

be found in a recent review by Chu (1994) and detailed study-in Helmke, U. and 

Moore, J.B. (1994). We follow here the ideas discussed in Chu and Driessel (1990), 

and Chu and Trendafilov (1996). A matrix formulation of the ORTHOMAX 

problem is given as an initial value problem for matrix differential equation of first 
order. Its solution can be found by any available ODE numerical integrator 

(Shampine & Reichelt, 1995). The method is globally convergent, i.e. the conver

gence is reached independently of the starting (initial) point. Thus, the paper 

proposes a new convergent method for direct matrix solution of the ORTHOMAX 

problem, no matter what the initial Ez are. Additionally we reestablish the first 
order condition known from the works of Neudecker (1981) and ten Berge (1984) for 

the VARIMAX case without using Lagrange multipliers. Next we derive new 

second order optimality conditions. As a consequence we obtained an explicit 

second order necessary condition for further classification of the ORTHOMAX 

maximizer. The presented method can be used for solving INDSCAL with orth

ogonality constraints and to remedy the convergence problems appearing when 

SVD-approach is applied, as reported in the simulation study in (ten Berge, et al., 

1988). 

   We do not aim simulation comparison with the existing methods for rotation. 

The present method, as well as the SVD-approach (ten Berge, et al., 1988) can not 

compete the planar rotation from computational point of view. That is not surr

prising-most of the recent methods in the computational matrix analysis are based 
on Housholder and Givens transformations which are also planar rotations. Our 

purpose here is to present a rather universal theoretically powerful method for 
solving least squares optimization problems subject to constraints which form a 

smooth manifold (e.g. the set of all orthogonal matrices, the set of all "vertical" 

matrices with orthonormal columns, the set of all oblique rotations and etc). As 

one can concieve most of the problems in the area of data analysis can be represent

ed mathematically as problems of that kind. Reconsidering here the well-known 

ORTHOMAX rotation problem we want to illustrate the new approach that gives 

a way for both solving the problem and obtaining theoretical results for the solution 

behavior.



2. Steepest descent flow 

   We first introduce a topology for the set

0 (p):={QERP"pI QTQ=QQT =Ip} (4)

of all p x p orthogonal matrices. It is known that 0 (n) forms a smooth manifold 

of dimension p(p-1)/2 in Rp"p. Indeed, any vector tangent to 0 (p) at QEQ (p) is 

necessarily of the form QK for some skew-symmetric matrix KERp"p. Denote

                  }, S(p):={all symmetric matrices in R"'),

and introduce the Frobenius inner product of two matrices X and Y :

<X, Y>:= trace (X YT ).

It follows that the tangent space TQO (p) and the normal space NQO (p) of 0 (p) at 

any QEQ (p) are given, respectively, by :

TQQ (p)=QS(p)1 (5)

NQQ (P) = QS (P), (6)

where S(p)1 is the orthogonal complement of S(p) with respect to the Frobenius 

inner product and hence consists of all skew-symmetric matrices in RP". 

   Apparently, the ORTHOMAX problem is equivalent to the maximization of the 

function :

FA(Q)=n-'trace [Z (diag(QTEi(A)Q))2] 
                                    z-1

l17\

over the feasible set 0 (p). Hereafter we write for short F(Q) for FA(Q) and Ei for 

Ei(A) because the parameter A does not affect the further considerations. More

over the specific form of the marices Ei is also of no importance but only their 

symmetricity. This is a standard constrainted optimization problem, but we shall 

show below that we can obtain the information about the projected gradient and the 

projected Hessian without using the conventional Lagragian multipliers technique. 
   We first calculate the gradient VF(Q) of the objective function F(Q) to be :

n 

VF(Q)=4 n-3ZEiQ diag (QTEiQ). 

;

(8)

Suppose the projection g(Q) of the gradient VF(Q) at a point Q(-=O (p) onto the 

tangent space TQO (p) can be computed explicitly. Then the differential equation

dQ =+g(Q) (9)

naturally defines the steepest ascent flow for the function F on the feasible set 0 (p). 

To obtain this projected gradient jz(Q), observe that

RP "p= TQO (p)O+NQO (p)=QS(p)10+QS(p). (10)

Therefore, any matrix X E Rp"p has an unique orthogonal decomposition :



X=Q[ 2 (QTX-XTQ)]+Q[ 2 (QTX+XTQ)]
as the sum of elements from TQO (P) and NQQ (p). In particular, the projection 

g(Q) of VF(Q) onto the tangent space TQO (p) has the form :

n 

g(Q) =2n-3QE(QTEiQ diag (QTEiQ)-diag (QTEiQ)QTEiQ). 
                       i=1

(11)

We therefore obtain the differential equation

dQ =2n-'QE (QTEiQ diag (QTEiQ)-diag (QTEiQ)QTEiQ)                      z=1
(12)

that defines a steepest ascent flow on the manifold 0 (p) for the objective function 

F in (8). Starting with any point in 0 (p), say Q(0) =I, we may follow the flow 
defined by (12) by any available initial value problem solver. The flow eventually 

will converge to a local solution for the ORTHOMAX. This is the ready-made 

numerical algorithm referred to above for the ORTHOMAX. 

   For convenience we adopt Lie bracket notation [X, Y]=XY YX and define

Xi= QTEiQ (13)

for i=1, 2, --•, n. It can be easily checked that each Xi must satisfy the following 

differential equation

dXi -dQTE ZQ+QTEZdQ dt dt dt 

n 

   =2n-3 Xi, Z [Xk, diag (Xk)] . 
                    k=1

(14)

   Chu (1991) have proved that the flow Xi(t) stays on the isospectral surface M(Ei) 
={QTEZQI QGO (p)} if it starts from some Xi(0)EM(Ei) . One natural choice of the 
initial value will be Xi(0)=Ei. The system (14) is another way for solving the 
ORTHOMAX problem (which is computationally prefarable because does not need 
at any step explicit check of the orthogonality of Q). In (Chu, 1991) has been shown 
that the solution flow is a continuous analog of the classical Jacobi method for 
simultanious diagonalization of symmetric matrices. 

Example : As reported in (ten Berge, 1984) the SVD-approach fails to rotate the 
matrix

    1 1 

    1 0 
`q 0 1 

   0 0

and to maximize the VARIMAX function. By solving (14) that can be done, as well 

as the Kaiser's method does it (much faster).



3. Optimality conditions 

   The explicit formulation of the projected gradient (11) provides additional 

information about the first order optimality condition for a stationary point: 

Theorem 3.1. A necessary condition for QE=-Q (p) to be a stationary point of the 

ORTHOMAX problem is that the matrix En=, QTEZQ diag (QTEZQ) is symmetric. 

Proof. Obviously Q is a stationary point only if g(Q)=0. The assertion then 

follows from (11). El 

   This necessary condition is well-known from Neudecker (1981) and ten Berge 

(1984) for the VARIMAX case (A=1). 
   We also can derive a second order optimality condition to further classify the 

stationary points. We claim that 

Theorem 3.2. The action of the projected Hessian of F at a stationary point Qe 

Q (p) on a tangent vector QK where K is skew-symmetric is given by
n 

<g'(Q)QK, QK>=4n-3t1{<QTEZQ diag (QTEzQ), K2> 
                              zL=1 

           +<QTEZQK diag (QTEzQ), K> 
          +2<QTE1Q diag (QTEZQK), K>}.

(15)

Proof. From (11), observe that the Frechet derivative of g at Q on a general H is 

given by

n 

g'(Q)H:=2n-3E[H(QTEZQ diag (QTEzQ) 
                        z=1 

     -diag (QTEZQ)QTEZQ) 

     + Q((HTEZQ+ QTEZH) diag (QTEZQ) 

     + QTEZQ diag (HTEZQ+ QTEZH) 
     -diag (HTEZQ+QTEZH)(QTE1Q) 

     -diag (QTEzQ)(HTEZQ+QTEZH))] .

At a stationary point, by Theorem 3.1, the quantity in the first big paratheses in the 

above is zero. The Hessian action on a tangent vector H= QK can be calculated 

as follows :

n 

<g'(Q)QK, QK>=2n-3±{<(KTQTEZQ+QTEZKQ) diag (QTEzQ), K> 
                                       z=1 

           +<QTEZQ diag (KTQTEZQ+QTEZKQ), K> 
           -<diag (KTQTEZQ+ QTEZKQ)(QTEZQ), K> 
           -<diag (QTEZQ)(KTQTEZQ+QTEZKQ) , K>}.

The assertion follows from the adjoint property <XY, Z>=< Y, XTZ> and the fact 

that KT =  K. El 

   The following characterization is a standard result in optimization theory. 

See, for example, Gill, Murray, and Wright (1981, 3.4.)



Corollary 3.3. A second order sufficient (necessary) condition for a stationary point 

QE=-Q (p) to be a maximizer of the ORTHOMAX problem is that

n 

Z{<QTEIQ diag (QTEZQ), K2>+<QTEiQK diag (QTE=Q), K> 
i=1 

 +2<QTEiQdiag(QTEiQK), K>} < (<)O
(16)

for all nonzero KEE S(P)'.

Example : As a numerical illustration of the Corollary 3.3 we compute here two 

simple examples, taken from (ten Berge, 1984). Consider the matrix

    1 1 

    1 1 
`q 1 -1 

      1 -1

for which the VARIMAX function attains minimum. We will check that Q 

a stationary point and yields a minimum. We have

E1=E2=[ 0 4          _4 0 1
and

E3=E4=[ 4 4].
   The necessary condition (Theorem 3.1) for Q=I2 to be a stationary point is 

fulfilled. In deed, we have :

ZZ QTEiQ diag (QTEZQ)=[ 0 01' (17)

   Now we check the condition (16) from Corollary 3.3. There are only two 2 x 

2 skew-symmetric matrices K. We consider

K-L -k 0 J

The first two terms in (16) are zero. The third term gives

zE<QTEiQ diag (QTEiQK), K>=J-64k b40 ~' [-k 0 ~~ 
                        =128 k2 ,

(18)

which is stritctly positive for k*0. The same result follows for

     0 -k K=[ k 0 J
   Therefore Z4=1<QTE1Q diag (QTEiQK), K> is positive for all nonzero KEH 

S(2)', i.e. from Corollary 3.3 follows that Q=I2 is sufficiently minimum of the



VARIMAX function. 

   Now consider the rotation

   We will check that this Q is a stationary point and yields a maximum for the 

VARIMAX function. We have

QTEZQ=QTE2Q=[ 0 4 J
and

QTE3Q-QTE4Q-[4 -41.
   The necessary condition (Theorem 3.1) for Q to be a stationary point is fulfilled. 

Indeed, we have :

4 64 0 

Z QTEZQ diag (QTEZQ)=[ 0 64 I (19)

Now we check the condition (16) from Corollary 3.3 for :

K=[_ 0 k
Note that

QJE1 QK=QTEzQK=L 0 4 J X L-k 0 J 

              r 0 -4kl 
                 L-4k OJ

(20)

and

QTE3QK=QTE4QK-[0 -4 ] X [-k 0 ] 
                  _ 0 4k           -[4k 0~

(21)

That means the third term in (16) is zero. The first two terms give :

4 

 {<QTEZQ diag (QTEZQ), K2>+<QTEiQK diag (QTEZQ), K>}= 

~[64k 0 [-k2  0 1~ '464k 0 -64k], [-0 k l)    0 64k 0 k J 0 k J 0 
                           _ -256 k2 .

(22)

The same result follows for



 r1 K-L 0 k    k 0

   Therefore the left hand side of the inequality (16) is negative for all nonzero 

KE S(2)1, i.e. from Corollary 3.3 follows that the considered Q is sufficiently 

maximum of the VARIMAX function. 

   Let the singular value decomposition of the skew-symmetric matrix K be 

denoted by

K= UXWT, (23)

where U, W E= 0 (p), and X = diag{6i, 6p} contains singular values. It follows 
that

K2= UX2UT (24)

which in fact is the spectral decomposition of K2. We know from Theorem 3.1 that 

Zn=1QTEjQdiag(QTEZQ) is necessarily symmetric at any stationary point Q. Let

n 

21 QTEiQ diag (QTEiQ) VA VT, 
i=1

(25)

and similarly,

QTEiQ= WioiWT,

denote, respectively, the spectral decomposition of the corresponding matrix. It 

easy to see that (Pi actually contains the eigenvalues of Ei for all i. Noting th, 

tr(X diag (X)) = tr((diag (X))2) for every square matrix X we have :

<QTEiQ diag (QTEiQK), K>=tr((diag (QTEiQK))2). (26)

n 

<g'(Q)QK, QK>=-<VAVT, UX2UT>+E[«RV, R> 
                                                                     i=1 

           +2tr((diag (QTEiQK))2)] 

             ~ Ak( ~pkt ct) + Z [ Z ̀Yi,jC 11 r2 js,0 ,i,s) 
                               k=1 t=1 i=1 j=1 S=1 

           +2tr((diag(QTEiQK))2)1,

(27)

where P= (pkt ):= V T U, Ri = (ri,js):= WiTK, Oi:=(Y' i,j) and diag (QTEiQ)= 1f1:=(¢i,s). 

Then we can rewrite (16) as follows:

Z[Z 1F i,j( Z r2js0Gi,s)+2tr((diag (QTEiQK))2)] 
<IlkC~pkt6t). 
         k=1 t=1

(28)

We can make the following claim:

Theorem 3.4. Suppose Q 0 (p) is a stationary point and suppose 5D111T!1I



(1T= (1, 1, • • •, 1)) is a nonnegative matrix for all i. Then a second order necessary 
condition for Q to be a solution of the ORTHOMAX problem is that the matrix

n 

21 QTEiQ diag (QTEiQ) 
i=1

(29)

be positive semi-definite.

Proof. If 0,11T', is a nonnegative matrix for all i then both therms in the left 

hand side of the inequality (28) are non-negative. In order to mantain the inequal

ity (28) for any skew-symmetric K*0 it is necessary to have Ai_>0 for all i. F-1 

   Note that the matrix li11TWi is nonnegative always when QTEiQ is positive or 

nagative semi-definite, upper or lower triangular or diagonal matrix. For exam

ple, we have the following trivial :

Corollary 3.5. If Q simultaniously diagonalizes E1, E2, ..., En in the least-square 

sense then

n 

E QTEiQ diag (QTEiQ) 
i=1

(30)

be necessarily positive semi-definite. 

In fact it is diagonal matrix with nonnegative entries. 

   In the present work a new method for least squares matrix optimization subject 

to orthogonality constraints has been demonstrated and applied for solving the 

well-known ORTHOMAX rotation problem. In spite of the fact that first and 

second order optimality conditions has been obtained by the gradient flow 

approach, as a conclusion, it appears that the method is not efficient computational

ly. This drawback is not restricted to the present application only and other 

integrators are under active reseach in order to avoid the direct solving of the flow 

equation (e.g. Helmke, 1995). Authors thank Dr. Henk Kiers, University of Gronin

gen for the MATLAB code of VARIMAX and SVD-based rotation methods.
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