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Abstract
Low rank tensor approximation is an important subject with a wide range of appli-
cations. Most prevailing techniques for computing the low rank approximation in the
Tucker format often first assemble relevant factors into matrices and then update by
turns one factor matrix at a time. In order to improve two factor matrices simultane-
ously, a special system of nonlinear matrix equations over a certain product Stiefel
manifold must be resolved at every update. The solution to the system consists of orbit
varieties invariant under the orthogonal group action, which thus imposes challenges
on its analysis. This paper proposes a scheme similar to the powermethod for subspace
iterations except that the polar decomposition is used as the normalization process and
that the iteration can be applied to both the orbits and the cross-sections. The notion of
quotient manifold is employed to factor out the effect of orbital solutions. The dynam-
ics of the iteration is completely characterized. An isometric isomorphism between
the tangent spaces of two properly identified Riemannian manifolds is established to
lend a hand to the proof of convergence.
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1 Introduction

Let S (p, q), p ≥ q, denote the Stiefel manifold

S (p, q) := {Q ∈ Rp×q |Q�Q = Iq}. (1)

Suppose that A : S (p2, q2) × S (p2, q2) → Rp1×p1 and B : S (p1, q1) ×
S (p1, q1) → Rp2×p2 are two given bilinear maps with certain symmetric proper-
ties which will be specified in the subsequent discussion. This paper concerns about
solving the nonlinear matrix equations

{A(Q2, Q2)Q1 = Q1P1,
B(Q1, Q1)Q2 = Q2P2,

(2)

where the products on the right-hand side of (2) are the polar decompositions of
the matrices on the left-hand side, respectively. Such a problem arises as a basic
computational mechanism when solving the so called Tucker nearest problem. We
can get rid of the reference to P1 and P2 by the substitutions of

{
P1 = Q�

1 A(Q2, Q2)Q1,

P2 = Q�
2 B(Q1, Q1)Q2,

provided that the expressions on the right side above are known to be symmetric and
positive semi-definite. The system (2) is thus cast as an under-determined polynomial
system ⎧⎪⎪⎨

⎪⎪⎩

A(Q2, Q2)Q1 = Q1Q1
�A(Q2, Q2)Q1,

B(Q1, Q1)Q2 = Q2Q2
�B(Q1, Q1)Q2,

Q1
�Q1 = Iq1,

Q2
�Q2 = Iq2 ,

(3)

in the unknowns Q1 ∈ Rp1×q1 and Q2 ∈ Rp2×q2 , whose solutions will be shown to
have rich algebraic properties known as orbital varieties [4].

To motivate where the system of nonlinear matrix equations arises and why it is
useful, we briefly outline the background of the Tucker nearest problem. The low
rank approximation is one principal tool of great power and interest when dealing
with entangled and large-scale data. In recent years, scientists and practitioners turn to
higher-dimensional arrays, i.e., tensors, for the advantage of greater descriptive flex-
ibility and more fine-grained data collection. Inevitably, the sizes grow rapidly and
content analytics becomes a much more challenging task. Low rank tensor approxi-
mations, if done properly, are appealing for at least the benefits of storage saving and
feature finding. Among a variety of structured or unstructured low rank tensor approx-
imations, the Tucker nearest problem is one of the most fundamental and important
formulations with versatile applications.
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Nonlinear power-like iteration by polar decomposition… 731

For convenience, let �k� denote the set {1, . . . , k}. Let a◦b denote the tensor product
enumerated in such a way that, if a ∈ Rm and b ∈ Rn , then its vectorization is given
by

vec(a◦b) = vec(ab�) = [a1b1, a2b1, . . . , amb1, a1b2, . . . , ambn]�.

Given an order-k tensor T ∈ RI1×...×Ik and a fixed rank parameter r = (r1, . . . , rk)
of positive integers, the Tucker nearest problem is to find scalars c j1,..., jk and vectors

v(�)
j�

∈ RI� , j� = 1, . . . , r�, � = 1, . . . , k, such that the objective function

h(C, V (1), . . . , V (k)) :=
∥∥∥∥∥∥

r1∑
j1=1

. . .

rk∑
jk=1

c j1,..., jkv
(1)
j1

◦. . .◦v(k)
jk

− T

∥∥∥∥∥∥
F

,

subject to the condition that

V (�) := [v(�)
1 , . . . , v(�)

r� ] ∈ S (I�, r�), � ∈ �k�,

is minimized. The collections

C := [c j1,..., jk ] ∈ Rr1×...×rk

and V (�) are referred to respectively as the core tensor and the factor matrix in the
literature. It can be argued that, given V (�) ∈ S (I�, r�), � ∈ �k�, the optimal C is
given by [1, Formula (12)]

vec(C) = (V (k)� ⊗ . . . ⊗ V (1)�)vec(T ), (4)

where⊗ stands for the conventional Kronecker product. In this way, the Tucker nearest
problem is equivalent to the problem of maximizing the Frobenius norm of the core
tensor C defined in (4) subject to the constraint that V (�) ∈ S (I�, r�), � ∈ �k�.

A conventional approach to maximizing ‖C‖F is to matricize (4) in terms of the
mode-d folding. Specifically, it can be shown that [1, Formula (11)]

C(d) = V (d)� T(d)(V
(k) ⊗ . . . ⊗ V (d+1) ⊗ V (d−1) ⊗ . . . ⊗ V (1))︸ ︷︷ ︸

Υ [d]

,

where d can be any integer in the set �k� and T(d) ∈ RId×∏
� 	=d I� is a rearrangement

of T such that the element τi1,...,id−1,i,id+1,...,ik of the tensor T is placed at the (i, j)
entry of the matrix T(d) with

j := i1 +
∑
ζ 	=d

(iζ − 1)
ζ−1∏
η=1

Iη.

Such a reformulation motivates the notion of alternating directions that updates one
factor matrix V (d) at a time for each d ∈ �k�. More specifically, for a fixed Υ [d] ∈
RId×∏

� 	=d r� , we solve the optimization problem
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732 B. Dong et al.

max
V (d)∈S (Id ,rd )

f (V (d)) := 1

2

∥∥∥V (d)TΥ [d]
∥∥∥2
F

(5)

for V (d) and repeat this procedure by varying d in turn. It can easily be derived that
the optimal V (d) ∈ S (Id , rd) is given by the first rd left singular vectors of the matrix
Υ [d].

In a similar vein, it is possible to reorganize the elements in such a way that we can
deal with the update of two factor matrices concurrently. The idea is that if �k� = α∪β

is a partition of �k�withα := {α1, α2} andβ := {β1, . . . , βk−2}, thenwe can rearrange
C into such a matrix that

C(α,β) := (V (α2) ⊗ V (α1))� T(α,β)(V
(βk−2) ⊗ . . . ⊗ V (β1))︸ ︷︷ ︸

Υ (α,β)

,

where T(α,β) ∈ R
∏2

i=1 Iαi ×
∏k−2

j=1 Iβ j is a multi-mode folding of T whose precise defini-
tion will not be described here but can be found in [1, Formula (10)]. In the same spirit
of (5), tomaximize ‖C(α,β)‖F we need to update the two factormatrices (V (α1), V (α2))

per fixedΥ (α,β) and alternate the partition (α,β) throughout �k�. The recurring scheme
in the sequence of alternating updates is to solve the constrained optimization problems

max
Q1∈S (p1,q1),Q2∈S (p2,q2)

g(Q1, Q2) := 1

2
‖Ω(Q2 ⊗ Q1)‖2F , (6)

where Ω ∈ Rm×p1 p2 with m ≥ p1 p2 is a fixed matrix. With this background in mind,
we now characterize more specifically the first order optimality condition of (6) that
leads to the nonlinear matrix equation (2).

Let Θ := Ω�Ω(Q2 ⊗ Q1) ∈ Rp1 p2×q1q2 be partitioned as a p2 × q2 block matrix
with blocks of size p1×q1, which is then regarded as an order-4 tensorΘ = [θi1i2 j1 j2 ]
in Rp1×q1×p2×q2 . For A = [ai1i2 ] ∈ Rp1×q1 and B = [b j1 j2 ] ∈ Rp2×q2 , define the
multiplications

Θ�{1,2} B :=
⎡
⎣ p2∑

j1=1

q2∑
j2=1

θi1i2 j1 j2b j1 j2

⎤
⎦ ∈ Rp1×q1 (7)

and

Θ�{3,4} A :=
⎡
⎣ p1∑
i1=1

q1∑
i2=1

θi1i2 j1 j2ai1i2

⎤
⎦ ∈ Rp2×q2 , (8)

respectively.

Lemma 1 The critical point (Q1, Q2) ∈ S (p1, q1)×S (p2, q2) for problem (6)must
satisfy the equations {

Θ�{1,2} Q2 = Q1P1,
Θ�{3,4} Q1 = Q2P2,

(9)
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Nonlinear power-like iteration by polar decomposition… 733

where the products on the right-hand side of (9) stand for the polar decompositions
of the matrices on the left-hand side, respectively.

Proof First, we calculate the gradient of g over the product topology Rp1×q1 ×Rp2×q2

with no constraints. This can be quickly achieved in the operator form via the action
of the Fréchet derivative followed by the Riesz representation theorem. To express
the gradient in the algebraic form requires some tedius but straightforward algebraic
manipulations. Ultimately, the gradient of g can be expressed as

∂g

∂Q1
= Θ�{1,2} Q2,

∂g

∂Q2
= Θ�{3,4} Q1,

where Θ�{1,2} and Θ�{3,4} are defined as in (7) and (8).
Next, the tangent space TQS (p, q) at Q ∈ S (p, q) is composed of matrices

H ∈ Rp×q of the form
H = QK + (Ip − QQ�)W , (10)

where K ∈ Rq×q is skew-symmetric and W ∈ Rp×q is arbitrary. The projection of
an arbitrary matrix Z ∈ Rp×q onto the tangent space TQS (p, q) ofS (p, q) at Q is
given by [2]

ProjTQS (p,q)Z = Q
Q�Z − Z�Q

2
+ (Ip − QQ�)Z . (11)

Since the constraints of (6) are not coupled, the optimality condition for (6) is that the
projections of these partial gradients onto the respective constraints must vanish. Note
that the two terms on the right-hand side of (11) are mutually orthogonal. We thus see
that the relationships

Q�
1 (Θ�{1,2} Q2) = (Θ�{1,2} Q2)

�Q1, (12)

Θ�{1,2} Q2 = Q1Q
�
1 (Θ�{1,2} Q2) (13)

must hold for the first partial gradient. Similar conditions hold for the second partial
gradient.

Finally, we explain where the polar decomposition comes into play. Denote the
entries of Q2 by Q2 = [πi j ], where πi j ∈ R, and the blocks ofΘ byΘ = [θi j ], where
θi j ∈ Rp1×q1 , i ∈ �p2�, and j ∈ �q2�. Then we can write

Θ�{1,2} Q2 =
p2∑
i=1

q2∑
j=1

πi jθi j . (14)
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734 B. Dong et al.

Obviously, the matrix (Q2 ⊗ Q1)
�Ω�Ω(Q2 ⊗ Q1) is symmetric and positive semi-

definite. Furthermore, it is easy to check that

(Q2 ⊗ Q1)
�Ω�Ω(Q2 ⊗ Q1)

=

⎡
⎢⎢⎢⎢⎢⎣

Q�
1 π11 Q�

1 π21 . . . Q�
1 πp21

Q�
1 π12

...

Q�
1 π1q2 . . . Q�

1 πp2q2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

θ11 θ12 . . . θ1q2
θ21 θ22
...

θp21 θp22 . . . θp2q1

⎤
⎥⎥⎥⎦ .

By comparingwith the expression (14), we observe that the q1×q1 matrix Q�
1 (Θ�{1,2}

Q2) occuring in (12) and (13) is precisely the summation of the q1×q1 diagonal blocks
along the principal diagonal of (Q2 ⊗ Q1)

�Ω�Ω(Q2 ⊗ Q1). Thus, not only that the
equation (12) is automatically satisfied, but also that thematrix P1 := Q�

1 (Θ�{1,2}Q2)

is guaranteed to be positive semi-definite. The right-hand side of (13) is indeed the
polar decomposition of Θ�{1,2} Q2. The assertion is therefore proved. ��

We shall further explore the structure of (9) in the next section and cast it as a special
case of the system(2). This work is about a numerical procedure and the associated
convergence analysis for solving the system(9) in particular and the system(2) in
general.

Even though the scope of this paper is limited to only a special type of nonlinear
matrix equation, solving (9) is an indispensable part for solving the Tucker nearest
problem as outlined above. To our knowledge, current updating techniques for the
Tucker nearest problem have been limited to one factor matrix at a time. The lack
of simultaneous factor matrix updating might be attributable to the nonlinearity such
as that involved in(9) which seems too complicated to handle. Our contribution in
this paper therefore is innovative. Additionally,the system (2) resembles a nonlinear
eigenvalue problem where the role of eigenvalues is being replaced by positive semi-
definite matrices. Our numerical procedure resembles the conventional simultaneous
subspace iteration where the normalization is being carried out by positive semi-
definite matrices. In all, there might be enough mathematics of interest in this study.

2 Basics

The tensor Θ involved in (9) is a function of two unknown matrices Q1 and Q2. So
the polar decompositions on the right-hand side are implicitly defined. Though it is
true that the symmetric and positive semi-definite matrices P1 and P2 are uniquely
determined from {

P1 = ((Θ�{1,2} Q2)
�(Θ�{1,2} Q2))

1
2 ,

P2 = ((Θ�{3,4} Q1)
�(Θ�{3,4} Q1))

1
2 ,

any attempt of substituting them into (9) only makes the nonlinearity more tangled.
We have to search for some indirect approach.
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Nonlinear power-like iteration by polar decomposition… 735

2.1 Bilinear formulation

The operator-like multiplications defined by (7) and (8) and the way the optimality
condition (9) comes into sight are natural from the tensor point of view [10,11], but
appear cumbersome to manipulate. The following reformulation sheds better insight
into the symmetry innate to the system (9), which will help to motivate a way to solve
the polar equations.

Lemma 2 Suppose Q2 = [πi j ], Q̃2 = [π̃i j ] ∈ Rp2×q2 . Partition the matrix W :=
Ω�Ω ∈ Rp1 p2×p1 p2 into blocks W = [Wi j ] with Wi j ∈ Rp1×p1 and i, j ∈ �p2�.
Then the multiplication (7) can be expressed as

Θ�{1,2} Q̃2 = A(Q2, Q̃2)Q1, (15)

where A(Q2, Q̃2) is a matrix in Rp1×p1 defined by

A(Q2, Q̃2) :=
p2∑
i=1

q2∑
j=1

π̃i j

( p2∑
k=1

Wikπk j

)
. (16)

Proof Let the colon “:” denote an unspecified array of indices. The (i, j)-th block of
Θ is a p1 × q1 matrix given by

θ::i j =
( p2∑
k=1

Wikπk j

)
Q1.

By Definition (7),

Θ�{1,2} Q̃2 =
p2∑
i=1

q2∑
j=1

θ::i j π̃i j .

The relationship (15) follows by factoring Q1 out of the summation. ��
A similar relationship holds for the multiplication(8).

Lemma 3 Suppose Q1, Q̃1 ∈ Rp1×q1 . Let Ω�Ω = [Wi j ] be partitioned in the same
way as that in Lemma 2. Then

Θ�{3,4} Q̃1 = B(Q1, Q̃1)Q2, (17)

where B(Q1, Q̃1) ∈ Rp2×p2 with entries defined by

B(Q1, Q̃1) := [〈Q̃1,Wi j Q1〉
]
. (18)

Note thatA(Q2, Q̃2) ∈ Rp1×p1 is bilinear in Q2 and Q̃2 and B(Q1, Q̃1) ∈ Rp2×p2

is bilinear inQ1 and Q̃1. In particular, thefirst optimality condition (9) is nowexpressed
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736 B. Dong et al.

by finding Q1 ∈ S (p1, q1) and Q2 ∈ S (p2, q2) such that the system (2) with the
specially definedA and B is satisfied. We think that (2) is in a much more manageable
form than (9). The remaining tasks will be on developing a numerical method for
solving (2) and proving its convergence.

2.2 Symmetry and invariance

The operators A and B defined by (16) and (18) enjoy two important properties1—a
sense of symmetry as well as the invariance under the right group action by orthogonal
matrices—which we will characterize below. These properties are important tools for
our convergence analysis.

Lemma 4 For any Q1, Q̃1 ∈ Rp1×q1 and Q2, Q̃2 ∈ Rp2×q2 , there is a symmetry
within the operators A and B in the sense that

{A(Q2, Q̃2) = A(Q̃2, Q2)
�,

B(Q1, Q̃1) = B(Q̃1, Q1)
�.

(19)

It also holds a transmutation relationship between A and B in the sense that

〈B(Q1, Q̃1)Q2, Q̃2〉 = 〈A(Q2, Q̃2)Q1, Q̃1〉. (20)

Proof By definition, W is symmetric. It follows that W�
ik = Wki for all i, k ∈ �p2�.

The symmetry in (19) is obvious from the Definitions (16)and (18). We also see that

〈B(Q1, Q̃1)Q2, Q̃2〉 =
p2∑
i=1

q2∑
j=1

π̃i j

( p2∑
k=1

〈Q̃1,WikQ1〉πk j

)

=
〈
Q̃1,

p2∑
i=1

q2∑
j=1

π̃i j

( p2∑
k=1

Wikπk j

)
Q1

〉
= 〈Q̃1,A(Q2, Q̃2)Q1〉,

which proves the transmutation (20) between A and B. ��
Corollary 1 If the bilinear maps A and B are defined via (16) and (18), respectively,
then bothA(Q2, Q2) ∈ Rp1×p1 andB(Q1, Q1) ∈ Rp2×p2 are symmetric and positive
semi-definite matrices.

Let the special caseS (q, q) of orthogonal matrices be denoted as O(q). It should
be straightforward to see from the definitions of (16) and (18) that the bilinear mapsA
andB are invariant under the right group action by orthogonalmatrices in the following
sense.

1 These two characteristics mentioned are innate to our operators A and B specifically derived for tensor
applications. For general (2), if we assume that the bilinear operators A and B satisfy the symmetry (19),
(20), and the invariance (21), then the remaining discussion can be equally applied.
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Lemma 5 If U1 ∈ O(q1) and U2 ∈ O(q2) are orthogonal, then

{A(Q2U2, Q̃2U2) = A(Q2, Q̃2),

B(Q1U1, Q̃1U1) = B(Q1, Q̃1).
(21)

Lemma 6 If (Q1, Q2) is a solution to (2), then the entire orbit

X (Q1, Q2) := {(Q1U1, Q2U2)|U1 ∈ O(q1),U2 ∈ O(q2)} (22)

by the right group action is also a solution. The solutions to the system (2) therefore
are not isolated.

Proof If (Q1, Q2) is a solution, then by (21) we can write

{A(Q2U2, Q2U2)Q1U1 = Q1U1(U�
1 P1U1),

B(Q1U1, Q1U1)Q2U2 = Q2U2(U�
2 P2U2),

(23)

implying that the pair (Q1U1, Q2U2) for any U1 ∈ O(q1) and U2 ∈ O(q2) also
satisfies (2). ��

For our application to problem (6), note that every such a right actioned pair
(Q1U1, Q2U2) results in the same objective value as g(Q1, Q2) because (Q2U2) ⊗
(Q1U1) = (Q2 ⊗ Q1)(U2 ⊗U1), whereas U2 ⊗U1 is itself orthogonal [7].

2.3 Quotient manifold

By Corollary 1, the constrained system (2) is equivalent to the free system (3). The
latter is independent of P1 and P2. A careful check reveals that the first subsystem in (3)
involves only (p1 − q1)q1 independent equations while the third subsystem involves
q1(q1+1)

2 equations. Similar counts hold for the second and the fourth subsystems. In

total, the system (3) is under-determined andhas q1(q1−1)
2 + q2(q2−1)

2 degrees of freedom
which corresponds precisely to the dimensionality of O(q1) × O(q2). Each orbit X
is isomorphic to O(q1) × O(q2), but there might be disjoint orbits. An example will
be given in Sect. 4.

Given that the system (3) has orbital varieties and every element in the orbit results
in the same objective value, it is sufficient to reconsider the system as over the quotient
manifold2

S (p1, q1)/O(q1) × S (p2, q2)/O(q2).

In this way, we “shrink” an orbit of infinitely many points inS (p1, q1) ×S (p2, q2)
to a single point in the quotient manifold over which the polynomial system (3) has
the same numbers of equations and unknowns.

2 Though it is not directly relevant to our discussion, in topology it can be proved that since O(q) is
compact, the quotient spaceS (p, q)/O(q) is Hausdorff. Furthermore, since the right group action is free,
the quotient space is indeed a manifold.
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738 B. Dong et al.

Without causing ambiguity, we shall use the same notation Qi , i = 1, 2, to represent
interchangeably between the orbit

[Qi ] := {QiU |U ∈ O(qi )} ∈ S (pi , qi )/O(qi )

and the element Qi ∈ S (pi , qi ). Inwhat follows, the calculation is applied to points in
S (p1, q1)×S (p2, q2) as usual, but we shall use the induced metric embedded in the
quotient manifold S (p1, q1)/O(q1) × S (p2, q2)/O(q2) to argue the convergence.

3 Numerical method

Atfirst glance, the system (2) resembles a nonlinear eigenvalue problem [8], except that
in place of eigenvalues are the symmetric and positive semi-definite matrices P1 and
P2. It is natural to formulate an iterative scheme analogously to the conventional power
method for eigenvalue computation [5]. To deal with the nonlinearity, the simplest
approachmight be to alternate directions in the iteration.We thus propose the scheme3

{ [Q1,[s+1], P1,[s+1]] = poldec(A(Q2,[s], Q2,[s])Q1,[s]),
[Q2,[s+1], P2,[s+1]] = poldec(B(Q1,[s+1], Q1,[s+1])Q2,[s]),

(24)

where poldec denotes any algorithm for computing the polar decomposition, such as
that in [6]. We remark again that the expression (24) is invariant under the right group
action by orthogonal matrices (see (23)), so it can be interpreted as an iteration on
orbits. Since there is a one-to-one correspondence of elements among orbits, it suffices
to consider the evolution of just one “cross-section” as indicated by the scheme. The
notion of cross-sections will be explained in Sect. 3.3 in the context of Riemannian
geometry.Theprimary concern iswhat the iterative dynamicswill lead to.Our goal is to
prove that the sequence {(Q1,[s], Q2,[s])}will converge to a limit point inS (p1, q1)×
S (p2, q2) that solves (2).

Recall that if Z = QP is the polar decomposition of Z ∈ Rp×q , then

Q = argmin
U∈S (p,q)

‖Z −U‖F = argmax
U∈S (p,q)

〈Z ,U 〉, (25)

whereas
〈Z , Q〉 = 〈P, I 〉 = trace(P).

Therefore, the definitions of Q1,[s+1] and Q2,[s+1] in (24) enjoy the variational prop-
erties of maximizing the traces of P1,[s+1] and P2,[s+1], respectively. These properties
will be exploited to prove the convergence. We shall argue the convergence in two
aspects. We first prove the convergence of the traces in general, which then will be
employed to argue the convergence of the iterates under mild assumptions.

3 To demonstrate its analogy to the conventional power method and the subspace iteration method, we give
two examples in Sect. 4.
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Nonlinear power-like iteration by polar decomposition… 739

3.1 Convergence of traces

To facilitate the argument and to convey the main point, we shall assume that the
underlying problem is generic under the following three conditions. First, recall that
low rank matrices of a specified size form a nowhere dense, zero measure, closed

algebraic variety in the ambient space. For our application, Ω = Υ (α,β)� is an
ensemble of the original tensor T and a group of dynamically varying Stiefel matri-
ces V (β1), . . . , V (βk−2). Therefore, it is reasonable to assume that the underlying Ω

is of full column rank per given partition (α,β). It follows from Corollary 1 that
both A(Q2,[s], Q2,[s]) ∈ Rp1×p1 and B(Q1,[s+1], Q1,[s+1]) ∈ Rp2×p2 are sym-
metric and positive semi-definite. Second, observe from the Definitions (16) and
(18) that for A(Q2,[s], Q2,[s]) and B(Q1,[s+1], Q1,[s+1]) to be singular, the variables
Q1,[s+1] and Q2,[s] must satisfy the special polynomials det(B(Q1,[s+1], Q1,[s+1])) =
0 and det(A(Q2,[s], Q2,[s])) = 0, respectively. Again, the algebraic varieties of
these polynomials, parameterized upon Ω , are nowhere dense, zero measure, and
closed. Therefore, it is reasonable to assume that generically A(Q2,[s], Q2,[s]) and
B(Q1,[s+1], Q1,[s+1]) are nonsingular and, hence, positive definite. Finally, since a
countable union of these varieties is still nowhere dense, zero measure, and closed,
the assumption that our iterates will do not hit these zero-measure sets should also be
generic.

Under the above-mentioned generic assumptions, we may thus write Q1,[s+1] and
Q2,[s+1] explicitly as

{
Q1,[s+1] = A(Q2,[s], Q2,[s])Q1,[s](Q�

1,[s]A2(Q2,[s], Q2,[s])Q1,[s])−
1
2 ,

Q2,[s+1] = B(Q1,[s+1], Q1,[s+1])Q2,[s](Q�
2,[s]B2(Q1,[s+1], Q1,[s+1])Q2,[s])−

1
2 .

(26)
We first establish a variational relationship in terms of traces.

Lemma 7 The sequence {(Q1,[s], Q2,[s])} ⊂ S (p1, q1) × S (p2, q2) generated by
the scheme (24) satisfies the inequalities

〈A(Q2,[s], Q2,[s])Q1,[s], Q1,[s+1]〉
≤ 〈B(Q1,[s+1], Q1,[s+1])Q2,[s], Q2,[s+1]〉
≤ 〈A(Q2,[s+1], Q2,[s+1])Q1,[s+1], Q1,[s+2]〉≤〈B(Q1,[s+2], Q1,[s+2])Q2,[s+1], Q2,[s+2]〉,

and equivalently

trace(P1,[s+1]) ≤ trace(P2,[s+1]) ≤ trace(P1,[s+2]) ≤ trace(P2,[s+2]). (27)

Proof We claim first that

〈A(Q2,[s], Q2,[s])Q1,[s], Q1,[s+1]〉
≤ 〈A(Q2,[s], Q2,[s])Q1,[s+1], Q1,[s+1]〉, (28)
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〈B(Q1,[s+1], Q1,[s+1])Q2,[s], Q2,[s+1]〉
≤ 〈B(Q1,[s+1], Q1,[s+1])Q2,[s+1], Q2,[s+1]〉. (29)

Using (28) and the definition of Q2,[s+1], the first inequality in (27) follows from the
fact that

〈A(Q2,[s], Q2,[s])Q1,[s+1], Q1,[s+1]〉 = 〈B(Q1,[s+1], Q1,[s+1])Q2,[s], Q2,[s]〉
≤ 〈B(Q1,[s+1], Q1,[s+1])Q2,[s], Q2,[s+1]〉.

Likewise, using (29), the second inequality in (27) follows from

〈B(Q1,[s+1], Q1,[s+1])Q2,[s+1], Q2,[s+1]〉
= 〈A(Q2,[s+1], Q2,[s+1])Q1,[s+1], Q1,[s+1]〉
≤ 〈A(Q2,[s+1], Q2,[s+1])Q1,[s+1], Q1,[s+2]〉.

The third inequality is just a shift of index from the first inequality.
It only remains to prove the claims (28) and(29). We shall prove only (28), as the

argument for (29) is similar. Write

ΔQ1,[s] := Q1,[s+1] − Q1,[s].

Observe that

〈A(Q2,[s], Q2,[s])ΔQ1,[s], Q1,[s+1]〉
= 〈A(Q2,[s], Q2,[s])ΔQ1,[s], Q1,[s] + ΔQ1,[s]〉
= 〈A(Q2,[s], Q2,[s])ΔQ1,[s], Q1,[s]〉 + 〈A(Q2,[s], Q2,[s])ΔQ1,[s],ΔQ1,[s]〉.

The second term is nonnegative because A(Q2,[s], Q2,[s]) is symmetric and positive
semi-definite. By using (26), we now write

Q�
1,[s]A(Q2,[s], Q2,[s])ΔQ1,[s]
= (Q�

1,[s]A2(Q2,[s], Q2,[s])Q1,[s])
1
2 − Q�

1,[s]A(Q2,[s], Q2,[s])Q1,[s].

We claim that

(Q�
1,[s]A2(Q2,[s], Q2,[s])Q1,[s])

1
2 � Q�

1,[s]A(Q2,[s], Q2,[s])Q1,[s] (30)

in the sense of the Loewner partial order and thus the matrix

Q�
1,[s]A(Q2,[s], Q2,[s])ΔQ1,[s]

is positive semi-definite. To prove (30), observe that

Q�
1,[s]A2(Q2,[s], Q2,[s])Q1,[s] − (Q�

1,[s]A(Q2,[s], Q2,[s])Q1,[s])2
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= Q�
1,[s]A(Q2,[s], Q2,[s])(I − Q1,[s]Q�

1,[s])A(Q2,[s], Q2,[s])Q1,[s].

Since Q1,[s] ∈ S (p1, q1), the matrix I − Q1,[s]Q�
1,[s] is itself symmetric and positive

semi-definite. Recall that the square roots of partially ordered symmetric and semi-
definite matrices preserve the ordering. We have thus proved all claims. ��

Because {Q1,[s]} ⊂ S (p1, q1) and {Q2,[s]} ⊂ S (p2, q2), we see that both
sequences {trace(P1,[s])} and {trace(P2,[s])} are bounded. By the monotonicity proved
in (27), the sequences {trace(P1,[s])} and {trace(P2,[s])} must converge.

3.2 Diminishing increments

We first prove the diminishing increment between successive iterates. Define

h(Q1, Q̃1; Q2, Q̃2) := 〈B(Q1, Q̃1)Q2, Q̃2〉 = 〈A(Q2, Q̃2)Q1, Q̃1〉. (31)

It might be informative to summarize all the inequalities involved in the above proof
as one sequence of telescoping relationships

h(Q1,[s],Q1,[s];Q2,[s],Q2,[s]) ≤ h(Q1,[s],Q1,[s+1];Q2,[s],Q2,[s])
≤h(Q1,[s+1],Q1,[s+1];Q2,[s],Q2,[s]) ≤ h(Q1,[s+1],Q1,[s+1];Q2,[s],Q2,[s+1])
≤h(Q1,[s+1],Q1,[s+1];Q2,[s+1],Q2,[s+1])≤ h(Q1,[s+1],Q1,[s+2];Q2,[s+1],Q2,[s+1]).

(32)
Observe that in (32) each inequality corresponds to alternating one variable at a time.
In this way, the value of h is being pushed higher per change of the variables. This
chain clearly indicates that it forms one complete cycle, ensuring that the telescoping
behavior repeats for all s and, hence, the convergence of every h value in the chain.

Theorem 1 Assume thatA(Q2,[s], Q2,[s]) and B(Q1,[s+1], Q1,[s+1]) are positive def-
inite for all but finitely many s. Then ΔQ1,[s] and ΔQ2,[s] converge to zero.

Proof The chain (32) allows us establish the differences

h(Q1,[s], Q1,[s+1]; Q2,[s], Q2,[s]) − h(Q1,[s], Q1,[s]; Q2,[s], Q2,[s])
= 〈A(Q2,[s], Q2,[s])Q1,[s],ΔQ1,[s]〉,

h(Q1,[s+1], Q1,[s+1]; Q2,[s], Q2,[s]) − h(Q1,[s], Q1,[s+1]; Q2,[s], Q2,[s])
= 〈A(Q2,[s], Q2,[s])Q1,[s+1],ΔQ1,[s]〉.

The interlacing of the chain, together with the convergence of traces, ascertains that
these differences converge to zero simultaneously. Taking the difference of the above
two equations again, we see that

〈A(Q2,[s], Q2,[s])ΔQ1,[s],ΔQ1,[s]〉 → 0.

A similar argument ensures that

〈B(Q1,[s+1], Q1,[s+1])ΔQ2,[s],ΔQ2,[s]〉 → 0.
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Under the assumption that A(Q2,[s], Q2,[s]) and B(Q1,[s+1], Q1,[s+1]) are positive
definite, the assertion is proved. ��

3.3 Convergence of orbits

The Stiefel manifoldS (p, q) is a Riemannianmanifold. The group action byO(q) on
S (p, q) is proper and free. Thus the set S (p, q)/O(q) is a differentiable manifold.
The quotient map

π : S (p, q) → S (p, q)/O(q)

is a submersion, that is, its differential

dπQ : TQS (p, q) → T[Q](S (p, q)/O(q))

is surjective for every Q ∈ S (p, q). On the other hand, the orbit [Q] is itself a
submanifold inS (p, q) with

TQ[Q] := {QK ∈ Rp×q |K ∈ Rq×q is skew-symmetric} ⊂ TQS (p, q).

Thenull space ofdπQ is preciselyTQ[Q]. It follows thatdπQ induces an isomorphism,
denoted by dπ∗

Q ,

dπ∗
Q : TQS (p, q)/TQ[Q] → T[Q](S (p, q)/O(q)). (33)

We thus can identify each element of T[Q](S (p, q)/O(q)) with an element of
TQS (p, q)/TQ[Q]. Furthermore, because the group action by S (q) is isometric,
we can impose an inner product on T[Q](S (p, q)/O(q)) in the same way as an inner
product on TQS (p, q)/TQ[Q] via the inverse map dπ∗

Q
−1.

We now specify the inner product over the quotient spaceTQS (p, q)/TQ[Q]. The
notation

(X) := {X + V |V ∈ TQ[Q]}
of an orbit in the quotient space TQS (p, q)/TQ[Q] is not to be confused with the
orbit [Q] in the quotient manifold S (p, q)/O(q). By the decomposition

TQS (p, q) = TQ[Q] ⊕ (TQ[Q])⊥,

we quickly see from (10) that if Q⊥ denotes the matrix inS (p, p − q) such that the
augmented matrix [Q, Q⊥] is in O(p), then

(TQ[Q])⊥ = {Q⊥Ψ |Ψ ∈ R(p−q)×q is arbitrary}.

Any element X ∈ TQS (p, q) has a unique decomposition

X = QKX + Q⊥ΨX ,
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where QKX ∈ TQ[Q] and Q⊥ΨX ∈ (TQ[Q])⊥. For any (X), (Y ) ∈ TQS (p, q)/

TQ[Q], define
〈(X), (Y )〉 := 〈ΨX , ΨY 〉, (34)

where, without causing ambiguity, we use the same inner product notation 〈·, ·〉 on
both sides.

Lemma 8 The map 〈(X), (Y )〉 defined in (34) is independent of its representatives and
is an inner product over the quotient space TQS (p, q)/TQ[Q].
Proof Suppose that X1, X2 ∈ (X) and Y1,Y2 ∈ (Y ). Then

〈(X1), (Y1)〉 − 〈(X2), (Y2)〉 = 〈(X1) − (X2), (Y1)〉 + 〈(X2), (Y1) − (Y2)〉.

Since X1 − X2 ∈ TQ[Q], it must be that ΨX1 = ΨX2 . It follows that

〈(X1) − (X2), (Y1)〉 = 〈ΨX1 − ΨX2 , ΨY1〉 = 0.

Likewise, since ΨY1 = ΨY2 , the second term is also zero.
The conjugate symmetry and linearity of(34) are obvious. We also check that if

〈(X), (X)〉 = 0, then ΨX = 0, implying that X ∈ TQ[Q]. ��
Corollary 2 The quotient manifoldS (p, q)/O(q) is a Riemannianmanifold equipped
with an inner product that is isometric to the inner product in TQS (p, q)/TQ[Q]
defined by (34). Indeed, its tangent space T[Q](S (p, q)/O(q)) can be identified with
the subspace (TQ[Q])⊥.

It thus follows that S (p, q)/O(q) can be endowed with a metric, known as the
geodesics, for measuring the distance between orbits. That is,

d([Q], [Q̃]) = inf[γ ]

{∫ 1

0
‖[γ (t)]′‖dt

}
, (35)

where [γ (t)] is a continuously differentiable curve on the manifold S (p, q)/O(q)

joining [Q] and [Q̃], [γ (t)]′ is the corresponding tangent vector in T[γ (t)](S (p, q)/

O(q)), and ‖ · ‖ is the norm induced by the underlying inner product.
Finally, we are ready to apply the above concept to our algorithm (24).

Theorem 2 Let {(Q1,[s], Q2,[s])} be the sequence generated by the scheme (24). Let
di , i = 1, 2, be the metrics defined by (35) on S (pi , qi )/O(qi ), respectively. Then
di ([Qi,[s+1]], [Qi,[s]]) converges to zero.
Proof To measure the distance between [Qi,[s+1]] and [Qi,[s]], it suffices to consider
by the isometric isomorphism described above the pullback curve γi (t) onS (pi , qi )
connecting Qi,[s+1] and Qi,[s] with the identities

‖[γi (t)]′‖ = ‖dπ−1
γi (t)

[γi (t)]′‖ = ‖(γ ′
i (t))‖ = ‖γi (t)⊥Ψγ ′

i (t)
‖ = ‖Ψγ ′

i (t)
‖.
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On one hand, note that by Lemma 8 the metrics di are independent of the repre-
sentatives. On the other hand, note that by Theorem 1 we have already shown that
in one “cross-section”, namely, the sequence {(Q1,[s], Q2,[s])} generated by (24),
the increments ΔQ1,[s] and ΔQ2,[s] converge to zero. It follows by continuity that
di ([Qi,[s+1]], [Qi,[s]]) converges to zero for i = 1, 2. ��

Recall the following lemma from the theory of parameter continuation [9, Theo-
rem 7.1.1] which concerns geometrically isolated solutions to a generic polynomial
system.

Lemma 9 Let P( z; q) be a system of n polynomials in variables z ∈ Cn and param-
eters q ∈ Cm. Let N (q) denote the number of geometrically isolated solutions to
P( z; q) = 0 over the algebraically closed complex space. Then,

1. N (q) is finite, and it is the same, say N , for almost all q ∈ Cm;
2. For all q ∈ Cm, N (q) ≤ N ;
3. The subset of Cm where N (q) = N is a Zariski open set. That is, the exceptional

subset of q ∈ Cm, where N (q) < N , is an affine algebraic set contained within
an algebraic set of codimension one.

Since Rn (indeed, the closure of any infinite subset) is Zariski dense in Cn , the
above statements hold for almost all parameters q ∈ Rm , except that the number of
real-valued isolated solutions varies as a function of q and is no longer a constant. For
our applications, we only need the fact that the number of real roots of a polynomial
system is finite and that they are geometrically isolated for generic q.

Our polynomial system (3) is parameterized by W which, in turns, is related to
the given order-k tensor T , but is under-determined. In no way can the solutions be
isolated. However, the solutions are structured into orbital varieties. By regarding (3)
as a system over the quotient manifold S (p1, q1)/O(q1) × S (p2, q2)/O(q2), we
have the same number of equations and unknowns (orbits). Lemma 9 can be applied,
that is, there is a generic behavior of the solution set, interpreted as orbits, to (3) with
respect to the parameter W .

Corollary 3 For generic W ∈ Rp1 p2×p1 p2 , there are finitely many and geometrically
isolated orbital varieties in the form (22) for the polynomial system (3).

To complete our proof of convergence of the orbit {([Q1,[s]], [Q2,[s]])}, we recall
the following result first proved in [3, Lemma 4.3].

Lemma 10 Let {as} be a bounded sequence of real numbers with the property |as+1 −
as | → 0 as s → ∞. If the accumulation points for the sequence are isolated, then
{as} converges to a unique limit point.
Theorem 3 For generic W ∈ Rp1 p2×p1 p2 , the sequence of orbits {([Q1,[s]], [Q2,[s]])}
whose representatives {(Q1,[s], Q2,[s])} are generated by (24) converges to a single
limit point.

Proof The sequence {([Q1,[s]], [Q2,[s]])} is clearly bounded, so it must have accu-
mulation points. The accumulation points must satisfy the polynomial system (3). By
Corollary 3, they are isolated for genericW . Replacing the role of {as} in Lemma 10 by
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{[Qi,[s]]}, i = 1, 2, together with the fact that the metric di ([Qi,[s+1]], [Qi,[s]]) → 0
as s → ∞, the sequence {[Qi,[s]]} converges to a unique limit point. ��

The convergence of the sequence of orbits does not necessarily imply that the
sequence of any representatives from the orbits converges. Our sequence {Qi,[s]},
however, is a cross-section with the identity 1qi fixed across all orbits.

Corollary 4 The sequence of iterates {(Q1,[s], Q2,[s])} generated by the scheme (24)
converges.

4 Numerical examples

Thus far, the discussion has been on the theoretical side, especially since we have to
resort to Riemannian geometry and quotient manifolds to address the convergence
of the orbital variety. Now that we have completed the theory for the general case, it
might be illuminating to consider a few examples to further demonstrate the intriguing
dynamics involved in the general theory discussed above. We present our examples
from three perspectives and point out a few open questions along the way.

First, we relate our general scheme to the conventional notion of power iteration
and subspace iteration.

Example 1 The iterative scheme corresponding to the case q1 = q2 = 1 looks very
much like the conventional power method

{ A(q2,[s],q2,[s])q1,[s] = q1,[s+1]λ1,[s+1],
B(q1,[s+1],q1,[s+1])q2,[s] = q2,[s+1]λ2,[s+1],

where λ1,[s], λ2,[s] are simply the norms of the vectors generated by the product
on the left-hand side. The main difference is that the matrices A(q2,[s],q2,[s]) and
B(q1,[s+1],q1,[s+1]) used to generate the iterates are not stationary. This is a special
type nonlinear eigenvalue problem. The group action by O(1) = {1,−1} is simply a
change of sign.

Example 2 Suppose that the operatorsA ∈ Rp1×p1 and B ∈ Rp2×p2 are invariant in s.
The iterative scheme

{AQ1,[s] = Q1,[s+1]P1,[s+1],
BQ2,[s] = Q2,[s+1]P2,[s+1]

is equivalent to the simultaneous subspace iteration. Specifically, after A and B are
applied to the subspaces spanned by the columns of Q1,[s] and Q2,[s], respectively, the
bases of the new subspaces are represented by the orthonormal vectors of Q1,[s+1] and
Q2,[s+1]. Normally, the new bases would be obtained from the QR decomposition,
but our scheme uses the bases from the polar decomposition. It is well known in
the literature that the simultaneous q-dimensional subspace iteration will converge
to the subspace spanned by the eigenvectors corresponding to the first q dominant
eigenvalues. In our case, even though the polar decomposition is used in place of
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the QR decomposition, the same convergence result prevails. The group action by
orthogonal matrices simply changes one orthonormal basis to another one, but does
not change the corresponding subspace.

Second, in Lemma 6, we have defined the orbital variety as a solution to the system
(2). In Sect. 2.3, we have cautioned that, although each orbit X is isomorphic to
O(q1)×O(q2), there might be multiple disjoint orbits. We now construct an example
to demonstrate this point.

Example 3 Consider the case (Q1, Q2) ∈ S (3, 2) × S (2, 1). Let Z ∈ R3×3 be an
arbitrary symmetric and positive definite matrix such that its eigenvalues are distinct
and that its smallest eigenvalue is sufficiently far away from zero. Define

W =
[
Z 03
03 I3

]
,

which is considered as an order-4 tensor in R3×3×2×2. Take Q2 =
[
1
0

]
. Then

A(Q2, Q2) = Z .

Take Q1 to be any two of the three orthonormal eigenvectors of Z . Then

B(Q1, Q1) =
[
trace(Q�

1 ZQ1) 0
0 2

]
,

which has Q2 as its eigenvector. It is readily observable that (3) is satisfied with this
pair (Q1, Q2). There are three ways to choose Q1. These orbits are disjoint because
the eigenvectors of Z are linearly independent.

Third, we experiment with some non-trivial data and demonstrate numerically the
limiting behavior that we have described in the theory.

Example 4 Consider the scenario that k = 5 and
∏3

�=1 rβ�
= 70, whereas we search

for (Q1, Q2) ∈ S (5, 3) ×S (8, 4) to maximize the functional g(Q1, Q2) in (6). We
randomly generate a test data Ω ∈ R70×40 and carry out the iteration in the scheme
(24) until the difference between two consecutive iterates is less than 10−10. With this
fixedΩ , we repeat this experiment 100 times with randomly generated starting values.

Echoing what we have described in Example 3 where there are multiple orbits,
we find in one of the test data that the iterates produce two optimal values, each
of which can be reached with significant probability, as is evinced in Fig. 1. Such
a phenomenon should not be a surprise because we are dealing with a non-convex
optimization problem. What is not clear is how the number of optimal values, which
is two in this case but may vary in other cases, depends on the problem data Ω .

In Fig. 2, we record the evolution of the h values defined in (31). The result is
from only one run of the iteration, but is typical in all other runs. Our point is that the
interlacing property (32), which is essential to our proof of convergence, is manifested
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Fig. 1 Multiple optimal values obtained via repeated trials using random starting points
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Fig. 2 A typical run showing monotone increasing and interlacing behavior of h values

in the drawing. For clarity, we display only the first 30 iterates. Stacked vertically on
top of each other for each s and gradually increased to a common limit point are the
first four h values in (32), where the variables are changed one at a time.

Finally, we have repeatedly mentioned that, apart from the nonlinearity induced by
the tensor product and the normalization accomplished by the polar decomposition,
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Fig. 3 A typical run showing linear convergence

the iterative scheme (24) resembles the conventional power method and the subspace
iteration method. Thus the speed of convergence is expected to be linear at best.
Taking empirical result from one typical run, we plot log |Q1,[s] − Q∗

1| in Fig. 3,
where the absolute value is taken entry by entry and Q∗

1 denotes the limit point after
convergence. The linearity of the logarithmic graph of all 15 entries is an indication
that Q1,[s] converges linearly.

5 Conclusion

Abasicmechanism needed for the simultaneous update of two factormatrices at a time
in the low rank Tucker tensor approximation leads to a coupled nonlinear system of
matrix equations. The solution set is invariant under the orthogonal group action and,
hence, consists of orbital varieties. An iterative scheme analogous to the conventional
power method for subspace iterations is proposed to track one cross-section of the
orbits. The convergence analysis ismuch harder because thematrices used for iteration
are themselves part of the dynamics. We resort to the notion of Riemannian manifolds
and their quotients as a tool to address the challenges. In particular, we establish an
isometric isomorphism (33) between the quotient space TQS (p, q)/TQ[Q], which
is the tangent space of the Stiefel manifold modulo the tangent space of one orbit, and
the tangent space T[Q](S (p, q)/O(q)) of the Riemannian manifoldS (p, q)/O(q).
Using the induced Riemannian metric, the convergence theory of the orbits as well as
of the iterates is completed.
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