
SPLINE APPROXIMATION OF POLICY FUNCTIONS

IN ECONOMIC DYNAMICS WITH UNCERTAINTIES

MOODY T. CHU∗, CHUN-HUNG KUO† , AND MATTHEW M. LIN‡

Abstract. Modern economic theory views the economy as a dynamical system in which rational decisions are
made in the face of uncertainties. The dynamics includes changes over time of market behavior such as consumption,
investment, labor supply, and technology innovation, all interpreted in a broad sense. The Euler equation arises as the
first order optimality condition when solving an economic dynamics system. Finding the policy function inherent in the
Euler equation is an important but challenging task. This note proposes a Newton iterative scheme on approximating
the unknown policy functions by composite 1-dimensional cubic splines. This spline approach has the advantages
of freedom in the node collocation, simplicity in the derivative calculation, fast convergence, and high precision over
the conventional projection methods. Applications to the neoclassical growth model with leisure choice are used to
demonstrate the working of the idea. In particular, tensor products are employed to simplified and effectuate the
operations.

Key words. economic dynamics, dynamical programming, Bellman equation, Euler equation, policy function,
cubic spline, tensor operation

AMS subject classifications. 37B35, 37N40, 90C22, 90C51

1. Introduction. To sketch a quick background of the subject, we start with a simple model.
Given initial values of capital k0 and technology z0, the social planner needs to make optimal decision
on the sequences of consumptions {ct}∞t=0 and capital accumulations {kt+1}∞t=0 throughout the time
so as to [1]

max
{ct,kt+1}∞

t=0

E0 [
∑∞

t=0 β
tu(ct)] ,

subject to ct + kt+1 = f(kt, zt),
zt+1 = ρzt + ǫt+1.

(1.1)

In the constraints, f(kt, zt) denotes the total production of the economy at the time period t and is
determined by the current capital kt and technology level zt. The essence of uncertainty in this setting
is caused by the evolution of the technology zt which is assumed to follow a first order autoregressive
process with normal innovation ǫt ∼ N (0, σ2). In the objective function, the utility function u(ct)
simulates in a broad sense the “level of satisfaction” that can be brought forth by the consumption ct
while the discount rate β characterizes the inclination of preferring consumption today than tomorrow.
Both functions u and f are predetermined and their desirable properties will be described in the
subsequent discussion. The operator E0, with a noticeable subscript 0, emphasizes that the expected
value is taken over technologies {zt}∞t=1 conditioned upon the initial technology z0. The optimization
problem (1.1) usually is referred to as the social planner’s problem. The resulting optimal value of
(1.1), as a function of the initial state of capital k0 and technology z0, is referred to as the value

function and is denoted by v(k0, z0).
Before continuing, we caution readers of the indicative but somewhat inadvertent misnomer that

the subscript t, commonly adopted in the economics literature, refers exclusively to the time period
t of the economy evolution and should not be confused with the subscript i customarily used in the
mathematics literature as a pointer or entry index of an array.

∗Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205. (chu@math.ncsu.edu).
This research was supported in part by the National Science Foundation under grants DMS-0732299 and DMS-1014666.

†Department of Economics, North Carolina State University, Raleigh, NC 27698-8109. (ckuo2@unity.ncsu.edu).
‡Department of Mathematics, National Chung Cheng University, Chiaya 62012 Taiwan. (mlin@math.ccu.edu.tw).

This research was supported in part by the National Science Council of Taiwan under grant 99-2115-M-194-010-MY2.

1

Bellman’s principle of optimality. Problem (1.1) involves infinitely many decisions simulta-
neously, which makes the solution extremely difficult to find. What is even more challenging is that
solving (1.1) necessarily means to find the solution sequences {ct}∞t=0 and {kt+1}∞t=0 for every given
initial state (k0, z0) because, whenever the initial state is changed, so are the subsequent decisions.
One ingenious insight of great importance by Bellman reformulates the problem in a recursive form
which significantly reduces the computation complexity [16]. The idea, known as Bellman’s principle
of optimality, asserts that an optimal policy, if exists, should have the property that the subsequent
decisions from any given initial state and decision remain optimal with regard to the state resulting
from the first decision [3]. In other words, the value function v(kt, zt) should satisfy the Bellman

equation,

v(kt, zt) = max
ct,kt+1

{u(ct) + βEt [v(kt+1, zt+1)]} , (1.2)

subject to the same constraints as in (1.1). Note that only two variables, linearly dependent due to
the resource constraint, are involved in the maximization of (1.2).

The Bellman equation (1.2) typifies a general dynamic programming problem which arises in
many areas other than economics [4, 6]. Quite a few numerical methods have already been proposed
in the literature for solving (1.2). See, for example, a careful comparison of eight different algorithms
developed from notions of either perturbation or projection in [2] and general discussions in [9, 11].
The emphasis of this paper is to propose a method that juxtapose the freedom of node collocation
and the simplicity of projection without using basis.

Euler equation. Though it appears often that the value function v(kt, zt) is the underlying
unknown in (1.2), for the purpose of decision-making it is sometimes more desirable to obtain the
policy function

kt+1 = p(kt, zt) (1.3)

which describes the economy agent’s optimal behavior with respect to state variables kt and zt.
Repeated applications of the policy function induce the dynamics in the sequential decisions. Toward
this end, we formulate the Lagrange function

L(ct, kt+1, zt;λt) := u(ct) + βEt [v(kt+1, zt+1)]− λt(ct + kt+1 − f(kt, zt)) (1.4)

with λt as the multiplier. The first order optimality condition requires that






∂L
∂ct

= du(ct)
dct

− λt = 0,

∂L
∂kt+1

= βEt
[
∂v(kt+1,zt+1)

∂kt+1

]

− λt = 0,

∂L
∂λt

= ct + kt+1 − f(kt, zt) = 0.

(1.5)

Applying the envelope theorem to the Bellman equation, we see that

∂v(kt, zt)

∂kt
=

∂L

∂kt
= λt

∂f(kt, zt)

∂kt
. (1.6)

By eliminating the multiplier λt in the first two equations of (1.5), it follows that a necessary condition
for optimality is

du(ct)

dct
= βEt

[
du(ct+1)

dct+1

∂f(kt+1, zt+1)

∂kt+1

]

, (1.7)

which is known as the Euler equation for the system (1.2). We can replace ct and ct+1 in (1.7) by the
relationship

ct = f(kt, zt)− kt+1,

2

which, after writing

Γ(kt, kt+1, zt) :=
du(f(kt, zt)− kt+1)

dct
,

Ξ(kt, zt) :=
∂f(kt, zt)

∂kt
,

leads to a 3-term finite difference equation

Γ(kt, kt+1, zt) = βEt [Γ(kt+1, kt+2; zt+1)Ξ(kt+1, zt+1)] (1.8)

for the unknowns {kt, kt+1, kt+2}.
One point should be made clear. Starting with a given initial k0 and an arbitrary k1, it seems

natural that the sequence {kt} generated by solving (1.8) would automatically satisfy the correspond-
ing Euler equation. This is a misconception, however. Merely having a sequence of iterates satisfying
(1.8) is not enough. The trouble is that the curve or, more precisely, the surface that interpolates
these iterates may not satisfy the Euler equation in its entirety due to an incorrect value of k1 which
is supposedly equal to the evaluation of the unknown policy function p(k0, z0), as is illustrated in
Figure 1.1 for a fixed z0.

cross section of policy function p(k, z0)

interpolating curve

k0 k1

k1

k2

k2

k3

k3

k

Fig. 1.1. Interpolating curve at discrete points obtained from (1.8) versus true policy function p(k, z0).

What we are interested in is to find the policy function (1.3),which is a 2-term relationship, so as
to satisfy

du(f(kt, zt)− p(kt, zt))

dct
= βEt

[
du (f(p(kt, zt); zt+1)− p(p(kt, zt), zt+1))

dct+1

∂f(p(kt, zt); zt+1)

∂kt+1

]

(1.9)

for any given (kt, zt). Since both u and f are specified a priori, we see upon integrating the right
side of (1.7) over zt+1 for the expected value that the Euler equation in general is a deterministic
functional equation

F (kt, zt, p(kt, zt)) = 0 (1.10)

for the unknown function p(kt, zt), where F : R3 → R is some known nonlinear function. We shall be
more specific about the constituents of the function F in the subsequent discussion, but included in
the functional equation (1.10) for the problem (1.1) is the interesting but challenging task of reducing
the three-term recurrence relation (1.8) to a two-term relation (1.3).

Conditions for term reduction. Obviously, conventional wisdom infers that the notion of
reducing a three-term relationship to a two-term is impossible in general. Existence can be assumed
only under some special circumstances. The following “standard” assumptions,

3

• 0 < β < 1;
• The utility function u is continuously differentiable, strictly concave, and strictly increasing;
• The production function f(·, zt) is continuous differentiable, concave, strictly increasing,
f(0, ·) ≡ 0, and there is k̄ > 0 such that

f(k, zt)

{
> k if k < k̄,

< k if k > k̄;

acquired after extensive observations and explorations by economists, seem adequate to characterize
general economic dynamics well. Most importantly, it is now a classical result that under these
assumptions the value function and the corresponding policy function for the model problem (1.1)
exist and are unique [16].

Of course, there are many other more complicated models taking into account other factors for
economic dynamics, but the central theme is about we have just described — finding either the value
function or the policy function. In this paper, our goal is to outline how the notion of 1-dimensional
spline approximation can readily be applied to economic dynamics. Note that we accentuate the usage

of 1-dimensional spline only of which we gain many advantages. For demonstration purpose, we shall
limit our attention to the neoclassical growth model with leisure choice,

max
{ct,kt+1,ℓt}∞

t=0

E

[
∑∞

t=0 β
t (c

θ
t (1−ℓt)

1−θ)1−η

1−η

]

,

subject to ct + kt+1 = eztkαt ℓ
1−α
t + (1− δ)kt,

zt+1 = ρzt + ǫt+1,

(1.11)

where 0 ≤ ℓt ≤ 1 stands for the labor supply at time t and, hence, 1 − ℓt denotes the leisure. This
additional variable makes (1.11) more complicated than (1.1), yet our idea remains generalizable.
Our emphasis is on the simplicity and sufficiency of only a few break points needed in the spline
application for high dimensional and high resolution approximation. Additionally, we exploit the
succinct programming style by means of tensor operations1.

2. Spline approximation. Many options are available for approximating the policy function
p(k, z). See, for example, the discussion in [2, 11, 16]. We propose to approximate the policy function
for the model (1.11) by a 2-dimensional cubic spline and solve the resulting system of discrete Euler
equation by the Newton method. Using spline approximation and recursive methods certainly is
not a new idea. A comprehensive discussion on this subject can be found in the seminal book [16].
See also [7, 12, 14, 15] for applications of shape-preserving splines to dynamical programming. Our
approach stands out, however, as a special 2-dimensional spline which really can be thought of as one
1-dimensional spline “weighted” by another 1-dimensional spline. Since our formulation is essentially a
1-dimensional spline, it allows us to take advantage of the easy calculation of its derivatives analytically
as we shall see in the subsequent discussion.

Recall that splines are local interpolations with controlled behavior — slope, curvature, and other
degrees of differentiability — at places where two local interpolating pieces meet. We mention the
cubic spline as a possible interpolant only for its ease to use. The more general concept of B-spline [8]
could also be used which, in particular, offers more control over the differentiability of the spline
at points where the policy function displays “kinks”. Because of space limitation, we choose not to
explore this generalization in this presentation.

It might be instructive to first explain how the data are structured in the Matlab environment.
We then show that, even though the analytic form of the spline might be hidden from sight, we can

1The tensor operations we intend to exploit in this paper are different from the notion of n-fold tensor product
mentioned in the seminal book [9, Sections 4.2.1 and 8.2.5] for multiple variable product base for projection methods.
Our implementations do, for example, highly optimized matrix to matrix multiplications.

4

calculate its derivatives, especially its sensitivity to interpolants, point by point up to the machine
precision. Thus we may take the full advantage of quadratic convergence of the Newton method for
computing the policy function.

Representing a cubic spline. Given {(xi, yi)}ni=1, the cubic spline q(k) that interpolates these
points is a piecewise function of the form that for i = 1, . . . , n− 1,

q(k) = yi + bi(k − xi) + ci(k − xi)
2 + di(k − xi)

3, k ∈ [xi, xi+1]. (2.1)

Let x := [x1, . . . , xn] and y := [y1, . . . , yn]. With appropriate boundary constraints2, the Matlab

command

A = spline(x,y);

creates a structure field of the form

A =

form: ’pp’

breaks: [1xn double]

coefs: [(n-1)x4 double]

pieces: n-1

order: 4

dim: 1

where n is actually the numeric n of the length of the breaks x1, . . . , xn and coefs is an (n− 1)× 4
matrix, retrievable from the command A.coefs, that stores the coefficients for the spline,

A.coefs =






d1 c1 b1 y1
...

...
dn−1 cn−1 bn−1 yn−1




 .

As the structure field A contains the essential information of the spline, it can be passed into the
Matlab command such as

qk = ppval(A,k);

which returns the evaluation q(k) at any desirable point (or array of points) k.
Derivatives of a cubic spline. For our applications, we need to compute two kinds of derivatives

of a spline. First, we need the “ordinary” derivative of q(k) evaluated at yj . Because

dq

dk
= bi + 2ci(k − xi) + 3di(k − xi)

2

over the interval [xi, xi+1], we may characterize the piecewise polynomial dq
dk by the structure field dA

which has the same structure as A except that its dA.coefs is modified to

dA.coefs(:,1) = zeros(size(A.coefs,1),1);

dA.coefs(:,2) = 3*A.coefs(:,1);

dA.coefs(:,3) = 2*A.coefs(:,2);

dA.coefs(:,4) = A.coefs(:,3);

2All demonstrations in this paper employ the not-a-knot boundary condition, that is, enforcing third derivative
continuity across the second and penultimate knots of the spline, which is the default setting in Matlab.

5

and ppval(dA,k) evaluates the derivative at any given k. Next we need the sensitivity matrix of the
spline to its parameters, i.e., the partial derivatives of the spline q(k; y1, . . . yn) with respect to each
yj , j = 1, . . . , n. While it is known that the function spline(x,y) responses nonlinearly to changes in
x, we argue that its response to changes in y is easy to compute. The fact comes from the realization
that the coefficients (bi, ci, di) of the various cubic polynomials in the interpolating spline are entries
of the solution vector to a specific tridiagonal linear system of which the square matrix on the left side
of the equation is made of entries such as xi+1−xi and its powers whereas the vector on the right side
is made of yi+1− yi and its likes, but no powers. In other words, with fixed break points {x1, . . . , xn},
the spline q(k; y1, . . . , yn) depends linearly on {y1, . . . , yn} [13]. It follows that the partial derivatives
are splines themselves. More specifically, for j = 1, . . . n, the partial derivative ∂q

∂yj
is precisely the

spline that interpolates the data {(x, ej)}, where ej is the jth standard unit vector. Taking advantage
of the vector operations in Matlab, a simple one-line command

D = spline(x,eye(n));

where eye(n) refers to the identity matrix of size n×n, effectively generates the matrix D.coefs that
has n − 1 blocks of size n × 4 where the jth row in the ith block stores the coefficients of the spline
that interpolates ej over the interval [xi, xi+1]. The evaluation

ppval(D,y)’;

yields the n× n matrix
[
∂q(yi)
∂yj

]

2-dimensional spline. The notion of splines can be generalized to higher dimensions. See, for
example, [8, 15]. One such a generalization is the so called bicubic spline which has the advantage
of being straightforward and guarantees continuity of only gradient and cross-derivative. Its second
derivatives however, could be discontinuous. Instead, we propose a modified cubic spline approxima-
tion as follows.

Suppose the surface

z = h(x, y)

over the domain Ω ⊂ R2 is to be approximated. Let y = [y1, . . . , yn] be a preselected set of feasible z

values and define

W = spline(y,eye(n));

or

W = spline(y,[zeros(n,1),eye(n),zeros(n,1)]);

with zero end slopes clamped splines. Contained in W are n splines Wj(y), j = 1, . . . , n, satisfying
Wj(yi) = δij . For each j, choose breakpoints xj = [xj1, . . . xjdj

] so that (xjs, yj) ∈ Ω for all s and j

and define hj := [h(xj1, yj), . . . , h(xjdj
, yj)]. Note that xi need not be the same as xj , nor have the

same dimensionality, for different i and j. Compute the cubic spline

L_j = spline(x_j,f_j);

where x_j = xj and f_j = fj , j = 1, . . . , n, and define the function

Lj(x) :=

{
ppval(L_j,x), if lj ≤ x ≤ uj ,

0 otherwise,
(2.2)

6

y

x

y1

y2

yn

x11 x24 xn5

Fig. 2.1. Breakpoints selection over the domain Ω

where [lj , uj] stands for the interval of cross section of the line y = yj and the domain Ω. We then
define the bivariate function

S(x, y) :=
n∑

j=1

Lj(x)Wj(y), (x, y) ∈ Ω. (2.3)

It follows that for all j = 1, . . . , n and s = 1, . . . , dj we have

S(xjs, yj) = h(xjs, yj).

For points that are not on the preselected grid, the functions Wj(y), J = 1, . . . , n, collectively play
the role of “weighting” because for each y we have

n∑

j=1

Wj(y) = 1,

though some of the weights might be negative. For our application, we are mainly interested in the
case of rectangular domain Ω with same xi for all i.

A Matlab demonstration. Consider the peaks function

f(x, y) = 3(1− x)2e−x2−(y+1)2 − 10(
x

5
− x3 − y5)e−x2−y2

−
e−(x+1)2−y2

3
, (x, y) ∈ [−3, 3]× [−3, 3].

The following few lines of coding quickly constructs our weighted 1-D spline approximation.

N = 20;

[x,y,z] = peaks(N); % generate surface test data

[xi,yi] = meshgrid(-3:.1:3,-3:.1:3);

v = peaks(xi,yi); % exact surface

A = spline(x(1,:),z); % Generate 1D splines over x

B = spline(y(:,1),[eye(N)]); % Generate weights over y

w = ppval(B,yi(:,1))’*ppval(A,xi(1,:)); % Weighted 1D spline

7

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−10

−5

0

5

10

15

20

25

30

Shape comparison between spline(t) and exact surfaces(b)

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Difference between spline and exact surfaces

Contour plot of spline

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Contour plot of exact surface

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Contour plot of abs(spline−exact)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fig. 2.2. Comparison between approximate surface by (2.3) and the exact surface.

We compare the approximate surface with the exact surface in Figure 2.2. In the upper left
drawing, we elevate the spline surface by 20 units to show the respective terrains of the surfaces. The
contour plots at the lower left drawing suggest a fairly close match of the two surfaces. The actual
difference with the maximal absolute error of the order 10−2 is shown in the two drawings on the right
column of Figure 2.2.

3. Application to the neoclassical growth model with leisure choice. For the model
(1.11), we need to determine multiply policy functions. We have already mentioned in (1.3) the policy
function kt+1 = p(kt, zt) for the next step of capital. We also need

ℓt = r(kt, zt) (3.1)

for the current step of labor. Be aware of the time difference. It can be shown that the Euler equation
is given by







(cθt (1−ℓt)
1−θ)

1−η

ct
= βEt

[

(cθt+1(1−ℓt+1)
1−θ)

1−η

ct+1

(
αezt+1kα−1

t+1 ℓ
1−α
t+1 + 1− δ

)
]

,

(1− θ)
(cθt (1−ℓt)

1−θ)1−η

1−ℓt
= θ

(cθt (1−ℓt)
1−θ)1−η

ct
(1−α)eztkαt ℓ

−α
t ,

ct + kt+1 = eztkαt ℓ
1−α
t + (1− δ)kt.

(3.2)

8

The last two equations in (3.2) are static in time and give rise to the explicit relationships







ct = θ(1−α)
1−θ eztkαt ℓ

−α
t (1− ℓt),

kt+1 = eztkαt ℓ
1−α
t + (1− δ)kt −

θ(1−α)
1−θ eztkαt ℓ

−α
t (1− ℓt),

(3.3)

which implies that, once the policy function for labor supply ℓt is determined, then the policy functions
for consumption ct and next period capital kt+1 are also determined. Thus we only need to concentrate
on finding the policy function for the labor supply. Substituting (3.3) into the first equation in (3.2),
we obtain the expression

(
eztkαt ℓ

−α
t

)θ(1−η)−1
(1− ℓt)

−η =

βEt

[(

ezt+1

(

eztkαt ℓ
1−α
t + (1 − δ)kt −

θ(1− α)

1− θ
eztkαt ℓ

−α
t (1− ℓt)

)α

ℓ−α
t+1

)θ(1−η)−1

(1 − ℓt+1)
−η

(

αezt+1

(

eztkαt ℓ
1−α
t + (1− δ)kt −

θ(1 − α)

1− θ
eztkαt ℓ

−α
t (1 − ℓt)

)α−1

ℓ1−α
t+1 + 1− δ

)]

. (3.4)

Based on the preceding section, the policy function (3.1) for labor supply is to be approximated by a
2-dimensional spline in the form of (2.3). We outline somewhat more programming details below. In
particular, we demonstrate that the calculation can be done conveniently in terms of tensor product.

Labor supply and capital approximation. Suppose that the matrix R = R = [rij] ∈ Rm×n

denotes the discrete approximation of the policy function (3.1) for labor supply at a prescribed grid
{(xi, yj)}. The spline S(x, y) is expected to satisfy the interpolation criteria

S(xi, yj) = rij ,

where the values of rij , i = 1, . . . ,m, j = 1, . . . , n, are to be determined. Specifically, the simple
command

L = spline(x,R’);

alone defines n individual 1-dimensional splines where each individual spline Ls, s = 1, . . . , n, can be
characterized, if so desired, via

L_s = L;

L_s.dim = 1;

L_s.coefs = L.coefs(s:n:end,:);

and satisfies ppval(L_s,x) = [r1s, . . . , rms]. Consider each fixed (xi, yj) in the grid as the current
capital kt and technology zt. The quantity

Xij := eyj

(
xi

rij

)α

rij + (1− δ)xi −
θ(1− α)

1− θ
eyj

(
xi

rij

)α

(1− rij)

then mimics the next period capital kt+1, given the various values of current (kt, zt), A graphic
rendition of these relationship is sketched in Figure 3.1, where the surfaces depicted there do not
mean to be realistic.

Discrete Markov process. We must keep in mind that the next period labor supply ℓt+1 =
r(kt+1, zt+1) is indeed stochastic because of its dependence on zt+1 = ρzt+ ǫt+1. There is a wonderful
technique by Tauchen that approximates the stochastic process zt+1 by a finite Markov chain [17] and,

9

kt

kt+1

kt+1

ℓt

ztzt+1

capital

technology

labor policy r(k, z) ≈ S(k, z)

capital policy p(k, z) by (3.3)

possible ℓt+1

Fig. 3.1. Sketch of policy functions p(k, z) and r(k, z) versus the (k, z) domain.

hence, facilitates the computation of the expected value. An application of this method constructs
finitely many possible states of technology {y1, y2, . . . , yn}, based on initial z0, with the transition
matrix Π = [πjs] where πjs stands for the conditional probability

πjs := Prob{zt+1 = ys|zt = yj}.

Then with the abbreviation

ζ := θ(1− η)− 1,

the conditional expected value in (3.4) for each given zt = yj should be written as

n∑

s=1

πjs

(

eys

(
Xij

Ls(Xij)

)α)ζ

(1− Ls(Xij))
−η

(

αeys

(
Xij

Ls(Xij)

)α−1

+ 1− δ

)

.

Introduce the tensor

Rsij := Ls (Xij) (3.5)

representing the next period labor supply ℓt+1 due to the policy function (3.1) evaluated at the next
period technology zt+1 which is stochastic with random values zs, s = 1, . . . , n, and the next period
capital Xij which is determined by the various values of current (kt, zt). By (3.4), we are interested
in solving the nonlinear system

F (r11, . . . , rmn) :=








F11 F21 . . . Fn1

F21 F22

...
Fm1 Fm2 . . . Fmn







= 0, (3.6)

10

for the unknowns {rij} so as to create the appropriate surface S(x, y) for the labor supply policy
function (3.1), where

Fij(r11, . . . , rmn):=

(

eyj

(
xi

rij

)α)ζ

(1 − rij)
−η −

β

n∑

s=1

πjs

(

eys

(
Xij

Rsij

)α)ζ

(1−Rsij)
−η

(

αeys

(
Xij

Rsij

)α−1

+ 1− δ

)

.

Tensor operations. As most of the operations or evaluations involved are similar from element
to element, it will be convenient to adopt Matlab notations .*, ./, and .^ for element-to-element
multiplication, division, or powers of matrices, respectively. In doing so, not only the task of program-
ming is simplified, but more importantly the computation is effectively streamlined by exploiting fast
matrix to matrix operations.

So as to describe the arithmetic operations appropriately in the Matlab syntax, we define re-
dundantly X = frakX = [Xij], R = frakR = [Rsij], and so on, whereas all Greek letters are spelled
out. Then, for example, the commands

recipR = 1 ./ R;

unoR = 1 - R;

Q = ((diag(x)*(recipR)).^alpha) * diag(exp(y));

frakX = Q.*R + (1-delta)*x’*ones(1,n) - theta*(1-alpha)/(1-theta)*Q.*unoR;

frakR = ppval(L,frakX);

F = zeros(m,n);

for s = 1:n

tempR = squeeze(frakR(s,:,:));

unotempR = 1 - tempR;

frakQ = ((frakX./tempR).^alpha) * exp(y(s));

partQ = (frakQ.*tempR) ./ frakX;

F = F + ...

(frakQ.^zeta .* unotempR.^(-eta) .* (alpha*partQ+1-delta)) * diag(Pi(:,s));

end

F = Q.^zeta .* unoR.^(-eta) - beta * F;

quickly construct the matrices X, R, and F . It might be informative to depict the above tensor
product in Figure 3.2. The rectangular box represents the 3-dimensional tensor R. The way the
entries of R are stored is precisely in the order frakR(s,i,j). So the horizontal slide in “green” color
within this box represents the m×nmatrix tempR for a fixed s. The tensor product we need at present
for computing F is to scale columns of an m×n matrix associated with tempR by the diagonal matrix
from the sth column of Π for s = 1, . . . , n. This product effectively take care of the computation
of expected values. Later, we shall use similar drawings to help to visualize multiplications under
different meanings.

To compute the Jacobian matrix of F (r11, . . . , rmn), we divide the construction process into several
blocks. Firstly, we need the componentwise differentiation of a matrix with respect to R, defined by

aX

aR
= dfrakX.dR :=

[
∂Xij

∂rij

]

, (3.7)

which can easily be calculated by the command

11

tensor R

i

jj

ss

a cross section tempR

transition matrix Π

Fig. 3.2. Diagram for tensor product

dfrakX.dR = (1-alpha)*Q.*(1+theta/(1-theta)*(1-alpha+alpha*(1./R)));

and, secondly, we need the derivative information

∂Rsij

∂rµν
=

dLs(Xij)

dx

dXij

drµν
+

∂Ls(Xij)

∂rµν
, (3.8)

for every (s, i, j) and (µ, ν). Evidently, the first term in (3.8) is zero unless (i, j) = (µ, ν) and the
second term is zero unless s = ν.

We have already prepared ourselves in Section 2 for the two kinds of derivatives of the 1-
dimensional spline Ls(x, ; r1s, . . . , rms) involved in (3.8). The only difference here is that now we
attain the derivative information in tensor form. The definition of dL via

dL = L;

dL.coefs(:,1) = zeros(size(L.coefs,1),1);

dL.coefs(:,2) = 3*L.coefs(:,1);

dL.coefs(:,3) = 2*L.coefs(:,2);

dL.coefs(:,4) = L.coefs(:,3);

for instance, characterizes simultaneously the ordinary derivatives of n 1-dimensional splines Ls with
respect to the primal variable x for s = 1, . . . , n. Thus for the case (i, j) = (µ, ν), the first summation
in (3.8) can be collectively calculated in compact form as follows:

tempdL = ppval(dL,frakX);

for s = 1:n

FirstTerm(s,:,:) = squeeze(tempdL(s,:,:)) .* dfrakX.dR;

end

Note that, by construction, FirstTerm has the same tensor structure as R. See Figure 3.2.

12

i

i

i

j
j

s

µ

µ

ν

ν

tensor ∂Lν

∂rµν
(X)

cross section tempUpsion(mu,:,:)

tensor ∂R
∂rµν

Fig. 3.3. Diagram for the structure of ∂R
∂rµν

per fixed (µ, ν).

On the other hand, we have argued in the preceding section that the sensitivity of Lν to the
change of the parameter rµν is precisely the spline that interpolates the data {(x, eµ)}, where eµ is
the µth standard unit vector in Rm. It is particularly useful to note that for µ = 1, . . . ,m, the partial
derivative ∂Lν

∂rµν
is the same for every ν = 1, . . . , n. Thus, taking advantage of the tensor operations,

we issue the commands

Upsilon = spline(x,eye(m));

tempUpsilon = ppval(Upsilon,frakX);

to create an m×m× n tensor whose µ-th horizontal slide, that is, the matrix tempUpsilon(mu,:,:)

of size m × n, denotes the evaluation ∂Lν

∂rµν
(X) for every ν = 1, . . . , n. See the representation by the

left graph in Figure 3.3. Note that there are as many horizontal layers, that is, sensitive matrices, as
there are discrete grid points for capital.

For each fixed (µ, ν), we conclude from (3.8) that the tensor ∂R
∂rµν

is composed of the sum of a

2-dimension sensitive matrix tempUpsilon(mu,:,:) and a 1-dimensional array FirstTerm(:,mu,nu).
It is critical to note that the 2-dimensional slide tempUpsilon(mu,:,:), and only this slide, is to be
placed at the ν-th horizontal level in the tensor ∂R

∂rµν
. Such a structure of ∂R

∂rµν
is depicted in the right

graph of Figure 3.3, although there is no need to physically store this tensor.

It is interesting to envisage the motion that as (µ, ν) is changed, the vertical (red) bar in Figure 3.3
translates to a different location while the horizontal (green) cross section, copied from the µ-th plane
of the left box, slides up or down in the s direction. This viewpoint turns out to be more advantageous
for programming as we shall exploit below.

13

i

j

j

j

s

s

µ

ν

array tempUpsilon(:,i,j)

array FirstTerm(:,i,j)

Fig. 3.4. Diagram for the structure of
∂Rsij

∂rµν
per fixed (i, j).

The derivative
∂Fij

∂rµν
is given by

∂Fij

∂rµν
:= −β

n∑

s=1

πjs

(

eys

(
Xij

Rsij

)α)ζ

(1−Rsij)
−η






eys

(
Xij

Rsij

)α−1


(α2ζ + α(α− 1))





dXij

drµν

Xij
−

∂Rsij

∂rµν

Rsij



+ αη

∂Rsij

∂rµν

1−Rsij





+ αζ(1 − δ)





dXij

drµν

Xij
−

∂Rsij

∂rµν

Rsij



+ η(1− δ)

∂Rsij

∂rµν

1−Rsij







+

(

eyj

(
xi

rij

)α)ζ

(1− rij)
−η

(
−αζ

rij
+

η

1− rij

)

︸ ︷︷ ︸

added only if (i, j) = (µ, ν)

. (3.9)

To compute the “gradient” of Fij , it is apparent that we need the quantity
∂Rsij

∂rµν
for fixed (s, i, j).

Toward this, it is more useful to reinterpret Figure 3.3 as Figure 3.4. In other words, for each fixed
(s, i, j), the m × n matrix

∂Rsij

∂R consists of only a 1-dimensional array tempUpsilon(:,i,j), which
is identical for all values of s, and a point FirstTerm(s,i,j). Note that the m× n diagonal (green)
plane in Figure 3.4 is made of identical columns tempUpsilon(:,i,j).

We finally are ready to compute the gradient
∂Fij

∂R for each fixed (i, j) and then the Jacobian
matrix of F . We stress again that the partial derivative (3.9) can be assembled entry by entry, but to

take advantage of the vector architecture in modern computers it is beneficial to first express
∂Fij

∂R as

14

an m× n matrix in the following way. Then by reshaping each of these gradients into a 1 ×mn row
vector, we obtain the mn×mn Jacobian matrix for F (r11, . . . , rmn). We first define

capstone = (Q.^zeta) .* unoR.^(-eta) .* (eta./unoR - alpha*zeta*recipR);

which corresponds to the very last term in (3.9). For clarity of presentation and more so for economy
of saving repeated computation, we group the expressions in (3.9) into four universal constants,
two factors (as scaling vectors), two 1-dimensional arrays and two 2-dimensional arrays (to capture
respectively the column vectors and the planes depicted in Figure 3.4 with different scaling). We then
carry out the assembling process for the mn×mn Jacobian matrix J of F as follows.

c1 = alpha^2*zeta+alpha*(alpha-1);

c2 = alpha*eta;

c3 = alpha*zeta*(1-delta);

c4 = eta*(1-delta);

for j = 1:n

for i = 1:m

factor00 = exp(y).*(frakX(i,j)./frakR(:,i,j)).^alpha;

factor01 = Pi(j,:)’ .* factor00.^zeta .* (1-frakR(:,i,j)).^(-eta);

factor02 = factor00.*(frakR(:,i,j)/frakX(i,j));

vector01 = dfrakX.dR(i,j)/frakX(i,j) - FirstTerm(:,i,j)./frakR(:,i,j);

vector02 = FirstTerm(:,i,j)./(1-frakR(:,i,j));

plane01 = - tempUpsilon(:,i,j) * (1./frakR(:,i,j))’;

plane02 = tempUpsilon(:,i,j) * (1./(1-frakR(:,i,j)))’;

tempJ = (c1*plane01 + c2*plane02) * diag(factor02);

tempJ = (tempJ + (c3*plane01 + c4*plane02)) * diag(factor01);

tempJ(i,j) = tempJ(i,j) + ((c1*vector01+c2*vector02).*factor02 + ...

(c3*vector01+c4*vector02))’*factor01;

tempJ = - beta * tempJ;

tempJ(i,j) = tempJ(i,j) + capstone(i,j);

J((j-1)*m+i,:) = reshape(tempJ, 1, m*n);

end

end

Since the Jacobian matrix of F is now available, we may simply apply the Newton method to
solve the (discrete) Euler equation.

4. Numerical Experiment. For numerical experiment, we adopt the parameters listed in Ta-
ble 4.1. These parameters have been calibrated to reflect the key characteristics of the US economy.
Their justifications can be found in [2] and the references therein.

It can be checked easily that, with the postulate that all technologies are essentially centered at

15

Parameter β η θ α δ ρ σ

Value 0.9896 2.0 0.357 0.4 0.0196 0.95 0.0007

Table 4.1

Calibrated parameters

its zero mean, the general steady state solution of (3.2) is given by

kss =
Ψ

Ω + φΨ
,

ℓss = φkss,

css = Ωkss,

where the symbols stand for

φ :=

(
1
β − 1 + δ

α

) 1
1−α

,

Ω := φ1−α − δ,

Ψ :=
θ(1− α)φ−α

(1− θ)
,

Using our calibrated parameters, we have kss ≈ 23.1408, ℓss ≈ 0.3105, and css ≈ 1.2883. These
steady state values provide guidance for selecting initial values and the boundaries of state variables.
For example, in our numerical experiment we choose the interval [0.7kss, 1.3kss] as the range of the
capital. To approximate the autoregressive process by a finite dimensional Markov chain, we follow
Tauchen’s suggestion that the discretization is adequate for most purposes with n = 9.

Rate of convergence. We first demonstrate the rate of convergence of our method. A history
of convergence for the Frobenius norm of F (r11, . . . , rmn) is shown in Figure 4.1. Starting with
the same constant initial value R = .4*ones(m,n), we report the convergence history for both the
coarse grid (m,n) = (4, 9) and the fine grid (m,n) = (40, 9) in the left graph. When the initial
value R = .7*ones(m,n) is farther away from the steady state value of the labor supply ℓss, we
have observed with different grid sizes a behavior in the right graph. All cases seem to evidence the
quadratic rate of convergence. The question is what limit points these iterations converge to.

Coarse grid. Concerning the limit points, we now demonstrate that the approximation of policy
functions on coarse grid is as good as on fine grid by our spline approach. Plotted in Figure 4.2 are
policy functions for (current) labor supply (3.1) and the next period capital (1.3) determined by our
method. Specifically, all with constant initial value rij = 0.4, the graph at the left side of Figure 4.2
results from the application of our method to the coarse grid (m,n) = (4, 9), whereas the result
from the fine grid (m,n) = (40, 9) is at on the right side. At the bottom of both graphs, the top
drawings are plots (skeletons) of limit points returned by the Newton iteration and, hence, are of sizes
4 × 9 and 40 × 9, respectively. For clarity, we have lifted the drawings up by 20 units. The bottom
drawings are plots after applying our 2-dimensional spline interpolation to a denser mesh with grid
size at .01. The contour plots in the middle of Figure 4.2 manifest that the labor policy function is
nonlinear. The colorbars on the right margins in all drawings help us to perceive the slops of the
surfaces. The contour plots clearly indicate that the labor policy functions are somewhat different
when using different grid sizes. This is worrisome! So we examine in further details the differences of
the resulting policy functions between the coarse grid and the fine grid in Figure 4.3. In particular,

16

1 2 3 4 5 6 7 8
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

History of Residual Norm

number of iterations

lo
g

 o
f
n

o
rm

(F
)

coarse grid, (m,n)=(4,9)
fine grid, (m,n)=(40,9)

0 2 4 6 8 10 12 14
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

History of Residual Norm

number of iterations
lo

g
 o

f
n

o
rm

(F
)

coarse grid, (m,n) = (4,5)
fine grid, (m,n) = (20,25)

Fig. 4.1. Convergence history of residuals with constant initial values 0.4 (left) and 0.7 (right) at all grid points.

we see that the relative difference on the capital policy function differs at the order of 10−6, strongly
suggesting that using a coarse grid might be sufficient.

Multiple stationary points. We further our investigation of the limit points by comparing
the difference between policy functions resulting from different initial values. On the left side in
Figure 4.4 are the policy functions, or at least the limit points by our iteration, with initial values
R = 0.7*ones(12,15). The policy functions corresponding to R = 0.4*ones(12,15) are not shown
because, as we have demonstrated earlier, they are similar to those in Figure 4.2. We immediate
notice a significant difference between this new labor supply policy and that depicted in Figure 4.2,
not just value-wise, but more so in the inclination of the slopes. A close examination of the contour
plots of labor supply shows that the lower ends (blue color) are at opposite corners. The difference
is caused more by the initial values than by the grid selections. On the right side of Figure 4.4, we
plot the quantities of differences. It is interesting to note that, while the absolute difference between
the policy functions of capital with different initial values is in the range [−1.54,−1.04], the relative
difference between these two policy functions of capital is around 5%. Would such a dissimilarity
make a significant impact on the interpretation of economic dynamics? Mathematically, at least,
this finding manifests an important fact — the existence of other critical points satisfying the Euler
equation, namely, the first order optimization condition. We need to investigate the role of these
“other” critical points. In particular, we want to show that they are not optimal policy functions3.

In classical constrained optimization, a standard approach to tell the character of a stationary
point is to check the second order optimality condition, that is, the definiteness of the projected
Hessian of the objective function at this critical point. For dynamic programming, such a realization
is hard to come by. Instead, we check the value function corresponding to each proposed policy
function.

Value function iteration. If the resulting limit point p(kt, zt) of the Newton iteration is a true

3It is a known fact that, for neoclassical growth models, the policy function for capital is monotone non-decreasing.
We do observe in Figure 4.4 that, while the policy function for labor supply is non-increasing, the corresponding policy
function for capital is indeed monotone non-decreasing. So the visualization of monotonicity of these critical points
does not help to rule out that they are wrong policy functions.

17

18 20 22 24 26 28
−0.1−0.0500.050.1

0.25

0.3

0.35

capital

Policy for Labor Supply

technology

 0.29

0.3

0.31

0.32

0.33

capital

t
e

c
h

n
o

lo
g

y

Contours of Labor Policy

19 20 21 22 23 24 25 26 27

−0.05

0

0.05

0.29

0.3

0.31

0.32

0.33

18 20 22 24 26 28
−0.1−0.0500.050.1

0

50

capital

Policy for Next Capital

technology

 20

30

40

18 20 22 24 26 28
−0.1−0.0500.050.1

0.25

0.3

0.35

capital

Policy for Labor Supply

technology

 0.29

0.3

0.31

0.32

0.33

capital

t
e

c
h

n
o

lo
g

y

Contours of Labor Policy

19 20 21 22 23 24 25 26 27

−0.05

0

0.05

0.29

0.3

0.31

0.32

0.33

18 20 22 24 26 28
−0.1−0.0500.050.1

0

50

capital

Policy for Next Capital

technology

 20

30

40

Fig. 4.2. Comparison of spline surfaces. Left: coarse grid (m, n) = (4, 9); Right: fine grid (m,n) = (40, 9);
constant initial value rij ≡ 0.4.

policy function, then by its definition there should exist a corresponding value function satisfying the
Bellman equation

v(kt, zt) = u(ct) + βEt [v(p(kt, zt); zt+1)] , (4.1)

where the maximization required in the original (1.2) is automatically fulfilled. We may employ the
conventional scheme of value function iteration, without the burden of computing the transitional
policy functions (maximizers), to find the value function. This is a good news because selecting
the maximizer usually is the most time-consuming step in the value function iteration and hereby
we already have a fast method that computes the policy function to high precision. We also are
less concerned about acceleration [2, 5] because, as our experiments have persistently demonstrated,
coarse grids followed by spline interpolation are general sufficient.

Assuming that the m × n matrix R is a limit point returned by the Newton method applied to
the Euler equation, a prototype of the value function iteration is exemplified below. The neatness of
using tensors to represent multiple layers of surfaces and their interactions should be manifestly clear
from the compactness of the code.

18

10
20

30

−0.1

0

0.1
−5

0

5

10

x 10
−6

capital

Abs. Diff. on Labor

technology
 −4

−2

0

2

4

6

x 10
−6

capital

te
ch

no
lo

gy

Rel. Diff. on Labor

20 22 24 26

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−1

−0.5

0

0.5

1

1.5

2

x 10
−5

10
20

30

−0.1

0

0.1
−5

0

5

x 10
−5

capital

Abs. Diff. on Capital

technology

−3

−2

−1

0

1

2

x 10
−5

capital

te
ch

no
lo

gy

Rel. Diff. on Capital

20 22 24 26

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−1.5

−1

−0.5

0

0.5

1

x 10
−6

Fig. 4.3. Differences between policy functions with same initial value rij ≡ 0.4 but different grid sizes (m, n) =
(4, 9) vs. (40, 9).

frakC = theta*(1-alpha)/(1-theta)*Q.*unoR;

ufrakC = (((frakC.^theta) .* unoR.^(1-theta)).^(1-eta))/(1-eta);

vold = -1000*ones(m,n);

vnew = ((c_ss^theta)*(1-ell_ss)^(1-theta))^(1-eta)/(1-eta)*ones(m,n);

for iter = 1:10000

if (norm(vold-vnew) <= norm(vnew)*m*n*eps)

display(’Value function obtained. Returned!’)

break

else

vold = vnew;

V = spline(x,vnew’);

tempV = ppval(V,frakX);

vnew = zeros(m,n);

for s = 1:n

vnew = vnew + squeeze(tempV(s,:,:)) * diag(Pi(:,s));

end

vnew = ufrakC + beta * vnew;

end

end

display(’Warning --- No break occurs yet for convergence’)

19

18 20 22 24 26 28
−0.1−0.0500.050.1

0.5

0.55

0.6

capital

Policy for Labor Supply

technology

 0.52

0.54

0.56

capital

t
e

c
h

n
o

lo
g

y

Contours of Labor Policy

19 20 21 22 23 24 25 26 27

−0.05

0

0.05

0.52

0.54

0.56

18 20 22 24 26 28
−0.1

0
0.1

0

50

capital

Policy for Next Capital

technology

 20

30

40

18 20 22 24 26 28
−0.1−0.0500.050.1

−0.3

−0.2

−0.1

capital

Abs. Diff. on Labor

technology

 −0.28

−0.26

−0.24

−0.22

−0.2

capital

t
e

c
h

n
o

lo
g

y

Rel. Diff. on Capital

19 20 21 22 23 24 25 26 27

−0.05

0

0.05

−0.054

−0.053

−0.052

−0.051

18 20 22 24 26 28

−0.1
0

0.1
−2

−1.5

−1

capital

Abs. Diff. on Capital

technology

−1.5
−1.4
−1.3
−1.2
−1.1

Fig. 4.4. Left: policy functions with initial values rij ≡ 0.7 on grid (m,n) = (12, 15); Right: differences between
policy functions with different initial values rij ≡ 0.4 vs. 0.7.

We remark that the maximal allowable number iter of iterations above is chosen circumspectly
because of the concern that the nearness of our β = 0.9896 to one is expected to cause slow contraction.
We caution also that the prototype scheme above has not taken into account any acceleration tactics
at all. The scheme here is only to demonstrate how the value function could be found once we have
the policy function in hand.

What we have obtained is the value function depicted in Figure 4.5 for the initial value R =
.4*ones(4,9) followed by our 2-dimensional spline interpolation, which is as good as using finer
grids. On the other hand, we have observed from our experiments that the “other policy function”
found by using, say, the initial value R = .7*ones(12,15), does not lead to convergence at all by the
value function iteration. Indeed, the value function blows up to infinity in just a few iterations. The
failure is because these other critical points lack the property of maximization needed in (1.2). A 5%
relative discrepancy of the capital policy at every time step leads to a catastrophe!

Euler equation error function. We have already reported that our method converges quadrat-
ically and returns near machine-precision residual values of F , but the nonlinear system (3.6) is only a

20

15

20

25

30

−0.1

−0.05

0

0.05

0.1

−114

−113.5

−113

−112.5

−112

−111.5

−111

−110.5

−110

−109.5

capital

Value Function

technology
capital

te
ch

no
lo

gy

Contours of Value Function

20 22 24 26

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−113.5

−113

−112.5

−112

−111.5

−111

−110.5

−110

Fig. 4.5. Value function based on the grid size (m,n) = (4, 9) with initial value 0.4.

discrete approximation to the original Euler equation. Though by the continuity argument we expect
that precision would prevail at off-grid points, we still prefer to assure unit free accuracy in the Euler
equation throughout the domain of interest quantitatively. A commonly used assessment tool is to
compute the so called Euler equation error function defined by [10]

E(kt, zt) := 1−

{
βEt

[

(cθt+1(1−ℓt+1)
1−θ)

1−η
/ct+1(αezt+1kα−1

t+1 ℓ1−α
t+1 +1−δ)

]

(1−ℓt)(1−θ)(1−η)

}1/ζ

ct
, (4.2)

which has the meaning of “the relative optimization error incurred by the use of the approximated
policy rule”. The absolute values of the Euler equation errors at the limit points by our method on
two grid sizes are plotted in Figure 4.6 on the logarithmic (base 10) scale. As expected, the downward
spikes occur at the grid points of capital. The precision of our result, even when using coarse grids,
should be quite obvious.

We have pointed out earlier that the limit point corresponding to this particular initial value R =
0.7*ones(12,15) fails to produce a proper value function. It might be curious to ask whether such
a failure could have been detected in the Euler equation errors. We calculate the corresponding error
function in Figure 4.7. Note that the Euler equation errors persistently maintain reasonable precision
throughout the domain of interest, strongly suggesting that merely checking the Euler equation errors
is not enough to qualify a policy function.

Robustness. Finally, we repeat the robustness tests conducted in [2] by keeping all parameters
unchanged except that we increase the risk aversion from τ = 2 to τ = 50 and the standard deviation
of the technology shock from σ = 0.007 to σ = 0.035. Under such a situation of extreme calibration, a
nature consequence is the accumulation of capital. Thus we have to modify the capital interval, after
several trials and errors, from [0.7kss, 1.3kss] to, say, [20, 60]. Test results are reported in Figure 4.8.
It is seen that the quadratic convergence occurs only at a much later stage of iterations, but once

21

18
20

22
24

26
28

−0.1

−0.05

0

0.05

0.1
−18

−16

−14

−12

−10

−8

−6

−4

capital

Euler Equation Error

technology

lo
g

1
0
(a

b
s
(E

u
le

r
e

rr
o

r)
)

18
20

22
24

26
28

−0.1

−0.05

0

0.05

0.1
−18

−17

−16

−15

−14

−13

−12

−11

−10

−9

capital

Euler Equation Error

technology
lo

g
1

0
(a

b
s
(E

u
le

r
e

rr
o

r)
)

Fig. 4.6. Euler equation errors based on the grid sizes (m,n) = (4, 9) and (m,n) = (40, 9) with initial value 0.4.

18
20

22
24

26
28

−0.1

−0.05

0

0.05

0.1
−18

−16

−14

−12

−10

−8

−6

capital

Euler Equation Error

technology

lo
g

1
0
(a

b
s
(E

u
le

r
e

rr
o

r)
)

Fig. 4.7. Euler equation errors based on the grid sizes (m,n) = (12, 15) with initial value 0.7.

convergence occurs we achieve the machine precision. Even though we are using a relative coarse
grid (m,n) = (20, 9), the overall Euler errors are superior than any of those methods reported in
[2]. One peculiar phenomenon is that the initial value R = 0.4*ones(m,n) that works well for the
previous benchmark problem does not lead to convergence at all for this extreme calibrated problem.
Test runs complain that the Jacobian matrix is nearly singular. The results reported in Figures 4.8
are obtained with R = 0.8*ones(20,9). Of course, having learned from previous studies, we are

22

concerned whether this limit point is a false policy function. We carry out the value function iteration
described earlier and obtain convergence as is shown in Figure 4.9. Our numerical experiments with
other intermediate cases suggest that the odd-looking shape of the value function is more the effect
of high risk aversion than high variance.

0 10 20 30 40 50 60 70 80 90
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

10
20

10
25

10
30

History of Residual Norm

number of iterations

lo
g

 o
f

n
o

rm
(F

)

Fig. 4.8. History of residual norm and Euler equation errors based on the initial value 0.8 ∗ ones(20, 9) for the
case τ = 50 and σ = 0.035.

Fig. 4.9. Value function based on the initial value 0.8 ∗ ones(20, 9) for the case τ = 50 and σ = 0.035.

23

5. Conclusion. We propose utilizing composite cubic splines to approximate policy functions
in economic dynamics. We use the neoclassical growth model with leisure choice to demonstrate the
working of our ideas. The major advantage is that this 2-dimensional spline is essentially a one 1-
dimensional spline weighted by another 1-dimensional spline. Hence we benefit directly from the ease
of derivative calculation and tensor manipulation of 1-dimensional splines, which allows us to perform
extensive but fast simulations. Of particular importance is that, in contrast to [2, Remark 11, p. 2490],
using coarse grids seems sufficient to approximate policy functions with high degree of precision. Also,
since we are dealing with the policy functions, not the value functions, shape-preserving [12, 14] seems
immaterial.

We are able to locate, fast and up to the machine precision, multiple critical points for the
(discrete) Euler equation. This discovery strongly suggests that, without a second order optimality
check or its like, merely having the convergence by conventional projection methods might suffer from
misleading to wrong policy functions. Fast computation with high precision of convergence thus is of
practical relevance because it allows us to effectively repeat simulations for different parameter values
in search of the correct equilibrium path for the economy [2]. Our method seems capable of doing
that.

Finally, as our composite splines connect grid points into smooth surfaces, the finite Markov chain
approximation to the autoregressive process could be replaced by quadratures. More importantly, the
tensor operations we have carried out in this presentation is based on the composite rule which ultimate
reduces the calculation to the advantage of the 1-dimensional cubic spline. This composite rule should
be in principle generalizable to multi-agent models. Whether we continue to have the asset of using
coarse grids in the higher dimensional problems remains to be further investigated.

REFERENCES

[1] J. Adda and R. W. Cooper, Dynamic economics: quantitative methods and applications, The MIT Press,
Cambridge, MA, 2003.

[2] S. B. Aruoba, J. Fernández-Villaverde, and J. F. Rubio-Raḿırez, Comparing solution methods for dynamic
equlibrium economies, J. Econom. Dynam. Control, 30 (2006), pp. 2477–2508.

[3] R. E. Bellman, Dynamic programming, Princeton Landmarks in Mathematics, Princeton University Press,
Princeton, NJ, 2010. Reprint of the 1957 edition, With a new introduction by Stuart Dreyfus.

[4] D. P. Bertsekas, Dynamic programming and stochastic control, Academic Press, New York, 1976.
[5] C.-S. Chow and J. N. Tsitsiklis, An optimal one-way multigrid algorithm for discrete-time stochastic control,

IEEE Trans. Automat. Control, 36 (1991), pp. 897–914.
[6] L. Cooper and M. W. Cooper, Introduction to dynamic programming, vol. 1 of International Series in Modern

Applied Mathematics and Computer Science, Pergamon Press, Oxford, 1981.
[7] J. W. Daniel, Splines and efficiency in dynamic programming, J. Math. Anal. Appl., 54 (1976), pp. 402–407.
[8] C. de Boor, A practical guide to splines, vol. 27 of Applied Mathematical Sciences, Springer-Verlag, New York,

revised ed., 2001.
[9] B. Heer and A. Maußner, Dynamic general equilibrium modelling, Springer, Berlin, 2005. Computational

methods and applications.
[10] K. L. Judd, Projection methods for solving aggregate growth models, J. Econom. Theory, 58 (1992), pp. 410–452.
[11] , Numerical methods in economics, MIT Press, Cambridge, MA, 1998.
[12] K. L. Judd and A. Solnick, Numerical dynamic programming with spahe-preserving splines, tech. report, Hoover

Institute, Stanford University, 1994. preliminary and incomplete, http://bucky.stanford.edu/papers/

dpshape.pdf.
[13] E. Laporte and P. Le Tallec, Numerical methods in sensitivity analysis and shape optimization, Modeling and

Simulation in Science, Engineering and Technology, Birkhäuser Boston Inc., Boston, MA, 2003.
[14] L. L. Schumaker, On shape preserving quadratic spline interpolation, SIAM J. Numer. Anal., 20 (1983), pp. 854–

864.
[15] , Computing bivariate splines in scattered data fitting and the finite-element method, Numer. Algorithms,

48 (2008), pp. 237–260.
[16] N. L. Stokey and R. E. Lucas, Jr., Recursive methods in economic dynamics, Harvard University Press,

Cambridge, MA, 1989. With the collaboration of Edward C. Prescott.
[17] G. Tauchen, Finite state markov-chain approximations to univariate and vector autoregressions, Econom. Lett.,

20 (1986), pp. 177–181.

24

