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Abstract
We propose solving the inverse eigenvalue problem for symmetric nonnegative

matrices by means of a di�erential equation� If the given spectrum is feasible� then
a symmetric nonnegative matrix can be constructed simply by following the solution
curve of the di�erential system� The choice of the vector �eld is based on the idea
of minimizing the distance between the cone of symmetric nonnegative matrices and
the isospectral surface determined by the given spectrum� We explicitly describe the
projected gradient of the objective function� Using center manifold theory� we also
show that the ��limit set of any solution curve is a single point� Some numerical
examples are presented�



�� Introduction�

A matrix A � Rn�n is said to be nonnegative if no entry of A is negative� Non�
negative matrices arise frequently in various applied areas ���� The Perron�Frobenius
theorem concerning the spectrum of nonnegative matrices may be regarded as the
central result in the theory of nonnegative matrices� It is� therefore� of great interest
to study the following inverse eigenvalue problem�

�Problem �� Given a set � �	 f��� � � � � �ng � C� �nd necessary and
su
cient conditions for � to be the spectrum of some nonnegative
matrix�

In practice� the prescribed eigenvalues ��� � � � � �n often are real numbers� So it is
also interesting to ask�

�Problem �� Given a set � 	 f��� � � � � �ng � R� �nd necessary
and su
cient conditions for � to be the spectrum of some symmetric
nonnegative matrix�

For decades researchers have been trying to answer these problems� A few neces�
sary and a few su
cient conditions can be found� for example� in ��� �
� ��� ��� ���
��� ��� ���� or more recently in ���� To our knowledge� however� neither Problem � nor
Problem � has been completely solved�

In this paper we want to address the problem of constructing a nonnegative matrix
with prescribed spectrum� The problem is stated as follows�

Problem � Given a set � of n real values that is known a priori to
be the spectrum of some nonnegative matrix� numerically construct
a symmetric nonnegative matrix whose spectrum is exactly ��

We have not found much discussion of Problem � in the literature� The most
constructive result we have seen is the su
cient condition studied by Solues ����� But
Soules� condition is still limited because his construction depends on the speci�cation
of the Perron eigenvector � in particular� the components of the Perron eigenvector
need to satisfy certain inequalities in order for his construction to work�

For our consideration� we shall need the following notation� Let O�n� denote the
set of all orthogonal matrices in Rn�n � Let � denote the diagonal matrix with diagonal
entries ��� � � � � �n� in symbols�

� �	 diagf��� � � � � �ng����

The set

M��� �	 fQT�QjQ � O�n�g���

will be called the isospectral surface corresponding to �� Although the assumption is
not required in our discussion� it can be shown thatM��� is indeed a smooth manifold

with dimension n�n���
� if all �i are distinct� The set of all symmetric nonnegative

matrices in Rn�n is denoted by �s�Rn
���

We note that Problem � is equivalent to the following�
Problem �� Find necessary and su
cient condition conditions for
the intersection of the isospectral surface M��� and the cone �s�R

n
��

to be non�empty�
Thus we are motivated to explore the idea of developing a way to systematically reduce
the distance between �s�Rn

�� andM���� IfM��� does intersect �s�Rn
��� then of course

the distance is zero� Otherwise� our approach still �nds a matrix from M��� and a

�



matrix from �s�R
n
�� such that their distance is a local minimum� In the latter case�

the matrix from �s�R
n
�� is expected to be on a face of the cone �s�R

n
��� i�e�� some of

the entries of the nonnegative matrix are zero� We shall see that this property indeed
shows up naturally in the development of our theory� Another fact� obvious from the
geometry� is also worth mentioning � if M��� intersects �s�Rn

�� at an interior point�
then M��� intersects �s�R

n
�� in a relative neighborhood of that point� In this case

there are in�nitely many symmetric nonnegative matrices corresponding to the given
spectrum�

We can precisely formulate our idea as a constrained optimization problem� We
�rst note that the set ��Rn

�� of all nonnegative matrices in Rn�n can be formed as

��Rn
�� 	 fB �BjB � Rn�ng���

where X � Y denotes the Hadamard product of matrices X and Y � Let S�n� denote
the set of all symmetric matrices in Rn�n� Let

� A�B ��	 trace�ABT � 	
X
i�j

aijbij���

denote the Frobenius inner product of two matrices A�B � Rn�n� We shall consider
the following minimization problem�

Problem � Minimize

F �Q�R� �	
�

�
kQT�Q� R �Rk�����

subject to

�Q�R� � O�n�� S�n��

where k � k represents the Frobenius matrix norm� We shall show that the projection
of the gradient vector of the objective function F onto the manifold O�n��S�n� can
be calculated explicitly� Consequently� we can introduce a steepest descent vector
�eld on O�n��S�n�� This vector �eld can easily be transformed into a ��ow� on the
isospectral surface M��� and a ��ow� in the cone �s�Rn

��� Both �ows are moving
in the steepest descent direction to minimize their distance until an equilibrium is
reached� Our approach to Problem �� therefore� is a continuous realization process�

In our earlier works� we have applied similar ideas to tackle the inverse Toeplitz
eigenvalue problems ��� and other least squares matrix approximation problems subject
to spectral constraint ���� Our approach there proves to be quite successful� In this
paper� we shall use some of our previously developed ideas� In section � we develop
the di�erential system� this is our main result� In section � we use center manifold
theory to study the stability properties of the resulting di�erential system� We argue
that generically the ��limit set of a solution �ow contains only a single point� This
proves the global convergence of our method� In section �� we study in detail the
stability of equilibria for the case n 	 �� Although this represents the simplest case�
the stability analysis should shed some light on the behavior of our �ow for higher
dimension cases� We present some numerical examples in the last section�
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�� Projected Gradient�

In the product space Rn�n � Rn�n� we shall use the induced Frobenius inner
product�

� �A�� A��� �B�� B�� ��	� A�� B� � � � A�� B� � ����

With this topology� the feasible set O�n� � S�n� of Problem � is clearly a smooth
manifold� It is not di
cult to show ��� that the space tangent to O�n� � S�n� at a
point �Q�R� � O�n�� S�n� is given by

T�Q�R�O�n� � S�n� 	 TQO�n�� TRS�n� 	 QS�n�� � S�n����

where S�n�� denotes the orthogonal complement of S�n� and is composed of all skew�
symmetric matrices in Rn�n�

We �rst extend the de�nition of the function F in ��� in an obvious way to the
entire space Rn�n � Rn�n� A straightforward calculation shows that the Fr�echet
derivative of F at a general point �A�B� � Rn�n �Rn�n acting on �H�K� � Rn�n �
Rn�n is�

F ��A�B��H�K� 	 � AT�A�B �B�HT�A�AT�H �K �B � B �K �

	 � �A��AT�A�B �B�T � �AT�A�B �B��� H �

� � ���AT�A�B �B� �B�K � ����

The adjoint property � A�BC �	� ACT � B �	� BTA�C � has been used to
rearrange terms in ���� It follows that� with respect to the inner product ���� the
gradient of F at �A�B� is a pair of matrices� in fact� we have

rF �A�B� 	
�
�A��AT�A�B �B�T � �AT�A�B �B���

���AT�A�B �B� �B
�
����

We are interested only in the case when �A�B� 	 �Q�R� � O�n�� S�n�� In this case�
��� is simpli�ed to�

rF �Q�R� 	 ���Q�QT�Q� R �R�����QT�Q�R �R� �R����
�

We now calculate the projection of rF �Q�R� on the manifold O�n� � S�n�� Be�
cause we are using a product topology� the projection of rF �Q�R� on O�n� � S�n�
is the direct product of the projections of the two components of rF �Q�R� on O�n�
and S�n�� respectively� Each of these projections can be calculated easily� In ��� we
presented a simple way to do the projection on O�n�� Since

Rn�n 	 TQO�n� �NQO�n� 	 QS�n�� �QS�n������

any matrix A � Rn�n has a unique orthogonal splitting

A 	 Qf
�

�
�QTA� ATQ�g�Qf

�

�
�QTA�ATQ�g����

as the sum of elements from TQO�n� and NQO�n�� In particular� the projection of
��Q�QT�Q�R �R� onto TQO�n� is�

�

�
Q
n
QT ���Q�QT�Q�R �R��� ���Q�QT�Q� R �R��TQ

o
	 Q

n
�QT�Q�R �R� � �R �R�QT�Q

o
�����

�



On the other hand� S�n� is a vector space already� so the projection of ���QT�Q �
R �R� �R onto S�n� is just itself� Thus we have found that the projection g�Q�R� of
rF �Q�R� onto the manifold O�n�� S�n� is given by the pair of matrices�

g�Q�R� 	
�
Q
n
�QT�Q�R �R� � �R �R�QT�Q

o
����QT�Q� R �R� �R

�
�����

The di�erential equation

d�Q�R�

dt
	 �g�Q�R������

therefore� de�nes a �steepest� descent vector �eld on O�n� � S�n� for the objective
function F �Q�R��

We now transport the �ow ���� to the surface M��� and the cone �s�R
n
��� For

Q�t� � O�n� and R�t� � S�n�� let

X�t� �	 Q�t�T�Q�t������

Y �t� �	 R�t� �R�t������

Upon di�erentiating X�t� and Y �t� with respect to the variable t and using ����� we
�nd that X�t� and Y �t� are governed by the di�erential system

dX

dt
	 �X� �X� Y �������

dY

dt
	 �Y � �X � Y ������

In ���� we have used the Lie bracket notation �A�B� �	 AB � BA� Together with
an initial value �X�
�� Y �
�� � M���� �s�Rn

��� we have reformulated Problem � as
an initial value problem for �X� Y �� The initial value problem is readily solved by
available software�

The vector �eld on the right�hand sides of ���� and ���� is well�de�ned for every
�X� Y � � Rn�n � Rn�n � However� it is important to note that we intend to start
the �ow from an initial value �X�
�� Y �
�� in M���� �s�R

n
��� Then X�t� � M���

and Y �t� � �s�R
n
�� throughout the interval of existence� By the way these �ows are

constructed� we know both X�t� and Y �t� are bounded and� hence� exist for t � �
����
In fact� if we de�ne

G�t� �	 F �X�t�� Y �t�� 	
�

�
kX�t�� Y �t�k� � 
���
�

then it is easy to calculate that

dG

dt
	 � � �X� Y �� �X� Y � � �� � �X � Y �� Y � �X � Y � �	 
�����

According to Lyapunov�s second method ��� Theorem ����� the limit points of �X�t�� Y �t�� �
M��� � �s�Rn

�� must satisfy the equation dG
dt

	 
� That is� � �X� �Y � will be a limit
point only if

� �X� �Y � 	 
�����

�



and

�Y � � �X � �Y � 	 
�����

It is crucial to note from ���� and ���� that the conditions ���� and ���� are also
su
cient for that � �X� �Y � be an equilibrium point for the system� �In fact� if all
eigenvalues in � are distinct� then it can be shown that conditions ���� and ���� are
also necessary�� Let

L �	 f�X� Y � � M���� �s�R
n
��j�X� Y � 	 
� Y � �X � Y � 	 
g�����

We conclude that if we start with any �X�
�� Y �
�� � M��� � �s�Rn
��� then the

solution �ow �X�t�� Y �t�� approaches the set L as t �
 � ��� Lemma ����� That is�
for every � � 
� there exists a T � 
 such that for every t � T there exist a point
� �X� �Y � � L �possibly depending on t� such that k�X�t�� Y �t��� � �X� �Y �k � ��

The above convergence result is not entirely satisfactory� For example� the �ow
�X�t�� Y �t�� might oscillate around a nontrivial limit set� It will be interesting and
important if we can show that the ��limit set of any orbit �X�t�� Y �t�� contains only
a singleton� In the next section we shall use center manifold theory to prove that
if the ��limit set of an orbit �X�t�� Y �t�� contains a point of the type � �X� �X�� then
�X�t�� Y �t�� indeed converges to � �X� �X��

For computation� we obviously may choose X�
� 	 �� We note �using ����� that
if one component of Y �t� is zero� then that component remains zero� For a feasible
set of �generic� values� therefore� we should begin the �ow Y �t� with an interior point
�i�e�� a positive matrix� of the cone �s�R

n
��� Other than this restriction� the choice of

Y �
� is arbitrary� Di�erent initial values of Y �
� may lead to di�erent limit points�
We shall see some numerical examples in the last section�

Finally� we remark that a limit point �Y of a �ow Y �t� could lie in one of the faces
of �s�R

n
�� even if the �ow starts from the interior of �s�R

n
��� We expect this situation

when M���� �s�Rn
�� 	 �� i�e�� when the given spectrum � is not associated with any

element of �s�R
n
��� But the most interesting case occurs when no component of the

limit point �Y is zero� Then� by ����� the symmetric nonnegative matrix �Y must be
the same as the isospectral matrix �X � In this case� we have numerically constructed
a symmetric nonnegative matrix that has a prescribed spectrum�

�



�� Convergence�

We have pointed out earlier that the ��limit set of any orbit �X�t�� Y �t�� is
nonempty and invariant and that the orbit approaches its ��limit set� In this section
we shall take a closer look at the convergence behavior of the solution �ow �X�t�� Y �t���
We �rst use center manifold theory ��� to study the behavior of �X�t�� Y �t�� near an
equilibrium point� We then argue that the ��limit set of any orbit �X�t�� Y �t�� contains
only a singleton�

Let � �X� �Y � be an equilibrium point of the system ���� and ����� If �X 
	 �Y or if
� �X� �Y � does not belong to M���� �s�R

n
��� then we have not yet solved the inverse

eigenvalue problem� We shall consider only the opposite case� namely �X 	 �Y �
�s�R

n
���
Our �rst approach is similar to the work done in ���� For convenience� we �rst

brie�y review center manifold theory� Consider the system

dx

dt
	 Ax� f�x� y�����

dy

dt
	 By � g�x� y�����

where x � Rn� y � Rm � and A�B are constant matrices such that all eigenvalues of A
have zero real parts while all those of B have negative real parts� the functions f and
g are C� with f�
� 
� 	 
� f ��
� 
� 	 
� g�
� 
� 	 
 and g��
� 
� 	 
� Then there exists
an invariant manifold� called the center manifold� for the system ���� and ����� The
center manifold is characterized by a C� function h from Rn to Rm with the property

y 	 h�x�� h�
� 	 
� h��
� 	 
�����

Furthermore� the stability of �
� 
� � Rn�Rm for the system ���� and ���� is equivalent
to the stability of 
 � Rn for the system

dz

dt
	 Az � f�z� h�z�������

In addition� if 
 � Rn is stable for ����� then with �x�
�� y�
�� su
ciently small� there
exists a solution z�t� of ���� such that as t �
 ��

x�t� 	 z�t� � O�e��t�����

y�t� 	 h�z�t�� �O�e��t���
�

for some constant 	 � 
�
We now apply these results to the equations ���� and ����� Near an equilibrium

point � �X� �X�� we de�ne

U�t� �	 X�t�� �X�����

W �t� �	 X�t�� Y �t������

It is easy to see that ���� and ���� are equivalent to the following equations�

dU

dt
	 � �X� �W� �X��

��U� �W� �X�� � � �X� �W�U ��� �U� �W�U ������

dW

dt
	 � �X� �W� �X��� � �X �W

��U� �W� �X�� � � �X� �W�U ��� �U� �W�U ��� �W � �U �W ������

�



Readers should distinguish between the linear and the nonlinear terms in each of the
above expressions� We note that equation ���� is not quite in the same form as ����
since the linear term in ���� is in the variable W � But this discrepancy can easily be
�xed through a simple linear transformation� Additionally� we are more interested in
knowing whether W �t� converges to zero than what X�t� converges to� Thus we shall
not be bothered to perform the transformation explicitly�

Since all underlying matrices are symmetric� it su
ces to consider only the upper
triangular parts of the matrices� Let � be the n�n���

� � n�n���
� matrix representing the

upper triangular part of the linear operator � �X� �W� �X�� � � �X �W � Applying center
manifold theory� we �rst study the behavior of a solution �ow near an equilibrium
point�

Lemma ���� Suppose that all eigenvalues of � at an equilibrium point � �X� �X�
have negative real part� Then� starting with any matrix �X�
�� Y �
�� su�ciently close
to � �X� �X�� the solution �ow �X�t�� Y �t�� of ���� and ���� converges to a constant
matrix of the form � �Z� �Z�� �Note that �Z may not be the same as �X��

�pf�� If all eigenvalues of � have negative real part� then obviously �See ��� Theo�
rem �� page���

W � h�U� � 
����

is a center manifold for the system ���� and ����� It follows that the corresponding
system ���� on the center manifold has constant solution� From ���� and ��
�� we
conclude that U�t� converges to a constant matrix while W �t� converges to the zero
matrix as t �
 �� We note that center manifold theory does not provide any infor�
mation regarding which limit point U�t� �and hence X�t�� is converging to� although
it does guarantee that X�t� and Y �t� are converging to the same point�

The critical supposition that all eigenvalues of � have negative real part is di
cult
to justify in general� Even for the special case n 	 � to be discussed in the next section�
the explicit expressions for eigenvalues of � are very complicated� Nonetheless� we have
observed the following fact concerning this supposition�

Lemma ���� At any equilibrium point � �X� �X� � M���� �s�R
n
��� no eigenvalue

of the corresponding � can have positive real part�
�pf�� We recall the de�nition W �t� 	 X�t��Y �t� and the fact that the di�erential

equations ���� and ���� are designed to ful�ll the speci�c purpose of reducing kX�t��
Y �t�k� Thus the Frobenius norm of the upper triangular part of W �t� cannot grow as
a function of t� Since W �t� is related to its derivative by equation ����� the assertion
follows�

In order that some eigenvalues of � have zero real parts� the components of �X
must satisfy certain algebraic equations� �Some examples are demonstrated in the next
section�� The algebraic constraint� therefore� limits these special matrices� denoted
by �  X�  X�� to a lower dimensional manifold in M��� � �s�Rn

��� Forming a set of

measure zero in the relative topology of M�����s�Rn
��� points like �  X�  X� should be

regarded as non�generic� Thus� for almost all equilibrium points of the kind � �X� �X��
all eigenvalues of the corresponding � have negative real part� Lemma ���� therefore�
serves to explain the generic behavior of the dynamics of ���� and �����

Near an equilibrium point of the kind �  X�  X�� the corresponding center manifold
becomes much more complicated than ����� However� it can be proved that any �ow�
starting su
ciently close to �  X�  X�� still converges to a single point �  Z�  Z�� The proof

�



is tedious but straightforward� We shall not give the full account of details here� But
examples in the next section should illustrate our point�

It should be noted that Lemma ��� proves only a local convergence result� But
we also know in the earlier discussion that the semiorbit of �X�t�� Y �t�� approaches
arbitrarily close to its ��limit set which is a subset of all equilibrium points� These
observations together imply that a solution �ow �X�t�� Y �t�� converges globally to a
single point ��� Theorem ����� Indeed� we have the following result�

Lemma ���� Let �X�t�� Y �t�� be a solution �ow of the di	erential system ���� and
����� Suppose � �X� �X� is an �
limit point of the orbit �X�t�� Y �t�� where all eigenvalues
of the corresponding � have negative real parts� Then �X�t�� Y �t�� �
 � �X� �X� as
t �
 ��

�pf�� Since � �X� �X� is an ��limit point of �X�t�� Y �t��� there exists T � 
 such that
�X�T �� Y �T �� is su
ciently close to � �X� �X�� By Lemma ���� the solution �ow that
begins at �X�T �� Y �T �� converges to a single point � �Z� �Z�� It follows that �X�t�� Y �t��
converges to � �Z� �Z�� Since � �X� �X� is an ��limit point� it must be that �X 	 �Z�

In the above lemma� the assumption that all eigenvalues of � have negative real
parts can be weakened� In fact� all we need in the proof of global convergence is the
fact of local convergence to a single point� Thus� we restate the lemma as follows�

Lemma ���� Let �X�t�� Y �t�� � M��� � �s�Rn
�� be a solution of the di	er


ential system ���� and ����� If � �X� �X� is an �
limit point of this solution� then
limt���X�t�� Y �t�� 	 � �X� �X��

We conclude this section with one �nal remark on Lemma ���� It is obvious
that not every given set � of n real values can be the spectrum of some nonnegative
matrix� If a non�feasible spectrum is given� we cannot expect the ��limit set of any
solution �X�t�� Y �t�� � M���� �s�R

n
�� to contain a point of the form � �X� �X�� But

even if � is feasible� it is possible that an orbit �X�t�� Y �t�� contains no limit point
of the form � �X� �X�� We have not analyzed this type of equilibrium points yet� In
either case� however� our numerical experiment seems to suggest that the ��limit set
of �X�t�� Y �t�� still contains a single point�

�



�� Stability Analysis for n 	 ��
We shall now analyze the di�erential system ���� and ���� for the case n 	 � in

detail� The answers to Problem � and Problem � are obviously known for this simple
case� But we hope the following study will provide some interesting insight into the
understanding of the higher dimensional case�

First we explain the geometry of M��� and �s�R
n
��� Due to symmetry� it su
ces

to study the behavior of the six variables �x��� x��� x��� y��� y��� y��� only� We note
that the set O��� consists of two kinds of orthogonal matrices�

cos 
 sin 

� sin 
 cos 


�

and� �
cos 
 sin 

sin 
 � cos 


�

with 
 � �
� ���� From ����� it follows that

x�� 	 �� cos
� 
 � �� sin

� 
�

x�� 	 ��� � ��� cos
 sin 
�����

x�� 	 �� sin
� 
 � �� cos

� 
�

These equations provide a parametric representation of the ellipse in R� formed by the
intersection of the plane ! with equation x�� � x�� 	 �� � �� and the ellipsoid with
equation x���� �x���� x��� 	 �������� If �� 	 ��� then this ellipse is degenerate� Thus�
the isospectral surfaceM��� for n 	 � is represented by an ellipse� The distance from
the plane ! to the origin is �

� j�� � ��j� The cone �s�R�
�� is the set of points in the

�rst octant of R�� The inverse eigenvalue problem will have a solution if and only if
the ellipse intersects the �rst octant �See Figure ��� It is clear from the geometry that
this condition is equivalent to �� � �� � 
�

For n 	 �� the set L de�ned in ���� contains points of the following eight types�

��� �y��� y��� y��� y��� y��� y���� yij arbitrary but � 
�

��� �
� y��� y��� 
� y��� y���� yij arbitrary but � 
�

��� �y��� 
� y��� y��� 
� y���� yij arbitrary but � 
� y�� 
	 y���

��� �y��� x��� y��� y��� 
� y���� x��� yij arbitrary� but y�� � 
�

��� �y��� y��� 
� y��� y��� 
�� yij arbitrary but � 
�

��� �x��� 
� y��� 
� 
� y���� x��� y�� arbitrary� but y�� � 
�

��� �x��� y��� x��� 
� y��� 
�� x��� y�� arbitrary� but y�� � 
�

��� �y��� 
� x��� y��� 
� 
�� x��� y�� arbitrary� but y�� � 
�

We note that the set L is the union ���� of one ��dimensional manifold �points
of type ���� and several ��dimensional manifolds �points of types ��������� The set
L is represented in Figure �� For convenience� we have identify a representative for
each type of point in Figure �� For example� the �rst open octant represents type ���
points� the �rst open quadrant in the yz�plane represents type ��� points� and so on�
The extra lines sticking out from the coordinate axes or planes represent the freedom

�



of variables for the matrix X� These are types ���� ���� ��� and ��� points� respectively�
For these types of limit points� note that the matrix Y is �xed to be the single point
at the foot of these lines�

We consider the case when

�X 	 �Y 	

�
c a
a b

�
�

The corresponding matrix � in equation ���� is given by

� 	

�
�� ��c� �a� �ca� �ba �a�

ca� ba �cb� c� � b� � �a �ca� ba
�a� ��ca� �ba ��a� � �b

�
�	 �����

A general formula for eigenvalues of � is di
cult to compute even with the help of a
symbolic package� However� we already know from Lemma ��� that all eigenvalues of
� have nonpositive real part� As an example� when a 	 �� b 	 � and c 	 �� we �nd the
eigenvalues of � are approximately �����������
� �������

��� and ������
������
It can be seen easily from the characteristic polynomial that � will have two purely
imaginary eigenvalues only if a� b and c come from a very special ��dimensional hyper�
surface in R��

It turns out that some eigenvalues of � can be 
 when �X is on the faces or edges
of the cone �s�R

n
��� In the following� we consider the local convergence for some of

these special cases�
Case � Type ��� limit point where

 X 	  Y 	

�
c 


 


�
�

In this case� � 	 diagf��c��c�� 
g� So Lemma ��� cannot be applied� We give below
a somewhat extended argument to demonstrate how the convergence of a �ow near
�  X�  X� can be reached� The di�erential system ���� and ���� becomes

u
�

�� 	 �u��w��c� �u��w��u�� � �w��u
�
�� � �w��u

�
�� � �u��w��u���

u
�

�� 	 �w��c
� � �w��u��c� �u��w��c� cw��u�� � cw��u�� � u��w��u��

��u��w��u�� � w��u
�
�� � u��w��u�� � w��u��u�� � w��u

�
�� � w��u��u���

u
�

�� 	 ��u��w��c� �w��u
�
�� � �u��w��u�� � �u��w��u�� � �w��u

�
���

w
�

�� 	 ��w��c� �u��w��c� �u��w��u�� � �w��u
�
�� � �w��u

�
��

��u��w��u�� � �w��u�� � �w�
�������

w
�

�� 	 �w��c
� � �w��u��c� �u��w��c� cw��u�� � cw��u�� � u��w��u��

��u��w��u�� � w��u
�
�� � u��w��u�� � w��u��u�� � w��u

�
��

�w��u��u�� � �w��u�� � �w�
���

w
�

�� 	 ��u��w��c� �w��u
�
�� � �u��w��u�� � �u��w��u�� � �w��u

�
��

��w��u�� � �w�
���

We note there are two negative linear terms in w
�

�� and w
�

��� So the convergence is
contingent upon how the �ow behaves on the center manifold� By center manifold
theory� the center manifold of ���� is given by

�w��� w��� 	 h�u��� u��� u��� w�������

�	



for some smooth function h� The geometry is illustrated in Figure � where we use
the x�axis to represent the three variables �u��� u��� u��� � R�� the y�axis to represent
the variable w�� � R and the z�axis to represent the two variables �w��� w��� � R��
We note that the x�axis where W � 
 also represents the ��dimensional equilibrium
points of type ���� Although h is di
cult to compute explicitly� the following function
can be shown to be a O�k�U�W �k�� approximation to h ��� near the origin�

w�� �	
u���w��

�c
���
�

w�� �	
�cu��w�� � u��u��w�� � u��u��w��

c�
�

Upon substitution� we �nd the �ow ���� on the center manifold is given by

u
�

�� 	 �w��u
�
�����u��c� �u��c� �u��u�� � �u��� � u���c� �u�����c

��

u
�

�� 	 w��u������u��u��c� �u���c� �u��c
� � �u���c� �u��c

�

�u���c
� � u���u��c� �u���u�� � �u���u�� � �u���

�u���u��c� �u�������c
�������

u
�

�� 	 w��u
�
�����u��c� �u��c� �u��u�� � �u��� � u���c� �u�����c

��

w
�

�� 	 w�����u
�
��u��c� �u���u��c� u���c� �u���u

�
�� � �u���u��u��

��u���u
�
�� � �u��c

� � �w��c
���c��

The most dominant term in ���� is

w
�

�� 	 �w���w�� � u��� � higher order terms�����

It is also obvious that

�w�� � u���
�

	 �w���w�� � u��������

We are interested only in the case where Y �t� � �s�R
n
��� Therefore� w�� 	 x�� �

y�� 	 u�� � y�� 	 u�� since y�� � 
� By checking the signs of the right�hand sides
of ���� and ����� we �nd that the projection of the vector �eld ���� at any point
�u��� u��� u��� w��� � R� onto the �u��� w����plane must be within the shaded region
as shown in Figure �� It is obvious from the geometry that u���t� converges to a
�xed point and w���t� converges to 
 as t converges to in�nity� In other words�
we have shown that near a equilibrium point �  X�  X� of type ���� the solution �ow
�X�t�� Y �t�� with Y �
� � �s�Rn

�� converges to a �xed point of the form �  Z�  Z�� This
should manifest our point made in the preceding section concerning the convergence
when � has zero eigenvalues� In Figure � we have also drawn the projection of vector
�eld of ���� when Y �
� is not in �s�Rn

��� This corresponds to the region below the
diagonal u�� 	 w��� It is interesting to note that w���t� may diverge to in�nity� This
is because the di�erential system ���� and ���� has the descending property only if
Y �t� � �s�R

n
���

Case � Type ��� limit points where

�X 	 �Y 	

�
c 


 b

�

��



and b 
	 c� We �nd � 	 diagf��c���b� c�����bg� Thus Lemma ��� can be applied�
Case � Type ��� limit points where

 X 	  Y 	

�

 a

a 


�
�

At such a limit point� the matrix � has eigenvalues f
���a���a�g� An argument
similar to the one given in Case � can be made� The center manifold should become
more complicated because the eigenvectors� ��� 
� ��T� �
� �� 
�T and ��� 
����T � of � in�
dicate that there are couplings between components� Instead of using center manifold
theory� we now take a geometric viewpoint to study this limit point� Limit points of
Type ��� have a unique feature that makes them special � That is� the ellipse M���
containing �  X�  X� intersects the �rst octant only at �  X�  X�� Therefore� the ellipse
corresponding to a slightly perturbed spectrum� say � 	 fa � ���ag with � � 
 �
will not intersect the �rst octant at all� This observation perhaps explains why we
experience some numerical di
culty in constructing the second example in ���� by our
method� We shall report this di
culty in the next section�

Case � Type ��� limit points where

�X 	 �Y 	

�

 a
a b

�
�

It can be checked that the characteristic polynomial of � is given by p��� 	 �� �
��a�� b�� �a� �b���� ��b�� ��a� � �a�b� ��ab��� ��a�b� Clearly p��� must have
one negative real root� The other two roots can be purely imaginary numbers only if
��a� � b� � �a� �b���b�� ��a� � �a�b� ��ab� 	 ��a�b� We� therefore� conclude that
for almost all values of a and b� all three roots of p��� have negative real part�

��



�� Numerical Results�

In this section we brie�y report some of our numerical experiments with the dif�
ferential equations ���� and �����

We use the subroutine ODE in ���� as the integrator� Both local control parameters
ABSERR and RELERR are set to be �
���� This criterion is used to control the
accuracy in following the solution path� We examine the output values at time interval
of �� Normally� we should expect the loss of � or � digits in the global error� Thus�
when the norm of the di�erence between two consecutive output points becomes less
than �
��� we assume the path has converged to an equilibrium point� The execution
is then terminated automatically� We always use X�
� 	 � as the starting value for
X�t��

Example � We consider the spectrum � 	 f�� 
������g which satis�es the so
called condition �K� in ��
�� Let E denote the matrix whose components are all ��s� We
report below various choices of Y �
� and the corresponding approximate equilibrium
points �Y � We also report the approximate length of t for convergence� These lengths
may depend on the initial values and the integrators� but they should be independent
of the computing machine�

�a� Y �
� 	 E� �Y � Y ���
� ��
����
��
������

D�
 �����������D�
 ��
��������D�� ��
��������D��
�����������D�
 ����������
D�
 �����������D�� �����������D��
��
��������D�� �����������D�� ����������
D�� ��
��������D��
��
��������D�� �����������D�� ��
��������D�� ����������
D��

�
���	

�b� Y �
� 	 �E� �Y � Y ���
� ��
����
�����������D�
 ������
��

D�
 ��

�������D�� ��

�������D��
������
��

D�
 ��
��������D�
 ������
����D�� ������
����D��
��

�������D�� ������
����D�� ������
����D�� ��
������

D��
��

�������D�� ������
����D�� ��
������

D�� ������
����D��

�
���	

�c� Y �
� 	 ��E� �Y � Y ���
� ��
����
��
��������D�
 �����������D�
 ���������
�D�� ���������
�D��
�����������D�
 �����������D�
 �����
����
D�� �����
����
D��
���������
�D�� �����
����
D�� ����������
D�� ��
��������D��
���������
�D�� �����
����
D�� ��
��������D�� ����������
D��

�
���	

�d� Y �
� 	 �

E� �Y � Y ���
� ��
����
��

�������D�
 ���

������D�
 ��


������D�� ��


������D��
���

������D�
 ���
������
D�
 �����������D�� �����������D��
��


������D�� �����������D�� �����������D�� ��
��������D��
��


������D�� �����������D�� ��
��������D�� �����������D��

�
���	

�e� Y �
� 	 a randomly generated symmetric positive matrix� �Y � Y ���
� ��
����
���
����
��D�
 ��
������
�D�
 �����
�����D�� ��������
��D��
��
������
�D�
 �����������D�� �����������D�
 ����
������D�

�����
�����D�� �����������D�
 ��
��������D�
 �����������D��
��������
��D�� ����
������D�
 �����������D�� ���
�������D��

�
���	

��



It is interesting to note that di�erent choices of Y �
� lead to di�erent equilibrium
points� It is also interesting to note that it takes about the same length of integration
to reach convergence� although this observation is not conclusive�

Example � We consider the spectrum � 	 f�� t� � � t������������g for 
 �
t � �� It can be checked easily that the su
cient condition �K� in ��
� is not satis�ed�
But in ���� it is proved that the set � is indeed the spectrum of the nonnegative matrix

N �	

�
A B
B A

�

where

A 	

�
�� � 
 �

� 
 �
� � 


�
�	

and

B 	
��� t�

�

�
�� � � �

� � �
� � �

�
�	 �

Considering t 	 �
� � we �nd the matrix � � R����� at the point �  X�  X� with  X 	 N has

one zero eigenvalue� Thus� this example is one of the exceptional cases we mentioned
earlier� Furthermore� the sum of elements of � is equal to 
 for every value of t� A
slight perturbation of �� therefore� may make the spectrum unfeasible� We think this
is a situation similar to Case � discussed in the previous section� Indeed� the matrix
N has zeros on its diagonal� which indicates that N is at the intersection of n faces of
�s �R

�
���

�a� Suppose Y �
� 	 N � It can be calculated that kX�
�� Y �
�k 	 �� We �nd
�Y � Y ���
� ��

��������

�
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 �����D�
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 �����D�

�����D�
 �
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 ��
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 �
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D��
�����D�
 ��
��D�
 �����D�
 ��


D�� �



D�
 ��


D��
�����D�
 ��
��D�
 �����D�
 ��


D�� ��


D�� �



D�


�
�������	

where kX���
� � Y ���
�k � ����
� � �
���� We note this nonnegative matrix is
di�erent from the one constructed in ���� even though Y �
� itself is already a solution
to Problem ��

�b� Suppose Y �
� 	 E� Then kX�
�� Y �
�k � ������� We are surprised to �nd
that our �ow does not converge to an equilibrium point of the form � �X� �X�� but rather
X�t� converges to �X ��
��������

���
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while Y �t� converges to �Y �
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 ��


D�
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�
�������	

with kX����
�� Y ����
�k � ���
�� It is interesting to note that the eigenvalues of
�Y are f���� ������������ ������g� The true equilibrium point � �X� �Y � is where all
the small components in the second row and the second column except the ��� ���
position of the above two matrices are zero� We have observed that all the signi�cant
components of � �X� �Y � are reached as early as t � �

� The overall slow convergence
is due to the slow rate of change of components in the second row and the second
column� To see this� we rerun the code by choosing

Y �
� 	

�
��������

� 
 � � � �

 � 
 
 
 

� 
 � � � �
� 
 � � � �
� 
 � � � �
� 
 � � � �

�
�������	

so that the small components becomes zero� Then the corresponding orbit converges to
the limit point within t � �
� This example also illustrates that an orbit �X�t�� Y �t��
may not necessarily have a limit point of the form � �X� �X��

�c� Suppose Y �
� 	 ��E� Then kX�
�� Y �
�k � ���
���� Again� we �nd that
X�t� converges to
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while Y �t� converges to
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with kX����
��Y ����
�k � ���
�� We believe the true limit point is the same as the
one in �b��

Example � We consider the spectrum � 	 f�����������������g which satis�
�es a su
cient condition in ��
� Theorem ����� Then�
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