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Abstract

We propose solving the inverse eigenvalue problem for symmetric nonnegative
matrices by means of a differential equation. If the given spectrum is feasible, then
a symmetric nonnegative matrix can be constructed simply by following the solution
curve of the differential system. The choice of the vector field is based on the idea
of minimizing the distance between the cone of symmetric nonnegative matrices and
the isospectral surface determined by the given spectrum. We explicitly describe the
projected gradient of the objective function. Using center manifold theory, we also
show that the w-limit set of any solution curve is a single point. Some numerical
examples are presented.



1. Introduction.

A matrix A € R™™ is said to be nonnegative if no entry of A is negative. Non-
negative matrices arise frequently in various applied areas [3]. The Perron-Frobenius
theorem concerning the spectrum of nonnegative matrices may be regarded as the
central result in the theory of nonnegative matrices. It is, therefore, of great interest
to study the following inverse eigenvalue problem:

(Problem 1) Given a set 0 := {A1,...,A\,} C C, find necessary and
sufficient conditions for ¢ to be the spectrum of some nonnegative
matrix.

In practice, the prescribed eigenvalues Aq, ..., A, often are real numbers. So it is
also interesting to ask:

(Problem 2) Given a set 0 = {A1,...,A\n} C R, find necessary
and sufficient conditions for ¢ to be the spectrum of some symmetric
nonnegative matrix.

For decades researchers have been trying to answer these problems. A few neces-
sary and a few sufficient conditions can be found, for example, in [2, 10, 11, 12, 13,
14, 16, 18], or more recently in [4]. To our knowledge, however, neither Problem 1 nor
Problem 2 has been completely solved.

In this paper we want to address the problem of constructing a nonnegative matrix
with prescribed spectrum. The problem is stated as follows:

Problem 3 Given a set o of n real values that is known a priori to
be the spectrum of some nonnegative matrix, numerically construct
a symmetric nonnegative matrix whose spectrum is exactly o.

We have not found much discussion of Problem 3 in the literature. The most
constructive result we have seen is the sufficient condition studied by Solues [18]. But
Soules’ condition is still limited because his construction depends on the specification
of the Perron eigenvector — in particular, the components of the Perron eigenvector
need to satisfy certain inequalities in order for his construction to work.

For our consideration, we shall need the following notation. Let O(n) denote the
set of all orthogonal matrices in R™*™. Let A denote the diagonal matrix with diagonal
entries Aq,..., An; in symbols,

(1) A :=diag{A1,..., A\n}.
The set
(2) M(A) = {QTAQ|Q € O(n)}

will be called the isospectral surface corresponding to A. Although the assumption is
not required in our discussion, it can be shown that M(A)is indeed a smooth manifold
with dimension ﬂnz—_ll if all A; are distinct. The set of all symmetric nonnegative
matrices in R™*™ is denoted by 7,(R7).
We note that Problem 2 is equivalent to the following:

Problem 2’ Find necessary and sufficient condition conditions for

the intersection of the isospectral surface M(A) and the cone 7,(R7})

to be non-empty.
Thus we are motivated to explore the idea of developing a way to systematically reduce
the distance between 7,(R%} ) and M(A). If M(A) does intersect m,(R7 ), then of course
the distance is zero. Otherwise, our approach still finds a matrix from M(A) and a
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matrix from 7,(R7%) such that their distance is a local minimum. In the latter case,
the matrix from 7,(R%) is expected to be on a face of the cone 7,(R" ), i.e., some of
the entries of the nonnegative matrix are zero. We shall see that this property indeed
shows up naturally in the development of our theory. Another fact, obvious from the
geometry, is also worth mentioning — if M(A) intersects m,(R") at an interior point,
then M(A) intersects 7,(R7) in a relative neighborhood of that point. In this case
there are infinitely many symmetric nonnegative matrices corresponding to the given
spectrum.

We can precisely formulate our idea as a constrained optimization problem. We
first note that the set 7(R7) of all nonnegative matrices in R™*™ can be formed as

(3) n(R%) = {B* B|B € R™*"}

where X %Y denotes the Hadamard product of matrices X and Y. Let S(n) denote
the set of all symmetric matrices in R™*™. Let

(4) < A,B >:=trace(ABT) = Z a;jb;;
1'7-7

denote the Frobenius inner product of two matrices A, B € R™*™. We shall consider
the following minimization problem:
Problem 4 Minimize

(5) F(Q,R):= %||QTAQ—R*R||2,
subject to
(Q,R) € O(n) x S(n).

where || - || represents the Frobenius matrix norm. We shall show that the projection
of the gradient vector of the objective function F' onto the manifold O(n) x S(n) can
be calculated explicitly. Consequently, we can introduce a steepest descent vector
field on O(n) x S(n). This vector field can easily be transformed into a "flow” on the
isospectral surface M(A) and a "flow” in the cone 7,(R%). Both flows are moving
in the steepest descent direction to minimize their distance until an equilibrium is
reached. Qur approach to Problem 4, therefore, is a continuous realization process.

In our earlier works, we have applied similar ideas to tackle the inverse Toeplitz
eigenvalue problems [9] and other least squares matrix approximation problems subject
to spectral constraint [7]. Our approach there proves to be quite successful. In this
paper, we shall use some of our previously developed ideas. In section 2 we develop
the differential system; this is our main result. In section 3 we use center manifold
theory to study the stability properties of the resulting differential system. We argue
that generically the w-limit set of a solution flow contains only a single point. This
proves the global convergence of our method. In section 4, we study in detail the
stability of equilibria for the case n = 2. Although this represents the simplest case,
the stability analysis should shed some light on the behavior of our flow for higher
dimension cases. We present some numerical examples in the last section.



2. Projected Gradient.
In the product space R™™ x R™*™, we shall use the induced Frobenius inner
product:

(6) < (A1,43),(B1,By) >=< A1,B1 > + < 43,B; > .

With this topology, the feasible set O(n) x S(n) of Problem 4 is clearly a smooth
manifold. It is not difficult to show [7] that the space tangent to O(n) X S(n) at a
point (@, R) € O(n) X S(n) is given by

(7) T(q,r)O0(n) x 8(n) = TqO(n) x TrS(n) = QS(n)*t x S(n)

where S(n)t denotes the orthogonal complement of S(n) and is composed of all skew-
symmetric matrices in R™*™.

We first extend the definition of the function F in (5) in an obvious way to the
entire space R™™ x R™™. A straightforward calculation shows that the Fréchet
derivative of F' at a general point (4, B) € R»*™ X R™*"™ acting on (H, K) € R™*™ X
R™™ is:

F'(A,B)(H,K) = <ATAA-B«B,HTAA+ATAH-K+«B—-BxK >

= < AA[(ATAA- B+ B)T + (ATAA- B« B),H >
(8) + < —2(ATAA-B«B)*B,K >.

The adjoint property < A, BC >=< ACT B >=< BTA,C > has been used to
rearrange terms in (8). It follows that, with respect to the inner product (6), the
gradient of F' at (A, B) is a pair of matrices; in fact, we have

VF(A,B) = (AA[(ATAA-B=xB)" +(ATAA- B« B),
(9) —2(ATAA— BxB)xB).

We are interested only in the case when (4, B) = (@, R) € O(n) x S(n). In this case,
(9) is simplified to:

(10) VF(Q,R) = (2AQ(QTAQ — R+ R),—2(QTAQ — R« R)x R).

We now calculate the projection of VF(Q, R) on the manifold O(n) X S(n). Be-
cause we are using a product topology, the projection of VF(Q, R) on O(n) x §(n)
is the direct product of the projections of the two components of VF(Q, R) on O(n)
and S(n), respectively. Each of these projections can be calculated easily. In [7] we
presented a simple way to do the projection on O(n): Since

(11) R™™ = Tq0(n) © NgO(n) = QS(n)" ® QS(n),
any matrix A € R™*™ has a unique orthogonal splitting
(12) A=QU(QTA~ ATQ)} +Q{;(QTA+ 47Q))

as the sum of elements from 7oO(n) and NgO(n). In particular, the projection of
2AQ(QTAQ — R * R) onto ToO(n) is:

£ {QT124Q(Q7AQ ~ R R)] - 2AQ(QTAQ — R+ R)Q}
(13) = Q{-QTAQ(R* R)+ (R* R)QTAQ}.
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On the other hand, S(n) is a vector space already, so the projection of —2(QTAQ —
R x R)x R onto §(n) is just itself. Thus we have found that the projection ¢g(@Q, R) of
VF(Q, R) onto the manifold O(n) x S(n) is given by the pair of matrices:

(14)9(Q, R) = (Q {-QTAQ(R % R) + (R+ R)QTAQ},—2(QTAQ — R+ R)+ R).
The differential equation

(15) 188 _ _gq.m),

therefore, defines a ”"steepest” descent vector field on O(n) x S(n) for the objective
function F(Q,R).

We now transport the flow (15) to the surface M(A) and the cone 7,(R%). For
Q(t) € O(n) and R(t) € S(n), let

(16) X(t) = Q)TAQ(),
(17) Y(t) = R(t)x R(t).

Upon differentiating X (¢) and Y (¢) with respect to the variable ¢ and using (15), we
find that X (¢) and Y (¢) are governed by the differential system

dX

(18) E = [X7[X7Y]]7
(19) % = 4Y x (X -Y).

In (18) we have used the Lie bracket notation [A, B] := AB — BA. Together with
an initial value (X(0),Y(0)) € M(A) X 7,(R% ), we have reformulated Problem 4 as
an initial value problem for (X,Y). The initial value problem is readily solved by
available software.

The vector field on the right-hand sides of (18) and (19) is well-defined for every
(X,Y) € R™™ x R™™. However, it is important to note that we intend to start
the flow from an initial value (X(0),Y(0)) in M(A) x 7,(RY). Then X(t) € M(A)
and Y (t) € m,(R") throughout the interval of existence. By the way these flows are
constructed, we know both X (¢) and Y (¢) are bounded and, hence, exist for ¢ € [0, o0).
In fact, if we define

(20) G(t) 1= F(X(8),Y(5)) = 5 |1X(2) - Y(0)| > 0,

then it is easy to calculate that

(21) %:—QX,Y],[X,Y]>—4<(X—Y),Y*(X—Y)>§0.

According to Lyapunov’s second method [5, Theorem 5.5], the limit points of (X (¢),Y(t)) €
M(A) x m,(R?) must satisfy the equation 2¢ = 0. That is, (X,Y) will be a limit
point only if

(22) [X,Y] =0,



and

(23) Y«(X-Y)=0.

It is crucial to note from (18) and (19) that the conditions (22) and (23) are also
sufficient for that (X',f’) be an equilibrium point for the system. (In fact, if all
eigenvalues in ¢ are distinct, then it can be shown that conditions (22) and (23) are
also necessary.) Let

(24) L= {(X,Y) € M(A) x m,(R?)|[X,Y] = 0,Y % (X — Y) = 0}

We conclude that if we start with any (X(0),Y(0)) € M(A) x 7,(R%), then the
solution flow (X (¢),Y(¢)) approaches the set £ as t — oo [5, Lemma 5.4]. That is,
for every € > 0, there exists a T" > 0 such that for every ¢ > T there exist a point
(X,Y) € £ (possibly depending on t) such that ||(X(¢),Y(t)) — (X,Y)] < e.

The above convergence result is not entirely satisfactory. For example, the flow
(X (¢),Y(¢t)) might oscillate around a nontrivial limit set. It will be interesting and
important if we can show that the w-limit set of any orbit (X (¢),Y(¢)) contains only
a singleton. In the next section we shall use center manifold theory to prove that
if the w-limit set of an orbit (X (¢),Y(t)) contains a point of the type (X, X), then
(X(t),Y(t)) indeed converges to (X, X).

For computation, we obviously may choose X (0) = A. We note (using (19)) that
if one component of Y (%) is zero, then that component remains zero. For a feasible
set of ”generic” values, therefore, we should begin the flow Y (¢) with an interior point
(i.e., a positive matrix) of the cone 7,(R" ). Other than this restriction, the choice of
Y (0) is arbitrary. Different initial values of Y(0) may lead to different limit points.
We shall see some numerical examples in the last section.

Finally, we remark that a limit point ¥ of a flow Y (t) could lie in one of the faces
of m,(R"}) even if the flow starts from the interior of 7,( R’ ). We expect this situation
when M(A)N7,(R%) =0, i.e., when the given spectrum o is not associated with any
element of 7,(R% ). But the most interesting case occurs when no component of the
limit point Y is zero. Then, by (23), the symmetric nonnegative matrix Y must be
the same as the isospectral matrix X. In this case, we have numerically constructed
a symmetric nonnegative matrix that has a prescribed spectrum.



3. Convergence.

We have pointed out earlier that the w-limit set of any orbit (X (¢),Y(t)) is
nonempty and invariant and that the orbit approaches its w-limit set. In this section
we shall take a closer look at the convergence behavior of the solution flow (X (), Y (¢)).
We first use center manifold theory [6] to study the behavior of (X(t),Y(¢)) near an
equilibrium point. We then argue that the w-limit set of any orbit (X (¢),Y(¢)) contains
only a singleton.

Let (X,Y) be an equilibrium point of the system (18) and (19). If X # ¥ or if
(X,Y) does not belong to M(A) X ms(R’ ), then we have not yet solved the inverse
eigenvalue problem. We shall consider only the opposite case, namely X =Y €
Ts(RT).

Our first approach is similar to the work done in [7]. For convenience, we first
briefly review center manifold theory: Consider the system

d
(25) d_‘; = Az + f(z,y)
d
(26) d—‘z = By+g(z,9)

where z € R™, y € R™ , and A, B are constant matrices such that all eigenvalues of A
have zero real parts while all those of B have negative real parts, the functions f and
g are C? with f(0,0) = 0, f'(0,0) = 0,¢(0,0) = 0 and ¢'(0,0) = 0. Then there exists
an invariant manifold, called the center manifold, for the system (25) and (26). The
center manifold is characterized by a C? function h from R™ to R™ with the property
(27) y = h(z), h(0) = 0, K(0) = 0.
Furthermore, the stability of (0,0) € R™x R™ for the system (25) and (26) is equivalent
to the stability of 0 € R™ for the system

d
(28) = = Az + f(z,h(2)).
In addition, if 0 € R™ is stable for (28), then with (z(0),y(0)) sufficiently small, there

exists a solution z(¢) of (28) such that as ¢ — oo,

(29) 2(t) = 2(t)+0(e™™)
(30) y(t) = h(z(t)) +0(e™)
for some constant g > 0.

We now apply these results to the equations (18) and (19). Near an equilibrium
point (X, X), we define

(31) Ut) = X(t)- X,

(32) W(t) = X(t)-Y(t).

It is easy to see that (18) and (19) are equivalent to the following equations:
AR U S)

(33) +U, W, X)) + [X, W, U)) + [U, [W, U]]
‘Z—Vf = [X,[W,X]]-4XxW

(34) U, W, X)) + [X,[W, U]+ [U, [W,U]] — 4W % (U — W).
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Readers should distinguish between the linear and the nonlinear terms in each of the
above expressions. We note that equation (33) is not quite in the same form as (25)
since the linear term in (33) is in the variable W. But this discrepancy can easily be
fixed through a simple linear transformation. Additionally, we are more interested in
knowing whether W (t) converges to zero than what X (¢) converges to. Thus we shall
not be bothered to perform the transformation explicitly.

Since all underlying matrices are symmetric, it suffices to consider only the upper
triangular parts of the matrices. Let 2 be the @ X @ matrix representing the

upper triangular part of the linear operator [X,[W, X]] — 4X % W. Applying center
manifold theory, we first study the behavior of a solution flow near an equilibrium
point.

LeMMA 3.1. Suppose that all eigenvalues of 1 at an equilibrium point (X,X)
have negative real part. Then, starting with any matriz (X (0),Y(0)) sufficiently close
to (X, X), the solution flow (X(t),Y(t)) of (18) and (19) converges to a constant
matriz of the form (Z,Z). (Note that Z may not be the same as X).

(pf): If all eigenvalues of Q2 have negative real part, then obviously (See [6, Theo-
rem 3, pageb])

(35) W=hrU)=0

is a center manifold for the system (33) and (34). It follows that the corresponding
system (28) on the center manifold has constant solution. From (29) and (30), we
conclude that U(t) converges to a constant matrix while W (t) converges to the zero
matrix as £ — oco. We note that center manifold theory does not provide any infor-
mation regarding which limit point U(¢) (and hence X(t)) is converging to, although
it does guarantee that X (¢) and Y (¢) are converging to the same point.

The critical supposition that all eigenvalues of {2 have negative real part is difficult
to justify in general. Even for the special case n = 2 to be discussed in the next section,
the explicit expressions for eigenvalues of () are very complicated. Nonetheless, we have
observed the following fact concerning this supposition:

LEMMA 3.2. At any equilibrium point (X,X) € M(A) x m,(R%), no eigenvalue
of the corresponding ) can have positive real part.

(pf): We recall the definition W (t) = X (t) —Y(¢) and the fact that the differential
equations (18) and (19) are designed to fulfill the specific purpose of reducing || X (¢) —
Y (¢)||. Thus the Frobenius norm of the upper triangular part of W(¢) cannot grow as
a function of t. Since W(t) is related to its derivative by equation (34), the assertion
follows.

In order that some eigenvalues of 2 have zero real parts, the components of X
must satisfy certain algebraic equations. (Some examples are demonstrated in the next
section). The algebraic constraint, therefore, limits these special matrices, denoted
by (X,X), to a lower dimensional manifold in M(A) x 7,(R?). Forming a set of
measure zero in the relative topology of M(A) x 7,(R™), points like (X, X) should be
regarded as non-generic. Thus, for almost all equilibrium points of the kind (X',X),
all eigenvalues of the corresponding {? have negative real part. Lemma 3.1, therefore,
serves to explain the generic behavior of the dynamics of (18) and (19).

Near an equilibrium point of the kind (X', X), the corresponding center manifold
becomes much more complicated than (35). However, it can be proved that any flow,
starting sufficiently close to (X, X), still converges to a single point (Z, Z). The proof
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is tedious but straightforward. We shall not give the full account of details here. But
examples in the next section should illustrate our point.

It should be noted that Lemma 3.1 proves only a local convergence result. But
we also know in the earlier discussion that the semiorbit of (X(t),Y(¢)) approaches
arbitrarily close to its w-limit set which is a subset of all equilibrium points. These
observations together imply that a solution flow (X (¢),Y(¢)) converges globally to a
single point [1, Theorem 2.3]. Indeed, we have the following result:

LemMA 3.3. Let (X(t),Y(t)) be a solution flow of the differential system (18) and
(19). Suppose (X, X) is an w-limit point of the orbit (X (t),Y(t)) where all eigenvalues
of the corresponding Q have negative real parts. Then (X (1),Y(t)) — (X,X) as
t — oo.

(pf): Since (X, X) is an w-limit point of (X (¢), Y (t)), there exists T > 0 such that
(X(T),Y(T)) is sufficiently close to (X,X). By Lemma 3.1, the solution flow that
begins at (X (T),Y(T)) converges to a single point (Z, Z). It follows that (X (t),Y(t))
converges to (Z, Z). Since (X, X) is an w-limit point, it must be that X = Z.

In the above lemma, the assumption that all eigenvalues of {2 have negative real
parts can be weakened. In fact, all we need in the proof of global convergence is the
fact of local convergence to a single point. Thus, we restate the lemma as follows:

LEmMMA 3.4. Let (X(),Y(t)) € M(A) x 7,(R%) be a solution of the differ-
ential system (18) and (19). If (X,X) is an w-limit point of this solution, then
lims_,o0 (X (2), Y (1)) = (X, X).

We conclude this section with one final remark on Lemma 3.4. It is obvious
that not every given set o of n real values can be the spectrum of some nonnegative
matrix. If a non-feasible spectrum is given, we cannot expect the w-limit set of any
solution (X (t),Y(t)) € M(A) x m,(R?) to contain a point of the form (X, X). But
even if ¢ is feasible, it is possible that an orbit (X (¢),Y(¢)) contains no limit point
of the form (X,X) We have not analyzed this type of equilibrium points yet. In
either case, however, our numerical experiment seems to suggest that the w-limit set
of (X (¢),Y(¢)) still contains a single point.



4. Stability Analysis for n — 2.

We shall now analyze the differential system (18) and (19) for the case n = 2 in
detail. The answers to Problem 2 and Problem 3 are obviously known for this simple
case. But we hope the following study will provide some interesting insight into the
understanding of the higher dimensional case.

First we explain the geometry of M(A) and 7,(R7). Due to symmetry, it suffices
to study the behavior of the six variables (z11,Z12, T22; Y11, Y12, Y22) only. We note
that the set O(2) consists of two kinds of orthogonal matrices

cosf sinf
—sinf cos#

and,

cos 8 sin 8
sinf@ —cosf

with 6 € [0,27). From (16), it follows that

17 = Ajcos?@+ Aysin? 0,
(36) 12 = (A —A)cosfsind,
Tyy = Apsin®8 + Xycos?é.

These equations provide a parametric representation of the ellipse in R3 formed by the
intersection of the plane II with equation 11 + z22 = A1 + Ap and the ellipsoid with
equation z2; + 222, + z2, = A2 + A2. If A; = ),, then this ellipse is degenerate. Thus,
the isospectral surface M(A) for n = 2 is represented by an ellipse. The distance from
the plane II to the origin is %|)\1 + Az|. The cone WS(R?I_) is the set of points in the
first octant of R3. The inverse eigenvalue problem will have a solution if and only if
the ellipse intersects the first octant (See Figure 1). It is clear from the geometry that
this condition is equivalent to Ay + Ay > 0.
For n = 2, the set £ defined in (24) contains points of the following eight types:

—

(Y11, Y12, Y225 Y11, Y12, Y22); ¥ij arbitrary but > 0;
(0,912, %22;0, Y12, %22);  ¥j arbitrary but > 0;
(11,0, %225 411,0,922);  ¥ij arbitrary but > 0, 411 # ¥a2;
(Y11, %12, Y115 %11, 0, Y11); 12, Ys; arbitrary, but y11 > 0;
(911,912, 0; 911, %12,0); %5 arbitrary but > 0;
(11,0, %22; 0,0, ¥22); T11, Yoo arbitrary, but yo > 0;

S Ot W N
N N e i

-J

(z11,%12,211;0,%12,0);  z11, Y12 arbitrary, but y15 > 0;
(911,0, 225 %11, 0,0); Tg2, Y11 arbitrary, but y1; > 0;

N~~~ o~ o~ o~

co

We note that the set £ is the union [15] of one 3-dimensional manifold (points
of type (1)) and several 2-dimensional manifolds (points of types (2)-(8)). The set
L is represented in Figure 2. For convenience, we have identify a representative for
each type of point in Figure 2. For example, the first open octant represents type (1)
points; the first open quadrant in the yz-plane represents type (2) points, and so on.
The extra lines sticking out from the coordinate axes or planes represent the freedom

9



of variables for the matrix X. These are types (4), (6), (7) and (8) points, respectively.
For these types of limit points, note that the matrix Y is fixed to be the single point
at the foot of these lines.

We consider the case when

; - c a
X_Y_[ab].

The corresponding matrix Q in equation (19) is given by

—4¢ — 2a2 2ca — 2ba 242
(37) 0= ca—ba 2cb—c?—-b2—4a —ca+ba
2q2 —2ca + 2ba —2a2 — 4b

A general formula for eigenvalues of {2 is difficult to compute even with the help of a
symbolic package. However, we already know from Lemma 3.2 that all eigenvalues of
1 have nonpositive real part. As an example, when ¢ = 2,b = 3 and ¢ = 5, we find the
eigenvalues of () are approximately —35.53793480, —15.53700242 and —8.925062779.
It can be seen easily from the characteristic polynomial that £ will have two purely
imaginary eigenvalues only if a,b and ¢ come from a very special 2-dimensional hyper-
surface in R3.

It turns out that some eigenvalues of  can be 0 when X is on the faces or edges
of the cone 7,(R%). In the following, we consider the local convergence for some of
these special cases:

Case 1 Type (8) limit point where

5 5, c 0

X=Y= .
In this case, Q = diag{—4c, —c?,0}. So Lemma 3.1 cannot be applied. We give below
a somewhat extended argument to demonstrate how the convergence of a flow near

(X, X) can be reached. The differential system (33) and (34) becomes

1 2 2 .
Uy = 2U1aWi2C + 2uUaWi2U1 + 2WarUly — 2Wi11UTy — 2U2W12U22;
I

2
Uy = —wiac” — 2W1aUr1€ + 2UpowiaC + CWi1U12 — CWU12 + UT1W11U12

2 2 .
+2ur1wiaus — W12UT] — U11Wa2U12 — W11UI2U22 — W12Usy + WaaU12U22;

ul22 = —2uppwiac + 2wiiudy + 2uiawiatsy — 2UgaWialyn — 2Waally;
w,11 = —4wyic+ 2uiawiac + 2upwiatyy + 2waaud, — 2wiud,

(38) —2’11,12’!1)12’11,22 — 4’!1)11’11,11 —|— 4’!1)%1,
w’12 = —wiac® — 2wiauiic + 2ugawiac + CwWiiU — CWaaUyz + Uiy WirUa

2 2
+2u11wi2Uz2 — W12UY; — U11WaaUiz — W11%12Uz2 — W1aUss
2,
twarU1aUzz — 4wiaUrz + 4wy,
! 2 2
Woy = —2uUpWiaC + 2W11U7s + 2Ur2W12U22 — 2U12W12U11 — 2W22UT,H
2
—4’!1)22’11,22 + 4w22.
. . . ' ’ .
We note there are two negative linear terms in w;; and w;,. So the convergence is

contingent upon how the flow behaves on the center manifold. By center manifold
theory, the center manifold of (38) is given by

(39) (w11,w12) = h(u11,u12,u22,w22)
10



for some smooth function A. The geometry is illustrated in Figure 3 where we use
the z-axis to represent the three variables (uj1,u1s, u22) € R3, the y-axis to represent
the variable wes € R and the z-axis to represent the two variables (wq1,w12) € R2.
We note that the z-axis where W = 0 also represents the 3-dimensional equilibrium
points of type (1). Although A is difficult to compute explicitly, the following function
can be shown to be a O(]|(U, W)||®) approximation to h [6] near the origin:

2
UToW
12%22
(40) wyy = 222
2¢ '’
w T Cu12Waz — U11U12Waz + U1l W22
12 «-— .

c2

Upon substitution, we find the flow (28) on the center manifold is given by

Uy, = —wagudy(—4uggc + 4uyic — dugauny + 2udy + use + 2udy)/c?;
u’12 = waotia(—12uguiic + 6u%1c + 4u11c2 + 6u§2c — 4u22c2
—|—’U,%202 + u%zullc + 6u§2u11 — 6u%1u22 + 21/,:1”1
(41) —ufyuzac — 2u3,)/(2¢%);
u’22 = waguly(—dugsc + dusic — dugousy + 2ul, + ulse + 2u2,)/c%;

2 2 4 2 2 2
Wyy = waa(—4ulsusac + 4ufsuric + ujsc + 2ujus, — 4uiUsatsg
2 2 2 2y /.2
+2ui ui; — dugac” + dwaac”)/c”.
The most dominant term in (41) is

(42) w’22 = 4wgy(waz — uUzz) + higher order terms.

It is also obvious that

!

(43) (w2 — ug2) = 4waa(waz — ugz).

We are interested only in the case where Y (t) € m,(R7}). Therefore, wyy = z35 —
Yoo = Uzz — Yoo < Uy since Yoy > 0. By checking the signs of the right-hand sides
of (42) and (43), we find that the projection of the vector field (41) at any point
(11, U12, U2z, W22) € R* onto the (ugz,wsz)-plane must be within the shaded region
as shown in Figure 4. It is obvious from the geometry that usx(t) converges to a
fixed point and wayy(t) converges to 0 as ¢ converges to infinity. In other words,
we have shown that near a equilibrium point (X',X') of type (8), the solution flow
(X (¢),Y(t)) with Y(0) € 7,(R?) converges to a fixed point of the form (Z, Z). This
should manifest our point made in the preceding section concerning the convergence
when ) has zero eigenvalues. In Figure 4 we have also drawn the projection of vector
field of (41) when Y(0) is not in 7,(R%). This corresponds to the region below the
diagonal ugs = way. It is interesting to note that waa(t) may diverge to infinity. This
is because the differential system (18) and (19) has the descending property only if
Y (t) € m,(RY).
Case 2 Type (3) limit points where



and b # c. We find Q = diag{—4c, —(b— c¢)?, —4b}. Thus Lemma 3.1 can be applied.
Case 3 Type (7) limit points where

- ~ 0 a
reref0s)

At such a limit point, the matrix Q has eigenvalues {0, —4a, —4a?}. An argument
similar to the one given in Case 1 can be made. The center manifold should become
more complicated because the eigenvectors, [1,0,1]7,[0,1,0]7 and [1,0, —1]7, of Q in-
dicate that there are couplings between components. Instead of using center manifold
theory, we now take a geometric viewpoint to study this limit point. Limit points of
Type (7) have a unique feature that makes them special — That is, the ellipse M(A)
containing (X',X') intersects the first octant only at (X',X') Therefore, the ellipse
corresponding to a slightly perturbed spectrum, say ¢ = {a — ¢,—a} with e > 0,
will not intersect the first octant at all. This observation perhaps explains why we
experience some numerical difficulty in constructing the second example in [18] by our
method. We shall report this difficulty in the next section.
Case 4 Type (2) limit points where

- - 0 a
)

It can be checked that the characteristic polynomial of ) is given by p(A) = A3 +
(40,2 + 5%+ 4a+ 4b))\2 + (4b3 + 16a® + 8a%b + 16ab)X + 32a3b. Clearly p(A) must have
one negative real root. The other two roots can be purely imaginary numbers only if
(40,2 + 0%+ 4a + 4b)(4b3 + 16a® + 8a2b + 16ab) = 32a3b. We, therefore, conclude that

for almost all values of a and b, all three roots of p(A) have negative real part.
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5. Numerical Results.

In this section we briefly report some of our numerical experiments with the dif-
ferential equations (18) and (19).

We use the subroutine ODE in [17] as the integrator. Both local control parameters
ABSERR and RELERR are set to be 10712,
accuracy in following the solution path. We examine the output values at time interval
of 1. Normally, we should expect the loss of 1 or 2 digits in the global error. Thus,
when the norm of the difference between two consecutive output points becomes less

This criterion is used to control the

than 107%, we assume the path has converged to an equilibrium point. The execution
is then terminated automatically. We always use X (0) = A as the starting value for
X ().

Example 1 We consider the spectrum ¢ = {5,0,—2, —2} which satisfies the so
called condition (K) in [10]. Let E denote the matrix whose components are all 1’s. We
report below various choices of Y(0) and the corresponding approximate equilibrium
points Y. We also report the approximate length of ¢ for convergence. These lengths
may depend on the initial values and the integrators, but they should be independent

of the computing machine.

(a) Y(0) = E, Y ~ Y(120) ~

.3035817600D 40
.5849737957D 40
.2062366873D 41
.2062366873D 41

.5849737957D 40
.5568227490D +0
.1257189377D+1
.1257189377D+1

(b) Y(0)=2E,Y ~ Y (120) ~

.2384681793D4-0
.5682102400D+0
.2008259297D+1
.2008259297D+1

.2054687518D4-0
5725349916 D40
.1995497108D+1
.1995497108D+1

.5682102400D+0
.6025576213D+0
.1336108181D+1
.1336108181D+1

(c) Y(0)=12E,Y ~ Y (120) ~

5725349916 D40
.6259762947D4-0
.1349043940D+1
.1349043940D+1

(d) Y(0) = 200E, Y ~ Y(120) ~

.2002571961D4-0
.5800168336 D40
2000122546 D +1
2000122546 D +1

.5806553062D4-0
.8075689805D+-0
.2354051323D+1
.2276884031D+1

.5800168336 D40
.6302391750D4-0
.1339883371D+1
.1339883371D+1

.8075689805D+-0
.5285565377D -1
.1981177836D+-0
.4150231898D4-0
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.2062366873D +1
1257189377D +1
.6979774550D -1
2069797746 D +1

.2008259297D +1
.1336108181D +1
.7948709968D —1
.2079487100D +1

.1995497108D +1
.1349043940D +1
.8427747670D -1
.2084277477D +1

.2000122546D +1
.1339883371D +1
.8475181443D —1
.2084751814D +1

.2354051323D +1
.1981177836D 40
.3084574129D +0
.2165951279D +1

.2062366873D+1
1257189377D 41
2069797746 D+ 1
.6979774550D -1

.2008259297D +1 |
.1336108181D+1
.2079487100D +1
.7948709968D —1 |

.1995497108D +1 |
.1349043940D +1
.2084277477D+1
.8427747670D —1 |

.2000122546D +1 |
.1339883371D+1
.2084751814D +1
.8475181442D —1 |

(e) Y(0) = a randomly generated symmetric positive matrix, ¥ ~ ¥ (240) ~

.2276884031D+1 |
.4150231898D +0
.2165951279D +1
5803162721 D —1 |




It is interesting to note that different choices of Y'(0) lead to different equilibrium
points. It is also interesting to note that it takes about the same length of integration
to reach convergence, although this observation is not conclusive.

Example 2 We consider the spectrum o = {3 —¢,1+¢,—1,-1,—1,—1} for 0 <
t < 1. It can be checked easily that the sufficient condition (K) in [10] is not satisfied.
But in [18] it is proved that the set ¢ is indeed the spectrum of the nonnegative matrix

A B
N._[BA]
where
1 01
A=11 0 1
1 1
and
1 1 1
B:(l?);t) 11 1
1 1 1

Considering ¢t = %, we find the matrix Q € R?1*2! at the point (X', X') with X = N has
one zero eigenvalue. Thus, this example is one of the exceptional cases we mentioned
earlier. Furthermore, the sum of elements of ¢ is equal to 0 for every value of £. A
slight perturbation of o, therefore, may make the spectrum unfeasible. We think this
is a situation similar to Case 3 discussed in the previous section. Indeed, the matrix
N has zeros on its diagonal, which indicates that N is at the intersection of n faces of
T (RY).

(a) Suppose Y (0) = N. It can be calculated that || X (0) — Y(0)|| = 5. We find
Y ~ Y (130) ~

[ .0000D+0 .9928D40 .9978D+0 .2279D40 .2279D+0 .2279D 40 7
.9928D+0 .0000D+0 .9985D+0 .1096D+0 .1096D+0 .1096D+0
.9978D 40 .9985D+0 .0000D+0 .1631D+0 .1631D+0 .1631.D+0
.2279D 40 .1096D+0 .1631.D40 .0000D+0 .1000D+1 .1000D+1
2279D+0 .1096D+0 .1631D40 .1000D+1 .0000D+0 .1000D+1
2279D+0 .1096D+0 .1631D40 .1000D+1 .1000D+1 .0000D+0

where ||X(130) — Y(130)|] = 7.9105 x 107!, We note this nonnegative matrix is
different from the one constructed in [18] even though Y (0) itself is already a solution
to Problem 3.

(b) Suppose Y (0) = E. Then || X(0) — Y(0)|| ~ 6.9642. We are surprised to find
that our flow does not converge to an equilibrium point of the form (X', X), but rather
X (t) converges to X ~

[ —.3000D+0 —.2041D-3 .7000D+0 .7000D+0 .7000D+0 .7000D407
—.2041D-3 .1500D+1 .b867D-3 .5b867D—-3 .b8T7D-3 .b867D -3
.7000D+0 .5867D—-3 —.3000D+0 .7000D+0 .7000D+0 .7000D+0
.7000D+0 .5867D-3 .7000D+0 —.3000D+0 .7000D+0 .7000D+0
.7000D+0 .5867D-3 .7000D+0 .7000D+0 —.3000D40 .7000D+0
.7000D+0 .5867D-3 .7000D+0 .7000D+0 .7000D+0 —.3000D+0 |
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while Y (¢) converges to ¥ ~

.5909-307 .33256D—-6 .7000D+0 .7000D+0 .7000D+0 .7000D+0 T
3325D -6 .1500D+1 .6963D—-3 .6963D—-3 .6963D—-3 .6963D—3
.7000D+0 .6963D -3 .7348—-307 .7000D+0 .7000D+0 .7000D+0
.7000D+0 .6963D—3 .7000D+0 .7348—-307 .7000D+0 .7000D+0
.7000D+0 .6963D—-3 .7000D+0 .7000D+0 .7348—-307 .7000D+0
.7000D+0 .6963D—-3 .7000D+0 .7000D+0 .7000D+0 .7348—-307

with || X (9120) — Y (9120)|| ~ .6708. It is interesting to note that the eigenvalues of
Y are {2.8,1.5,—.7,—.7— .7,—.7}. The true equilibrium point (X,f’) is where all
the small components in the second row and the second column except the (2,2)-
position of the above two matrices are zero. We have observed that all the significant
components of (X',f’) are reached as early as £ & 500. The overall slow convergence
is due to the slow rate of change of components in the second row and the second
column. To see this, we rerun the code by choosing

0

e =
e =
e =
e =
e =

OO O O =

so that the small components becomes zero. Then the corresponding orbit converges to
the limit point within ¢ ~ 80. This example also illustrates that an orbit (X(t),Y(¢))
may not necessarily have a limit point of the form (X', X)

(c) Suppose Y (0) = 12E. Then || X(0) — Y(0)|| = 72.0868. Again, we find that
X (t) converges to

[ —.3000D+0 —.2487D—-3 .7000D+0 .7000D+0 .7000D+0 .7000D40 7
—.2487D-3 .1500D+1 .7158D-3 .7158D-3 .71568D-3 .71568D-3
7000040 .7168D-3 —.3000D+0 .7000D+0 .7000D+0 .7000D+0
7000040 .7168D-3 .7000D+0 —.3000D+0 .7000D+0 .7000D+0
7000040 .7168D-3 .7000D+0 .7000D+0 —.3000D40 .7000D+0
7000040 .7158D-3 .7000D+0 .7000D+0 .7000D+0 —.3000D+0 |

while Y (¢) converges to

7206 -307 .7133D—-6 .7000D40 .7000D40 .7000D+40 .7000D40 T
.7133D -6 .1500D+1 .8494D—-3 .8494D -3 .8494D—3 .8494D-3
.7000D+0 .8494D -3 .7205-307 .7000D+0 .7000D+0 .7000D+0
.7000D+0 .8494D -3 .7000D+0 .7205—-307 .7000D+0 .7000D+0
.7000D+0 .8494D -3 .7000D+0 .7000D+0 .7205—-307 .7000D+0
.7000D+0 .8494D -3 .7000D+0 .7000D+0 .7000D+0 .7205-—307

with || X (7140) — Y(7140)|| = .6708. We believe the true limit point is the same as the
one in (b).

Example 3 We consider the spectrum o = {11,-3, -2, -2, —1,—1} which satis-
fies a sufficient condition in [10, Theorem 2.4]. Then,
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(a) With Y (0) = 2E, then || X(0) — Y (0)|| ~ 16.6132 and Y ~ Y (70) ~

.5514D+0
.1920D +1
2194D+1
.1620D +1
.1551D+1
.1920D +1

.1920D +1
.2243D+0
.2550D +1
.2265D +1
.1920D +1
.2224D+1

2194D+1
.2550D +1
.1158D+0
.3058D +1
2194D+1
.2550D +1

with || X (70) — ¥(70)|| ~ 4.3653 x 10~1°. A
(b) With Y(0) = 12, then || X (0) — Y (0)|| ~ 72.6360 and ¥ ~ Y (70) ~

.b741D+0
.1946D +1
.2206D+1
.1604D+1
1574D+1
.1946D +1

.1946D +1
.2292D+0
.2550D +1
.2230D+1
.1946D +1
2229D+1

.2206D+1
.2550D +1
.1100D +0
.3025D +1
.2206D+1
.2550D +1

with || X (70) — ¥(70)|| ~ 6.0561 x 10~1°.

.1620D +1
.2265D +1
.3058D +1
.3328D +0
.1620D +1
.2265D +1

.1604D+1
.2230D+1
.3025D +1
.2833D+0
.1604D+1
.2230D+1

16

551D +1 .1920D+1 7
1920D+1 .2224D+1
2194D+1 .2550D+1
.1620D+1 .2265D+1
.5b514D+0 .1920D+1
.1920D+1 .2243D+0 |

A1574D+1 1946D+1 7
1946D+1 .2229D+1
.2206D+1 .2550D+1
.1604D+1 .2230D+1
b741D+0 .1946D+1
.1946D+1 .2292D+0 |
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