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Abstract

A Markov chain with memory is no different from the convemt@ Markov chain on the product state space.
Such a Markovianization, however, increases the dimeastgrexponentially. Instead, Markov chain with
memory can naturally be represented as a tensor, whengatiséions of the state distribution and the mem-
ory distribution can be characterized by specially defimedor products. In this context, the progression of
a Markov chain can be interpreted as variants of power4ém@iions moving toward the limiting probability
distributions. What is not clear is the makeup of the “secdahinant eigenvalue” that affects the conver-
gence rate of the iteration, if the method converges at alstiBg the power method as a fixed-point iteration,
this paper examines the local behavior of the nonlinear majpidentifies the cause of convergence or di-
vergence. As an application, it is found that there existe@en set of irreducible and aperiodic transition
probability tensors where thg-eigenvector type of power iterates fail to converge.

Keywords: Markov chain with memory, transition probability tensagt®nary distribution, power method,
rate of convergence, second dominant eigenvalue
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1. Introduction

A Markov chain is a stochastic procegX; }{2, over a finite state spacg, where the conditional prob-
ability distribution of future states in the process demengdon the present or past states. The classical
“Markov property” specifies that the probability of transit to the next state depends only on the probability
of the current state. That is, among the states S, the model assumes that

Pr(Xop1 = si41|Xe = s¢,..., Xo = 52, X1 = 51) = Pr(Xyq1 = 5| Xy = s¢).

For simplicity, identify the states &= {1,2,...,n} and assume that the chain is time homogeneous. Then
a transition probability matri¥’ = [p;;] defined by

pij = Pr(Xi1 =i | Xy = j) 1)

is independent of and column stochastic. The above process is, generallaciesized as memoryl%sr;s
a well studied subject.

There are situations where the data sequence does depeadtoralues. As can be expected, the addi-
tional history of memory often has the advantage of offeangore precise predictive value. By bringing
more memory into the random process, we can build a higher dddrkov model. Interesting applications
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include packet video traffic in larger buffers [25], finanskmanagement [17, 18,127], wind turbine design
[24], alignment of DNA sequences or long-range correlatathdhic systems [19, 20, 28], growth of polymer
chainsl|[6} 12], cloud data mining [9,126], and many other$.[ABViarkov chain with memoryn is a process
satisfying

Pr(Xip1 = s Xy = 54,0, X1 = 51) = Pr(Xpq1 = seq1| X = 54500, Xpomp1 = Se-ma1)  (2)

for all t > m. By defining
Yi = (X6, Xeo1, oo, Xe—mg1) (3)

and by taking the orderegh-tuples of X values as its product state space, it is easy to see that #ie ch
{Y:} with suitable starting values satisfies the Markov propértyrinciple, upon exploiting the underlying
structure, the transition process can be analyzed with#issical theory for memoryless Markov chain. Note,
however, that the size of the aggregated chain, also knowreddarkovianization, is considerably larger —
of dimensionn™~!. Though mathematically equivalent, basic tasks such akkeeping multi-states and
other associated operations will be fairly tedfhus

In recent years higher-order tensor analysis have beconeffeative way to address high-throughput
and multi-dimensional data by different disciplines. Marlchain with memory fits naturally such a tensor
formulation. Assuming again time homogeneity, a Markovicheth memorym — 1 can be conveniently
represented via the ordei-tensorP = [p;,,....,,] defined by

Divig..im = Pr(Xop1 =01 Xy =2, ..., Xi—my2 = im), 4)
whereP is called a transition probability tensor. Necessarily aeehthe properties that< p;,;,. ;. <1
and that

n
Z Pivia..i, = 1 (5)
i1=1
for every fixed(m — 1)-tuple (is, . .., i, ). What is most interesting is that the transitions among tates

as well as the history of memory can be characterized by alhedefined tensor products. Our goal in this
paper is to recast such a process under the tensor formul&tiparticular, we are interested in understanding
the dynamics of the transition to the stationary distrilmutind the associated 2-phase power iteration scheme
in the context of tensor operations.

While some classical results in matrix theory can be extémdeurally to tensors, there are cases where
the nonlinearity of tensors makes the generalization farenembersome. The notion of eigenvalue is
one such incident. Depending on the applications, thersareral ways to mull over how an eigenvalue
of a tensor should be defined |3,/ 13/ 14, 23]. Markov chain wittmory and the associated transition
probability tensor can serve as a practical model for expipthe following two notions of eigenvalues and
their implications:

1. The classical concept of eigenvalues when charactgrthi@ evolution of the joint probability mass
functions.
2. The notion ofZ-eigenvalue [23] when approximating the evolution of tleesprobability distribution.

In this context, we study the role of the “second dominanemiglue” in such a dynamics of a Markov
chain with memory. We also intend to address some practsales arisen from a recent discussion in
[12] which proposes to short cut the computation of the atatiy state distribution by approximating the
stationary joint probability mass function. These issuetuide whether the assumption used in proposing
the Z-eigenvector computation is statistically justifiable éimelanatomy of the true cause that affects the rate
of convergence. The tool we are about to develop gives sosighininto this limiting behavior. It is possible
to generalize our framework to other types of eigenvaluetefosors, e.g., the so calléd-eigenvalues [21].

3See an example of vectorizing a Markov chain with memory 2datisn[3.
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For demonstration, we choose to concentrate only on thécapiph to the transition probability tensors in
this presentation.

This paper is organized as follows. We begin in Sedfion 2 wdtime basic properties of transition proba-
bility tensors. We review two types of dynamics necessanmitplved in a Markov chain with memory, each
of which entails a particular kind of tensor product. Thelation of the joint probability mass function
itself follows a scheme similar to the conventional powethmod, whereas finding the stationary probabil-
ity distributions of the state vector requires a 2-phasaiien. In Sectiongl3, we argue that an appropriate
rearrangement of the transition probability tensor revéiaé proper cause of convergence for this classical
type of evolution. In Sectiohl4 we address some concernsrafiem the recent notion of approximating
the stationary distribution by the dominafiteigenvector. We identify the true makeup of the “second”
dominant eigenvalue in the tensor setting. Most imporyamte show that the convergence of this shortcut
type of power method proposed In [12] is not always guarahiisecounter examples. Included in the Ap-
pendix is the local analysis in a similar spirit for matricednich probably offers an alternative explanation
of convergence for the classical power method .

2. Dynamicsinvolved in a Markov chain with memory

Needless to say, a critical ingredient in the Markov proeeis memorym — 1 is the joint probability
mass function of state variablég, . .. X;_,,,+2 overS at timet, denoted as

1, pmmg2 = [7 fﬁ) b (6)

where
t . .
7T’L(2?. o, Pr(Xt =12,... 7Xt—m+2 = Z’m)'

N2

Note thatll; 1, . +—m+2 IS an orderfm —1) tensor whose entries are nonnegative and satisfy the igenti

n

>oooal, =1 7)

With appropriate ordering, the joint probability mass ftioe IT; ;_;
distribution of the Markovianize@n — 1)-tuple (X4, .. Xt_m+2)

The definition of conditional probability naturally dic(mthat in a Markov chain with memory the prob-
ability distribution of the next stat&(;; based on memonk,, ... X;_.,+2 should be calculated in the
following way which naturally defines a kind of tensor protjutenoted by the symbad;.

+—m-+2 IS simply the typical state

.....

Lemma 2.1. Let the column vectax(**1) denote the probability distribution of the variabl,_ ; over the
state spacé&. Then

xtHD = p @, i1, tmmet2 = [(Pir,s i1, t—m+2)] € R, (8)

wherep;, . denotes thé, -th facet in thel st direction ofP and(, -) is the Frobenius inner product generalized
to multi-dimensional arrays.

We claim that entries of the next joint probability mass oIl 1 ;  t—mi3 = [wff“) ] of state

variablesX;1, ... X;_13 are given as follows, which defines another kind of tensodpect Once this
calculation is complete, it allows the chain to continueleviy.

Lemma 2.2. Given the joint probability mass functidfy ;i ... ¢—m-+2, if X;y; is obtained from the Markov
chain with memonyX,, . .. X;_,,,+2, then the entries dﬁtﬂ_,tw_,t,mw are given by

t+1) (t) : ; _
T i szm i Ty, Myereyfme1 =1,...,m. (9)

Tm=1



Proof. Observe that

n
IGi1 g, tmme3 = E Pr(Xep1, Xe, o ooy Xeoma 3, Xe—ma2 = im)

im=1

= Z Pr(Xop 1| Xe, oo, Ximmegs, Xemmg2 = i) Pr(Xe, .. Xy—mg3, Ximmg2 = im).  (10)

im =1

The expression{9) is simply the case when 1 =41, Xy = 42, ..., X;_mi3 = im_1.0

Note that the operation required [d (9) is different from ttseial moden tensor product defined in the
literature [10]. For convenience, denote this processréorditing the joint probability mass function by the
symbol

Wit pmmy3 =PI 1, t—my2- (11)

As an demonstration of this operater we can rewrite the relatiofal(9) for a Markov chain with megn®in
the matrix form as

Ht+17t - [P(Z, 1, Z)Ht,t_l(l, Z)T, e ,P(Z, n, :)Hm_l(n, Z)T] (12)

whereP(:, j,:) € R"*™ andIl,,_1(j,:) stand for thej-th facet in the2nd direction of P and thej-th row
of I1; .1, respectively. The summation over the indexs included in the matrix-to-vector multiplication.
In contrast, for a Markov chain with memory 1 (the so callednmoeyless case), the products andr are
identical andl,; = x(*+1),

Our understanding thus far is derived from elementary fribatheory. It implies that, for a Markov
chain with memory greater than 1, there are two dynamicshiegbin the evolving process. One is the
multiplication in the form of[(B) for the transition of stadkistribution. The other is the multiplication in the
form of (11) for the transition of the joint probability mafsction. To characterize the limiting behavior of
the state distributiofix(®}, it is necessary to understand the limiting behavior of tietjprobability mass
function{II; ;1. :—m+2}, andvice versa. Although the approach is standard, we fifeldiscussion in the
literature that analyzes these processes directly in ttiag®f tensors/[8]. In the following, we demonstrate
that the tensor notation is convenient for arguing the dyinsimehavior of Markov chains.

3. Power iteration for joint probability mass function

In this section, we elaborate further on the limiting bebawf the joint probability mass function
{I¢—1... +—m+2}- It will be instructive if we first consider the Markov chairittvmemory 2, which gives
rise to an order-3 probability transition tensor. The déston can readily be extended to the general case.

For a Markov chain with memory 2 to move forward, we have tocpss two sequences of probability
distributions hand by hand. At the time stemve have a distributiofl; ,_1 = [m;,:,] for memory(X,, X;_1)
overS x S. Then the next stat&, . ; overS based on this memory has a distributiot™) defined by the
tensor product

X(t+1) =P ®1 thtfl. (13)

In the meantime, the memory distribution is also evolved int
i1, =POIL;—1. (14)
We use Figur€ll to depict the interaction and the involveroétite two distinct tensor multiplications.

First, given memoryX;, X;_1), the probability of being moved into state at stept + 1 is given by the

double sum .
$§f+l): Z pi1i2z‘377§23- (15)

ia,iz=1

4



13

/\,4 rowIL; ;—1(j,:)

joint probability mass functiofl; ;_;

12

~___—— transition probability tensaP

19

PGy gy)

i1
Figure 1: Update of joint probability mass functidh 1 1,; from IT; ;1.

Plotting the matrixIl;;—; as the separated horizontal (magenta) plane above the lbakicepresenting
the transition probability tens@?, the mechanism for computing the distributiofit!) for the state variable
X1 can be thought of as taking the Frobenius inner product afidueix I1; ,_; with each (horizontal) cross
section of the tensdP in the 1st direction. Similarly, the probability of having memak 1 = i1, X; = 49
at the steg + 1 is given by

7r§f£1) = Z Piligigﬂg)ig, (16)
iz3=1
which is the inner product of thg-th (blue) row ofll, ,_; with each (blue) row of the vertical (green) cross
section of the tensdP in the 2nd direction.
It is easy to observe the relationship that

it =y Ay, (17)

io=1

So the limiting behavior of the sequenge(‘+1)} follows from that of the sequend@l, ., ;}. Indeed, such
a “row sum” relationship holds in general, which we statedlefs. So, for limiting behavior, it suffices to
first understand the dynamics of the iterationl (11).

Lemma 3.1. For a Markov chain with memony: — 1, the state probability distribution is related to the joint
probability mass distribution via

A= D (18)

i1 9192 0m—1"

Proof. By definition, the ordefm—1) tensoll;y1 ¢, . 1—m+3 Stands for the joint probability mass distri-
bution of (X¢11, X4, ..., Xt—m+3), the relationship{18) is simply the marginal distributiointhe variable
Xt+1 . D

For the case of memory 2, we may rewrite this updating meshafé) for each fixed, in columns via
a sequence of matrix-to-vector multiplications

Ht+17t(2,i2) :'P(Z,Z’Q,Z)Htt_l(ig,:)—r, ig = 1,...7’L. (19)
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At first glance, such a scheme seems to be the familiar povvérmhpplied to the matri(:, i2,:). The
subtle difference is at the “transpose” involved[inl (19)otder to repeat the “matrix-to-column” multiplica-
tion for a fixedi,, we must know every other “rows” éf;; ; which is not available until the entire sequence
of multiplications in the form of[(119) has been completedother words, only by treating the operati@rin
(I4) as a whole “tensor-to-tensor” multiplication, we mesat the iteration as a power method. This is not
an ordinary power iteration.

We certainly can recast the power-like iteratibn] (14) intkaal context of matrix operations as follows.
This should manifests the complication of the “second damirigenvalue” of the order-3 tensBr See also
[8] for a similar discussion. Letec(M ) denote the conventional vectorization of the mafrixby stacking
its columns into a single column vector. L@tbe then? x n? permutation matrix that does the swapping of
indices

G—Dn+i—(Gi—-n+j, 1<ij<n.

Also, let B denote thex? x n? block diagonal matrix whosg-th diagonal block is precisely thex n matrix
P(:,i2,:). Then the operation is equivalent to the matrix-to-vector multiplication

vec(Il;11,) = BCvec(Il; —1). (20)

The schemd(20) is exactly the power method applied tathe n? matrix A := BC. Itis not difficult to
check that4 has the block structure

P:,1,1) 0 ... 0 |P(:1,2) 0 ... 0 |...|PG1Lnm) 0O ... 0
0 P21) 0 0 P(,2,2) 0o |...| o PG2mn 0
A= . ; : . . . : ; . . : . )
0 0 .. P(yn, 1) 0 0 L P(Gn,2)) . 0 0 ... P(:,n,n)

where eachP(:, 1, j) is a column vector ilR™. By (@), A is itself column stochastic. By 7yec(Il; ;1)
is itself a distribution vector. This is one way to “unfoldh @rder-3 transition probability tens@? into a
column stochastic matriXd. From this point on, the following results follow from whaevalready know
about the conventional power method applied to the matrix

Lemma 3.2. Suppose thaP is the transition probability tensor of a Markov chain witremory 2. Assume
that the Perron root\; (A) = 1 of the correspondingd is simple. Then, starting with any generic initial
memory distributioil, _,, the following statements hold.

1. The convergence of the joint probability mass functionegaed by[(I¥) is guaranteed.

2. The limit pointﬁ of joint probability mass functions is the de-vectorizataf the normalized dominant
eigenvector of4 under the 1-norm.

3. The stationary distributiorx of the states under this Markov chaln{13) with memory 2 &xdsd is
the row sum ofl.

4. The rate of convergence is the modulus of the second domeigartvalue of the matrix.

Though we shall not carry out the “unfolding” explicitly,glabove argument is generalizable to Markov
chains with memory higher than 2. One quick way to look at $fitisation is to regard the Markov process
of P acting on the joint probability mass function via the muitption @ defined by[(Ill) as a linear map
from the spac&™ ! of order{m — 1) tensors téI'" ! itself. Any finite dimensional linear relationship can
always be expressed in terms of a matrix-to-vector mudtigion. Therefore, the convergence of the sequence
{I¢ ¢—1,..+—m—+2} generated by the iteration {11) can be guaranteed. Theudliork is to construct the
corresponding column stochastic matixonce we specify how the tenslig ;1 . +— 2 i to be flattened
into a vector. The latter depends on how the multi-dimeradigtatesX;, . .., X;_,+2 are to be ordered.
When all the details are done, then the “second dominanheddae” of the resulting matrixd determines
the rate of convergence.

4For a quick overview of the power method and its convergesee the Appendix in Secti@ 6.
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Thus far, we have argued that the Markov evolution for thatjprobability mass function naturally
induces a power-like iteration under the multiplicatian The corresponding map : T"~! — T™ lis a
linear transformation. In this context, the notion of eigane for the tensoP should be defined in exactly
the same way as we usually do for square matrices, barringethdiar operatiom for multiplication. Such
an approach is not always the one adopted in the literatuee.inStance, we ponder upon the so called
Z-eigenvector and compare it with the dominant eigenveaiders in the next section.

4. Power iteration for Z-eigenvector computation

The relationshid{8) characterizes the dynamics of thegiiity distributionx 1) in terms OffLs t—1,.. t—m+2
which itself evolves according tb (IL1). This is by far the trfesmal way to describe the actual evolution of
the state distribution for a Markov chain with memory. By tiouity, the stationary distribution of the states
satisfies the same relationsHip (8) with the limiting joimdipability function of [11). For the latter, we have
postulated its existence through the standard argumetitéggower method in the preceding section.

Recently it has been proposed to circumvent the 2-phaseatemolprocess by assuming directly that a
limiting joint probability distribution of the high-ordeévlarkov chain is the Kronecker product of its limiting
probability distribution[12]. The rationale is that if tsequencéx®} has ever reached a stationary distri-
butionx over.S, then it seems reasonable to assume that the limiting joatigbility mass function be of the
form

lim thtflpmrt,erQ =X (24 X ®R...Q0 X. (21)
t—o00 N——
m—1times

Under this assumption, it is deduced frdr (8) that the statip distributiorx should satisfy the equation
P®i1zRz2Q..0z=12 (22)

which is conveniently abbreviated as
Pz =z (23)

in the literature. The solution t@ (R3) is called tleeigenvector associated with, in this case, the dhit
eigenvalue ofP [2,[13, 14| 23]. It can be shown that a solution[fal (23) doesterid that entries of any such
a solution are all positive, iP is irreducible [12, Theorem 2.2]. Under some additionalditons on?P, it
even can be shown that the solution is unique [4, 12].

In addition toZ-eigenvalues, there are other ways to define eigenvaluesdomen tensor [13, 14, 23].
Accordingly, a variety of methods has been proposed for eagimg eigenpairs of a tensor |5,/112, 15} 21, 30,
31]. Perhaps the simplest means for finding Zreigenvectot in (Z3) is an iterative schemef the form

Zpi1 = Pzzlfl, (24)

where the starting poim, is an arbitrary probability vector. Note that eagh ; remains to be a probability
vector under exact arithmdficUnder some mild conditions, the sequereg} does converge linearly to a
solution of [Z3).

While studying the nonlinear equatidn {23) and the dynamfigower-like iteration[(24) is of mathemat-
ical interest in its own right, we want to point out that thare serious issues associated with the assumption
(23) for Markov chains with memory.

5Thoughz;, of remains to be a probability vector, it does not have thessareaning ag () which represents the distribution of the
random variableX; at stept. We thus use different notations.

6 Z-eigenvectors are not scaling invariant for a general ter@mcare must be taken when performing the normalizatioahvik an
essential part of a power method. For our applicationsteatiies are automatically of unit length in 1-norm, so tliswalization is not
needed in exact arithmetic.



e Such an assumption inadvertently implies that the limidiggribution of memory is a symmetric tensor
and is of tensor rank one, which by our numerical experimeitts (11) is not the case in general. A
consequential fallout is that the stationary distributicinom the real Markov chain {8) does not satisfy

(23) at all.

e One might think of satisfying [2B) as a certain kind of approximation to the tationary distribution
x of the Markov chain with memory. Still, in our numerical exipeents, we find thaz™ ! is not the
best rank-1 tensor approximation to the limiting distribatlI.

e Unlike the “almost sure” convergence of power iteratlor)({Z0), or even the general{11) described in
the preceding section for the joint probability mass fumetiwe find that the set of transition probability
tensors for which the power-like meth@d[24) fails to cogesis nonempty and, more importantly, has
a nonzero measure in the ambient space.

More details will be given in the subsequent discussion.

Still, the problem of finding theZ-eigenvectors of a general teng®y whereas the equation (23) is only
a special case, remains challenging and interesting. $ee&xémple, an interesting discourse lin [2] on
counting the number of -eigenvalues. In the next two subsections we offer two teghikt might help
advance the understanding when restricted to Markov clidthamemory. First, we investigate what part of
a transition probability tensd? affects the rate of convergence of the power-like iteraf@h), if it converges
at all. Second, we analyze a situatiorfdfvhere the iteration does not converge at all.

4.1. Attribute of the second dominant eigenvalue

For a square matrix, it is known that its second dominant eigenvalue affectveayence of the power
method. We are curious to know whether there is a similaionaif the second dominant eigenvalue of the
tensorp.

By casting such a power-like method for the domindr¢igenvector as a fixed-point iteration, we gain
some insight into the cause of convergence or divergencg-iigenvector computati(ﬂl In the following,
we work specifically on the transition probability tengarWith slight modification to take into account that
Z-eigenvectors are not scaling invariant, the approach eaextended to general tensors. Our main point
is to show that for a power-like iteration on tensors the sdceigenvalue comes into play in a far more
complicated way.

Let A"~ denote the standard simplexi¥, that is,

An_l = {Z S Rn|zz > 07 andz Z; = 1} (25)

=1
Define the maff : R®» — A"~ ! by

Pzl

S ey

(26)
whenever the denominator is not zero. Note fat. -+ = Pz™ ! mapsA™~! into itself. By the Brouwer
fixed-point theorem, there exists at least one pairt A"~! such thatf(z) = z. We are interesting in
knowing how fast the iteratiol (24) converges to such a fix@dtpif it converges at all.

We have already introduced one kind of tensor producin (8), namely,

n
n

m—1 . _
P#z®- - -®z=7Pz = E Purio,..im Lig =" Tiypy ) (27)
h\/_/ X -
m — 1times 2,0 0m =1 vi=1

"The same technique offers an interesting base-free arguimeanalyzing the conventional power method applied torives.
Readers might want to read the Appendix first to see how suciea &nalysis plays out without the burden of dealing withtmu
dimensional arrays.
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where the subscript i®; indicates that the first index i is excluded from the summation. This tensor
product ends up with a column vector whose entries, for coieviee, are indexed hy;. In a similar way,
we now introduce another kind of tensor prodagt defined by

n
n

Pouz®- - -®z:= E Purin..vg.imTin ** " Ty *** Tiy, ) (28)
a/_/ by
m — 2times 12,0000y, =1 v1,ve=1

wherei, means that quantities associated with this particulanirade taken out from the remaining list. The
double subscript i®1, indicates that tha-st and the/-th indices inP are excluded from the summation.
This product results in an x n matrix whose entries are double indexed by integersy,). It is easy to
verify that for any giverh € R™ we can write

Pez' ?ohez™ ' = (P®, 2" ?)h, (29)

where the right-hand side is a matrix-to-vector multigiica.
We now calculate the Jacobian matfi€(z). First, the Fréchet derivati atz € A"~ acting on an
arbitraryh € R™ is easy to obtain by the generalized Leibniz product rule,

(Pz" ) h=P® hoz" 2 +P®z0hez" ... + P z" 20h. (30)
By using [29), we can represent the action of the derivagperator in terms of matrix-to-vector multiplica-
tion:

TOP®yz®---Qz) (P2 1) — Pz 1T (Y P @yz® - Qz
Df(z)h:((zm 1¢ X <7Dzn>”’1>2 (Xi=a P e ))h (31)

and thus retrieve the Jacobian information. In particidam fixed poinz € A”~!, the equation(23) is
satisfied and the corresponding Jacobian matrix is redwcte: tmatrix

Df(z)=(I-71") (ZP@uz@ ) (32)

Q

Lemma4.1. For generic transition probability tensdP, the spectrum of the Jacobian mati (z) is com-
posed of zero and those eigenvalues of the m&trivhose moduli are strictly less than — 1.

Proof. Clearly, each ter® ®1,z ® - - - ® z in the summation fof is itself a column stochastic matrix.
Observe further that

0z = <ZP®uz® ) ZPN’” L= (m— 1)z (33)

(=2

Thus\; = m — 1 is the dominant eigenvalue 6fwith the right eigenvectat. It follows from (32) that zero
is an eigenvalue of the Jacobialf (z) with z as the corresponding right eigenvector.

Supposew; € C" is a left eigenvector of) with eigenvalues\; € C, i = 2,...,n. Without loss of
generality, we may assume th@tis a positive matrix generically. By the Perron-Frobenhesarem, the
Perron root\; is unique and)\;| < m — 1,7 = 2,...n. It follows thatw, z = 0 and, hence,

w,; Df(z) =w, (I — le)Q =w'Q = \w,. (34)

So (\;, w;) is a left eigenpair ofDf(z). In other words, if the transition probability tens@ris generic
in the sense that the corresponding maftiis positive, then the spectrum of the Jacobian matHXz) is
{0,2a,..., A\ }.0O
Let A2 (€2) denote the second largest eigenvalue in modulus of thexnsatirhen, by an argument parallel
to that outlined in the Appendix, we draw the following camsibn.
9



Theorem 4.1. Assuming that the transition probability tensBris generic in the sense that the correspond-
ing Q is positive, then the limiting behavior of the iteration Ime tpower method (24), if the iteration con-
verges at all, has the rate of convergene((2)| which must be less than 1.

We summarize our observations as follows. The evolutionaiédistributions in a memoryless Markov
chain is equivalent to the conventional power method agpbethe probability transition matri® defined
in (@) directly. If P is positive, then the second dominant eigenvalue of theixn&tralone determines the
rate of convergence to the stationary distribution. Lilsaythe evolution of joint probability mass functions
in a Markov chain with memory induces a power method in thenf{@4) applied to a transition probability
tensorP defined in[(4). It is the second dominant eigenvalue of theefl@d matrix4, which depends o®
only, that determines the rate of convergence to a limitdigtjprobability mass function and, hence, to the
stationary distribution of the states. In contrast, if toevpr-like method({24) is applied to the same transition
probability tensofP, then it is the second dominant eigenvalue of the mdtrikat affects the convergence
to a solutiorz of the equation{23). Recall thétis defined by

Q=Y Py (35)
=2

which involves a summation over the products of differencefa of P with the fixed pointz. Such a com-
bination is far more complicated than the matrix case. Surchralerstanding of the cause governing the
iteration [24) is interesting and is probably new.

4.2. Examples of divergence

We have already pointed out that(2) = m—1 and, for convergence, it is necessary tha()| < 1.
It immediately becomes suspicious that the two dominargreiglues of2 from a givenP can always be so
widely separated. In this section, we give a family of exaeamf a transition probability tensor showing that
|A2(£2)| > 1 and hence the power-like iteratidn{24) does not converge.

Consider an orde3-transition probability tensaP over S = {1, 2} with probabilities depicted in Fig-
ure[2, whered < a,b,c,d < 1 and assume: + d # b + c. Denote its dominanf-eigenvector as

c, d

1—a 1—b

Figure 2: Order-3 transition probability tensor over 2esat
7 = [2,1— 2] . Then the equatiof (23) is equivalent to the quadratic éguiat
(a—b—cH+d)2>+(b+c—2d—1)z+d=0

whose two real solutions are trivially

2d+1—-b—cE/(b+c—1)2+4d(l —a)
z =

2(a—b—c+d) ' (36)
10



Given values ofi, b, ¢, d, we are interested in the root satisfyig< = < 1. By our theory, the corresponding
Q is given by

b+c+ (2a—b—c)z 2d+ (b4 c—2d)z

Q=P@n2+Pezz = (—2a+b+c)z+2—-b—c (2d—b—c)z—2d+2

37)

which has eigenvaluesandb + ¢ — 2d + 2(a — b — ¢ + d)z. Thus the second eigenvalue®fs

14+ /(+c—1)2+4d(1 - a),

depending on which is used.

As an example, take = 0 andb = ¢ = d = 1. Thenz = *1%\/5 and)\; = 1 — /5. In this
case, therefore, the power-like iteration cannot gendnatéimiting stationary distribution vectarbecause
[A2] > 1. In fact, our numerical experiment indicates that the tesa@enerated by the power-like method
will have two accumulation pointd,0]" and[0,1]" and that the iterations move back and forth between
these two points. The dominant eigenvedas repelling equilibrium. By continuity, we see that a small
perturbation ofa, b, ¢, d while keeping them positive will not change the fact that tberesponding\, has
modulus larger than 1. This observation suffices to estaltilis following result.

Theorem 4.2. There exists an open set of positive transition probabi#tysors with nonzero measure for
which the power-like iteratiori_(24) will not converge.

For instand® takea = e andb = ¢ = d = 1 — €. Then the correspondirfg(¢) has its second eigenvalue

182 —12e+5 < —1forall 0 < e < 37,

4.3. Deviation from true stationary distribution

Even if the given transition probability tens@t is such that the iteratiod (P4) does converge to the
dominantZ-eigenvector, we question the rationale of the assumpfdih (Now that we understand that a
true Markov chain with memory should evolve with a dynamiasthe sequence of vecto{s()} in the
sense of[(8) and a dynamics for the sequence of ted$brs_1 . :—m+2} in the sense of(11), we perform
some numerical simulations to investigate whether theaestatistically significant deviation between results
based on this assumption and those from the true Markov ggoce

Denote the limiting joint probability mass function, thetsdnary distribution, and the dominagat
eigenvector bylI, x, andz, respectively. To simulate the general behavior of thesfiies, we have to
try out large samples of Markov chains. It will be sufficigntiformative to consider the Markov chain with
memory 2. Toward this goal, the columns (in the sens&lof @Bf)@order-3 transition probability tens@y
can be thought of as coming from a uniform distribution ower simplexA™—1.

Lemma4.2. Let P be a random order-3 tensor with independent and identiadiyributed columns from
the simplexA™~!. Then the random vectofsandz have the same expected value

.
E(X) = E(z) = [%ﬂ : (38)

Also, .
E(I) = 1, (39)

wherel is then x n matrix with all ones.

8For this example, the valugdefined by formula (2.2) in_[12] is equal to 2, but we do not severgence. This is in contrast to the
assertion of Theorem 3.1 in [12].
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Correlation between X and z

Figure 3: Plots ok versusx over 500 randomly generated order-3 transition probghiinsorsP. Colors represent different rows in
the vectors.

Proof. Each ofll, X, andz depends ofP and, therefore, is itself a random variable of some distioinis.
We need not specify the exact distributiond bfx, andz. However, because any column permutatiofPof
leads to the same distribution &%, any row permutation of the vectar(or z) leads to the same distribution
of x (or z). All entries of the vectok (or z) must share the same contribution. This symmetry imgli&. (3

Together with the additional fact that any “row” permutatiaf 7 leads to the same distribution Bf we
conclude that all entries of the limiting joint probabilityass functioril share the same contribution and,
hence,[(3B) follows

The proof for [38) does not rely on the order of the tensor. W ithhus say that the dominant Z-
eigenvectorz is always an unbiased estimator of the stationary disiobut of the Markov chain with
memory. However, for Markov chains with memory 2, we obtaia difference

EX?) -EI) =EEX") —-EFERX)" =EEXX") - E@)EZ)" = cov(X) (40)

which clearly indicates the assumptign(21) for a Markovichvth memory 2 is off by an average of the
amountcov(z). For Markov chains with memory higher than 2, the differebetweent(x™ 1) andE(IT)
is algebraically more complicated.

As an illustration, we randomly generate 500 test data dfec R°. Each data set includes one order-3
transition probability tensoP and two starting distribution vectoss_ ; andxg. Entries in the data are gen-
erated independently from the identical uniform distribntover the intervalo, 1] and then are normalized
accordingly to meet the stochastic requirements. Let tHere2 tensofl, _; = x_; ® xo represent the joint
probability mass function for the starting memory. Aftelirgpthrough the iterative processes described in
the preceding sections, we gather the limiting points oé¢htest data and compare.

We first plot the correlation betwe&mandz. Each circle “0” in Figur€3 with one specific color represent
one pair of entrie§z;, z;), i = 1,. .., 5, from the limiting distribution& andz of the same order-3 tenspr.

We already know that all entries &f(andz) share the same distribution, so it does not matter if wethiot
regressions of all entries together. Tdlle 1 summarizestression valueR, slopes\/, andz-interceptsB
for each row. The higlR values suggest that it is reasonable to assumexthatlz are linearly correlated.

(T1,71) | (T2, 22) | (¥3,23)) | (T4,,2a) | (T5,,725)
R 0.9790 | 0.9729| 0.9748 0.9727 0.9750
0.9343 | 0.9332 | 0.9414 0.9384 0.9488
B 0.0129 | 0.0134 | 0.0115 0.0128 0.0102

Table 1: Regression valud®, slopesM, andz-intercepts
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Histogram of ||X — z|| Histogram of ||X* — 2°||
90 90

Histogram of [|X2 — TI|| Histogram of [|z2 — TI||
80 90

Figure 4: Comparisons between the stationary distribui&i@nd the dominanf -eigenvectofz, and the corresponding distributions of
memory.

Regardingk andz as the output from two distinct procedures of the same ififaut might be curious
to know how they differentiate from each other case by case.tiWs plot the histograms of the 2-norms
Ix —z||, ||x* — I1||, ||z° — 11||, and||x? — Z2|| out of the 500 random tests in Figliie 4 over the same scale.
Without delving into rigorous statistical testing, we cae shat the variation — x|| and||z? — x?|| shown
in the upper drawing does suggest that the two stationatsitilifonsz andx might be called statistically
close [1], which is also suggested by the closeness to onfeeafegression slop&/ and to zero of the-
interceptsB in Table[1. However, the variations in the lower drawing aade that the difference between the
true limiting joint probability mass functiofl and the assumed limiting joint probability mass functin
by (21) is statistically more significant. In fact, in the eas Markov chains with memory 2, we have argued
that the difference is averaged at the amawr{x).

Furthermore, based on the same experiment with 500 randtanabave, we observe that every limiting
joint probability mass functiofil is of full matrix rank, whereas the matrié is of rankl. We notice that one
singular value ofI is always significantly larger than the other four singulaies. See Figufe 5. However,
we have also checked that the matzixis by no means the best rank-1 approximatiofltm the sense of
minimizing ||IT — z2|| subject toz € A*. Barring this rank difference, it remains open for intetption
of whetherz can really be used as a reasonable approximatiehitogeneral. If yes, to what degree of
statistical closeness is it acceptable?

5. Conclusions

A Markov chain with memory has a natural representation aaresition probability tensor. The Markov
process involves the progression of two types of distramgi The probability distribution of the states
evolves as a tensor produet in the way defined in({8), whereas the joint probability maissrithution of
the memory evolves as another tensor produat the way defined in{9). The latter is essentially the same
as the conventional power method, whereas the stationsiryldition of the states can be obtained from the
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Figure 5: Logarithmic plot of singular values of the stationjoint probability mass functiofl.

“row sum” of the stationary distribution of the memory. Weethfore conclude that for a generic Markov
chain with memory the distribution of the states does cagww a stationary distribution.

We also provide a statistical basis that in average therdiffee between the true stationary distribution
and theZ-eigenvectot calculated from the assumed shortcut membry (21) is statilstindistinguishable.
However, such an assumption on memory is questionable ailEneed by[(400). We further demonstrate by
a family of transition probability tensors that the powigeliteration [2#) forZ-eigenvector calculation may
fail to converge.

In all cases, we propose a general approach by casting ahg pbiver-like iterative schemes as a fixed-
point iteration and draw conclusion on the limiting behadbsuch an iterative method via the spectrum of
the associated Jacobian matrix. The insight obtained fomal lanalysis on the particular mattixdefined
in 32) and the effect of its second dominant eigenvalue ibgyes new.

6. Appendix: Convergence of the power iteration for matrices

Suppose that a given matrig € R™*" has a dominant eigenvalug in the sense that its spectrum
satisfies| 1| > |A2| > [A3] > ... > |A\]. Itis well known that the sequendex;} generated from the
iterative scheme

{ Wiy = Axg, (41)
i Wk1
Xk+l = Twienl?

converges to the unit eigenvecter associated with\;. This procedure, known as the power method, has
been the most rudimentary means for eigenvalue computafibough the power method is not effective
per se, its fundamental principle sheds light on more ade@neethods. For example, the Rayleigh quotient
iteration which is a variation of the shifted inverse powesthod continues to play an integral role due to
its rapid convergence [22], whereas the shiftg® algorithm which can be interpreted as an application
of the power method on subspaces with reorthogonalizaianddern day’s power horse for eigenvalue
computation|[29]. In certain cases, the power method resnairbe useful for computing the eigenvector
associated with the dominant eigenvalue of a matrix. Onk Bstance is in the application of Markov chain
analysis where the stationary distributisrsatisfyingPw = 7 for a column stochastic matrik is needed.
Recall that the valué is universally the dominant eigenvalue of any stochastitrimyaso 7 is the dominant
right eigenvector.

The ratio|§—f| is widely recognized as the convergence rate of a power rdetlibence defining the
important role of the second dominant eigenvalgen eigenvalue computation. The search engine Google,
for example, exploits this knowledge by introducing a peyation to force a bound ohy of its hyperlink
matrix which is stochastic. The power method is then emplagepproximate the corresponding stationary
distributionsr, known as the PageRank, to help rank the relative importahagarticular web page [11].
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A typical way in numerical linear algebra to argue the rateafvergence of the power methad](41) for
a matrix A is to assume the existence of a basis of eigenvestars . vl Upon expanding the starting

vector
n
X = Z C;V;
=1
in terms of the basis, the iteratg can then be expressed as
k n A%
Cl)\l vy + Zi:Q C; (A—i) \'Z}
k n x ) .
Cl)\l v + Zi:Q C; (k_;) V;

Hence, we see that the non-essential quantities decaymafrapproximatel)lri—f |. Such a loose argument
is conceptually acceptable, but can hardly be generalzéshisors because the tensor space may not have a
basis of eigenvectors. An alternative argument is to use-pant theory. We have done so for tensors in
Sectior 4.1L. We now demonstrate how it applied to matrices.

Let $”~! denote the unit sphere IR™. Without loss of generality, supposkis nonsingular. Define a
mapf : "1 — $" ! by

X =

Ax
f(x) = —=_
™) = TixT,

where the normalization by the 2-norm is only for conveneénthe power method can be cast as the fixed-
point iteration

(42)

Xp+1 = £(xp). (43)

Sincef is a continuous function mapping from a compact set intdfjteg the Brouwer fixed-point theorem,
there is a poink € $"~! such thatf(x) = x. In particular, by switching the sign if necessary, we may
assume that the dominant unit eigenvestpiis one such a fixed point. We now describe the local behavior
of f nearbyv;.

Forx;, sufficiently neaw;, we have the linear approximation

X1 — vi = £(xx) — £(v1) = DEf(v1)(xx — v1), (44)
where it is easy to see that the Jacobian matrikisfgiven by

A AxxTATA
| Ax]|2 | Ax|13

Df(x) = (45)

It follows that atv; we have

Df(vy) = ﬁ([ —viv] )A. (46)

Obviously,v] Df(v1) = 0. Letw; € C" be any eigenvector ofl " associated with eigenvalue € C,
i =2,...n. Thenitis known thatv, v; = 0 since); # \;. Thusw, Df(v;) = ﬁw? In all, we make
the following conclusion.

Lemma 6.1. The spectrum of the Jacobian matiid (v, ) is precisely{o, 22 l*—* i—j‘}

PYIRRECIERRRE

9In case that the matrix is defective, some arguments can still be made. See, formranetailed discussions in the classic book
[@]. The local analysis presented in this section, howed@es not require such a basis.
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As a simple demonstration, consider the generic case that#itrixD f (v1) has a spectral decomposition
Df(vy) = U~'AU. Then by [4#%) we can write

U(xpi1 —vi) = AU(xx — v1), (47)

implying that
A2
1T Gek41 = vi)lloo & |37 IV G = Vi) oo (48)

Itis in this sense that once; is sufficiently close tovy, thenxy; is even closer and that the rate of linear
convergence is given by the ratigf |
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