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Abstract

A Markov chain with memory is no different from the conventional Markov chain on the product state space.
Such a Markovianization, however, increases the dimensionality exponentially. Instead, Markov chain with
memory can naturally be represented as a tensor, whence the transitions of the state distribution and the mem-
ory distribution can be characterized by specially defined tensor products. In this context, the progression of
a Markov chain can be interpreted as variants of power-like iterations moving toward the limiting probability
distributions. What is not clear is the makeup of the “seconddominant eigenvalue” that affects the conver-
gence rate of the iteration, if the method converges at all. Casting the power method as a fixed-point iteration,
this paper examines the local behavior of the nonlinear map and identifies the cause of convergence or di-
vergence. As an application, it is found that there exists anopen set of irreducible and aperiodic transition
probability tensors where theZ-eigenvector type of power iterates fail to converge.

Keywords: Markov chain with memory, transition probability tensor, stationary distribution, power method,
rate of convergence, second dominant eigenvalue
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1. Introduction

A Markov chain is a stochastic process{Xt}∞t=0 over a finite state spaceS, where the conditional prob-
ability distribution of future states in the process depends upon the present or past states. The classical
“Markov property” specifies that the probability of transition to the next state depends only on the probability
of the current state. That is, among the statessi ∈ S, the model assumes that

Pr(Xt+1 = st+1|Xt = st, . . . , X2 = s2, X1 = s1) = Pr(Xt+1 = s|Xt = st).

For simplicity, identify the states asS = {1, 2, . . . , n} and assume that the chain is time homogeneous. Then
a transition probability matrixP = [pij ] defined by

pij := Pr(Xt+1 = i | Xt = j) (1)

is independent oft and column stochastic. The above process is, generally characterized as memoryless2, is
a well studied subject.

There are situations where the data sequence does depend on past values. As can be expected, the addi-
tional history of memory often has the advantage of offeringa more precise predictive value. By bringing
more memory into the random process, we can build a higher order Markov model. Interesting applications
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include packet video traffic in larger buffers [25], finance risk management [17, 18, 27], wind turbine design
[24], alignment of DNA sequences or long-range correlated dynamic systems [19, 20, 28], growth of polymer
chains [6, 12], cloud data mining [9, 26], and many others [16]. A Markov chain with memorym is a process
satisfying

Pr(Xt+1 = st+1|Xt = st, . . . , X1 = s1) = Pr(Xt+1 = st+1|Xt = st, . . . , Xt−m+1 = st−m+1) (2)

for all t ≥ m. By defining
Yt = (Xt, Xt−1, ..., Xt−m+1) (3)

and by taking the orderedm-tuples ofX values as its product state space, it is easy to see that the chain
{Yt} with suitable starting values satisfies the Markov property. In principle, upon exploiting the underlying
structure, the transition process can be analyzed with the classical theory for memoryless Markov chain. Note,
however, that the size of the aggregated chain, also known asthe Markovianization, is considerably larger —
of dimensionnm−1. Though mathematically equivalent, basic tasks such as bookkeeping multi-states and
other associated operations will be fairly tedious3.

In recent years higher-order tensor analysis have become aneffective way to address high-throughput
and multi-dimensional data by different disciplines. Markov chain with memory fits naturally such a tensor
formulation. Assuming again time homogeneity, a Markov chain with memorym − 1 can be conveniently
represented via the order-m tensorP = [pi1i2...im ] defined by

pi1i2...im := Pr(Xt+1 = i1|Xt = i2, . . . , Xt−m+2 = im), (4)

whereP is called a transition probability tensor. Necessarily we have the properties that0 ≤ pi1i2...im ≤ 1
and that

n∑

i1=1

pi1i2...im = 1 (5)

for every fixed(m − 1)-tuple(i2, . . . , im). What is most interesting is that the transitions among the states
as well as the history of memory can be characterized by specially defined tensor products. Our goal in this
paper is to recast such a process under the tensor formulation. In particular, we are interested in understanding
the dynamics of the transition to the stationary distribution and the associated 2-phase power iteration scheme
in the context of tensor operations.

While some classical results in matrix theory can be extended naturally to tensors, there are cases where
the nonlinearity of tensors makes the generalization far more cumbersome. The notion of eigenvalue is
one such incident. Depending on the applications, there areseveral ways to mull over how an eigenvalue
of a tensor should be defined [3, 13, 14, 23]. Markov chain withmemory and the associated transition
probability tensor can serve as a practical model for exploring the following two notions of eigenvalues and
their implications:

1. The classical concept of eigenvalues when characterizing the evolution of the joint probability mass
functions.

2. The notion ofZ-eigenvalue [23] when approximating the evolution of the state probability distribution.

In this context, we study the role of the “second dominant eigenvalue” in such a dynamics of a Markov
chain with memory. We also intend to address some practical issues arisen from a recent discussion in
[12] which proposes to short cut the computation of the stationary state distribution by approximating the
stationary joint probability mass function. These issues include whether the assumption used in proposing
theZ-eigenvector computation is statistically justifiable andthe anatomy of the true cause that affects the rate
of convergence. The tool we are about to develop gives some insight into this limiting behavior. It is possible
to generalize our framework to other types of eigenvalues for tensors, e.g., the so calledH-eigenvalues [21].

3See an example of vectorizing a Markov chain with memory 2 in Section 3.
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For demonstration, we choose to concentrate only on the application to the transition probability tensors in
this presentation.

This paper is organized as follows. We begin in Section 2 withsome basic properties of transition proba-
bility tensors. We review two types of dynamics necessarilyinvolved in a Markov chain with memory, each
of which entails a particular kind of tensor product. The evolution of the joint probability mass function
itself follows a scheme similar to the conventional power method, whereas finding the stationary probabil-
ity distributions of the state vector requires a 2-phase iteration. In Sections 3, we argue that an appropriate
rearrangement of the transition probability tensor reveals the proper cause of convergence for this classical
type of evolution. In Section 4 we address some concerns arisen from the recent notion of approximating
the stationary distribution by the dominantZ-eigenvector. We identify the true makeup of the “second”
dominant eigenvalue in the tensor setting. Most importantly, we show that the convergence of this shortcut
type of power method proposed in [12] is not always guaranteed by counter examples. Included in the Ap-
pendix is the local analysis in a similar spirit for matrices, which probably offers an alternative explanation
of convergence for the classical power method .

2. Dynamics involved in a Markov chain with memory

Needless to say, a critical ingredient in the Markov processwith memorym − 1 is the joint probability
mass function of state variablesXt, . . . Xt−m+2 overS at timet, denoted as

Πt,t−1,...,t−m+2 = [π
(t)
i2...im

], (6)

where
π
(t)
i2...im

:= Pr(Xt = i2, . . . , Xt−m+2 = im).

Note thatΠt,t−1,...,t−m+2 is an order-(m−1) tensor whose entries are nonnegative and satisfy the identity

n∑

i2,...,im=1

π
(t)
i2...im

= 1. (7)

With appropriate ordering, the joint probability mass function Πt,t−1,...,t−m+2 is simply the typical state
distribution of the Markovianized(m− 1)-tuple(Xt, . . . , Xt−m+2).

The definition of conditional probability naturally dictates that in a Markov chain with memory the prob-
ability distribution of the next stateXt+1 based on memoryXt, . . . Xt−m+2 should be calculated in the
following way which naturally defines a kind of tensor product, denoted by the symbol⊛1.

Lemma 2.1. Let the column vectorx(t+1) denote the probability distribution of the variableXt+1 over the
state spaceS. Then

x
(t+1) = P ⊛1 Πt,t−1,...,t−m+2 := [〈pi1,:,Πt,t−1,...,t−m+2〉] ∈ R

n, (8)

wherepi1,: denotes thei1-th facet in the1st direction ofP and〈·, ·〉 is the Frobenius inner product generalized
to multi-dimensional arrays.

We claim that entries of the next joint probability mass function Πt+1,t,...,t−m+3 = [π
(t+1)
i1...im−1

] of state
variablesXt+1, . . .Xt−m+3 are given as follows, which defines another kind of tensor product. Once this
calculation is complete, it allows the chain to continue evolving.

Lemma 2.2. Given the joint probability mass functionΠt,t−1,...,t−m+2, if Xt+1 is obtained from the Markov
chain with memoryXt, . . . Xt−m+2, then the entries ofΠt+1,t,...,t−m+3 are given by

π
(t+1)
i1...im−1

=

n∑

im=1

pi1i2...imπ
(t)
i2...im

, i1, . . . , im−1 = 1, . . . , n. (9)
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Proof. Observe that

Πt+1,t,...,t−m+3 =

n∑

im=1

Pr(Xt+1, Xt, . . . , Xt−m+3, Xt−m+2 = im)

=

n∑

im=1

Pr(Xt+1|Xt, . . . , Xt−m+3, Xt−m+2 = im) Pr(Xt, . . . Xt−m+3, Xt−m+2 = im). (10)

The expression (9) is simply the case whenXt+1 = i1, Xt = i2, . . ., Xi−m+3 = im−1.
Note that the operation required in (9) is different from theusual mode-m tensor product defined in the

literature [10]. For convenience, denote this process for transiting the joint probability mass function by the
symbol

Πt+1,t,...,t−m+3 = P � Πt,t−1,...,t−m+2. (11)

As an demonstration of this operator�, we can rewrite the relation (9) for a Markov chain with memory 2 in
the matrix form as

Πt+1,t = [P(:, 1, :)Πt,t−1(1, :)
⊤, . . . ,P(:, n, :)Πt,t−1(n, :)

⊤] (12)

whereP(:, j, :) ∈ Rn×n andΠt,t−1(j, :) stand for thej-th facet in the2nd direction ofP and thej-th row
of Πt,t−1, respectively. The summation over the indexi3 is included in the matrix-to-vector multiplication.
In contrast, for a Markov chain with memory 1 (the so called memoryless case), the products⊛1 and� are
identical andΠt+1 = x

(t+1).
Our understanding thus far is derived from elementary probability theory. It implies that, for a Markov

chain with memory greater than 1, there are two dynamics involved in the evolving process. One is the
multiplication in the form of (8) for the transition of statedistribution. The other is the multiplication in the
form of (11) for the transition of the joint probability massfunction. To characterize the limiting behavior of
the state distribution{x(t)}, it is necessary to understand the limiting behavior of the joint probability mass
function{Πt,t−1,...,t−m+2}, and vice versa. Although the approach is standard, we find little discussion in the
literature that analyzes these processes directly in the setting of tensors [8]. In the following, we demonstrate
that the tensor notation is convenient for arguing the dynamics behavior of Markov chains.

3. Power iteration for joint probability mass function

In this section, we elaborate further on the limiting behavior of the joint probability mass function
{Πt,t−1,...,t−m+2}. It will be instructive if we first consider the Markov chain with memory 2, which gives
rise to an order-3 probability transition tensor. The discussion can readily be extended to the general case.

For a Markov chain with memory 2 to move forward, we have to process two sequences of probability
distributions hand by hand. At the time stept, we have a distributionΠt,t−1 = [πi2i3 ] for memory(Xt, Xt−1)
overS × S. Then the next stateXt+1 overS based on this memory has a distributionx

(t+1) defined by the
tensor product

x
(t+1) = P ⊛1 Πt,t−1. (13)

In the meantime, the memory distribution is also evolved into

Πt+1,t = P � Πt,t−1. (14)

We use Figure 1 to depict the interaction and the involvementof the two distinct tensor multiplications.
First, given memory(Xt, Xt−1), the probability of being moved into statei1 at stept + 1 is given by the
double sum

x
(t+1)
ii

=

n∑

i2,i3=1

pi1i2i3π
(t)
i2i3

. (15)
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transition probability tensorP
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Figure 1: Update of joint probability mass functionΠt+1,t fromΠt,t−1.

Plotting the matrixΠt,t−1 as the separated horizontal (magenta) plane above the cubicbox representing
the transition probability tensorP , the mechanism for computing the distributionx

(t+1) for the state variable
Xt+1 can be thought of as taking the Frobenius inner product of thematrixΠt,t−1 with each (horizontal) cross
section of the tensorP in the1st direction. Similarly, the probability of having memoryXt+1 = i1, Xt = i2
at the stept+ 1 is given by

π
(t+1)
i1i2

=

n∑

i3=1

pi1i2i3π
(t)
i2i3

, (16)

which is the inner product of thei2-th (blue) row ofΠt,t−1 with each (blue) row of the vertical (green) cross
section of the tensorP in the2nd direction.

It is easy to observe the relationship that

x
(t+1)
i1

=

n∑

i2=1

π
(t+1)
i1i2

. (17)

So the limiting behavior of the sequence{x(t+1)} follows from that of the sequence{Πt+1,t}. Indeed, such
a “row sum” relationship holds in general, which we state as follows. So, for limiting behavior, it suffices to
first understand the dynamics of the iteration (11).

Lemma 3.1. For a Markov chain with memorym− 1, the state probability distribution is related to the joint
probability mass distribution via

x
(t+1)
i1

=

n∑

i2,...,im−1=1

π
(t+1)
i1i2...im−1

. (18)

Proof. By definition, the order-(m−1) tensorΠt+1,t,...,t−m+3 stands for the joint probability mass distri-
bution of(Xt+1, Xt, . . . , Xt−m+3), the relationship (18) is simply the marginal distributionof the variable
Xt+1.

For the case of memory 2, we may rewrite this updating mechanism (16) for each fixedi2 in columns via
a sequence of matrix-to-vector multiplications

Πt+1,t(:, i2) = P(:, i2, :)Πt,t−1(i2, :)
⊤, i2 = 1, . . . n. (19)
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At first glance, such a scheme seems to be the familiar power method4 applied to the matrixP(:, i2, :). The
subtle difference is at the “transpose” involved in (19). Inorder to repeat the “matrix-to-column” multiplica-
tion for a fixedi2, we must know every other “rows” ofΠt+1,t which is not available until the entire sequence
of multiplications in the form of (19) has been completed. Inother words, only by treating the operation� in
(14) as a whole “tensor-to-tensor” multiplication, we may treat the iteration as a power method. This is not
an ordinary power iteration.

We certainly can recast the power-like iteration (14) in theusual context of matrix operations as follows.
This should manifests the complication of the “second dominant eigenvalue” of the order-3 tensorP . See also
[8] for a similar discussion. Letvec(M) denote the conventional vectorization of the matrixM by stacking
its columns into a single column vector. LetC be then2 × n2 permutation matrix that does the swapping of
indices

(j − 1)n+ i → (i− 1)n+ j, 1 ≤ i, j ≤ n.

Also, letB denote then2×n2 block diagonal matrix whosei2-th diagonal block is precisely then×n matrix
P(:, i2, :). Then the operation� is equivalent to the matrix-to-vector multiplication

vec(Πt+1,t) = BCvec(Πt,t−1). (20)

The scheme (20) is exactly the power method applied to then2 × n2 matrixA := BC. It is not difficult to
check thatA has the block structure

A=




P(:, 1, 1) 0 . . . 0 P(:, 1, 2) 0 . . . 0 . . . P(:, 1, n) 0 . . . 0
0 P(:, 2, 1) 0 0 P(:, 2, 2) 0 . . . 0 P(:, 2, n) 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
. . . .

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . P(:, n, 1) 0 0 . . . P(:, n, 2) . . . 0 0 . . . P(:, n, n)


 ,

where eachP(:, i, j) is a column vector inRn. By (5), A is itself column stochastic. By (7),vec(Πt,t−1)
is itself a distribution vector. This is one way to “unfold” an order-3 transition probability tensorP into a
column stochastic matrixA. From this point on, the following results follow from what we already know
about the conventional power method applied to the matrixA.

Lemma 3.2. Suppose thatP is the transition probability tensor of a Markov chain with memory 2. Assume
that the Perron rootλ1(A) = 1 of the correspondingA is simple. Then, starting with any generic initial
memory distributionΠ0,−1, the following statements hold.

1. The convergence of the joint probability mass functions generated by (14) is guaranteed.
2. The limit pointΠ̃ of joint probability mass functions is the de-vectorization of the normalized dominant

eigenvector ofA under the 1-norm.
3. The stationary distributioñx of the states under this Markov chain (13) with memory 2 exists and is

the row sum of̃Π.
4. The rate of convergence is the modulus of the second dominanteigenvalue of the matrixA.

Though we shall not carry out the “unfolding” explicitly, the above argument is generalizable to Markov
chains with memory higher than 2. One quick way to look at thissituation is to regard the Markov process
of P acting on the joint probability mass function via the multiplication � defined by (11) as a linear map
from the spaceTm−1 of order-(m− 1) tensors toTm−1 itself. Any finite dimensional linear relationship can
always be expressed in terms of a matrix-to-vector multiplication. Therefore, the convergence of the sequence
{Πt,t−1,...,t−m+2} generated by the iteration (11) can be guaranteed. The tedious work is to construct the
corresponding column stochastic matrixA, once we specify how the tensorΠt,t−1,...,t−m+2 is to be flattened
into a vector. The latter depends on how the multi-dimensional statesXt, . . . , Xt−m+2 are to be ordered.
When all the details are done, then the “second dominant eigenvalue” of the resulting matrixA determines
the rate of convergence.

4For a quick overview of the power method and its convergence,see the Appendix in Section 6.
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Thus far, we have argued that the Markov evolution for the joint probability mass function naturally
induces a power-like iteration under the multiplication�. The corresponding mapP : Tm−1 → Tm−1 is a
linear transformation. In this context, the notion of eigenvalue for the tensorP should be defined in exactly
the same way as we usually do for square matrices, barring thepeculiar operation� for multiplication. Such
an approach is not always the one adopted in the literature. For instance, we ponder upon the so called
Z-eigenvector and compare it with the dominant eigenvector under� in the next section.

4. Power iteration for Z-eigenvector computation

The relationship (8) characterizes the dynamics of the probability distributionx(t+1) in terms ofΠt,t−1,...,t−m+2

which itself evolves according to (11). This is by far the most formal way to describe the actual evolution of
the state distribution for a Markov chain with memory. By continuity, the stationary distribution of the states
satisfies the same relationship (8) with the limiting joint probability function of (11). For the latter, we have
postulated its existence through the standard argument forthe power method in the preceding section.

Recently it has been proposed to circumvent the 2-phase evolution process by assuming directly that a
limiting joint probability distribution of the high-orderMarkov chain is the Kronecker product of its limiting
probability distribution [12]. The rationale is that if thesequence{x(t)} has ever reached a stationary distri-
butionx̃ overS, then it seems reasonable to assume that the limiting joint probability mass function be of the
form

lim
t→∞

Πt,t−1,...,t−m+2 = x̃⊗ x̃⊗ . . .⊗ x̃︸ ︷︷ ︸
m−1 times

. (21)

Under this assumption, it is deduced from (8) that the stationary distributioñx should satisfy the equation

P ⊛1 z⊗ z⊗ . . .⊗ z = z (22)

which is conveniently abbreviated as
Pz

m−1 = z (23)

in the literature. The solution to (23) is called theZ-eigenvector associated with, in this case, the unitZ-
eigenvalue ofP [2, 13, 14, 23]. It can be shown that a solution to (23) does exist and that entries of any such
a solution are all positive, ifP is irreducible [12, Theorem 2.2]. Under some additional conditions onP , it
even can be shown that the solution is unique [4, 12].

In addition toZ-eigenvalues, there are other ways to define eigenvalues fora given tensor [13, 14, 23].
Accordingly, a variety of methods has been proposed for computing eigenpairs of a tensor [5, 12, 15, 21, 30,
31]. Perhaps the simplest means for finding theZ-eigenvector̃z in (23) is an iterative scheme5 of the form

zk+1 := Pz
m−1
k , (24)

where the starting pointz0 is an arbitrary probability vector. Note that eachzk+1 remains to be a probability
vector under exact arithmetic6. Under some mild conditions, the sequence{zk} does converge linearly to a
solution of (23).

While studying the nonlinear equation (23) and the dynamicsof power-like iteration (24) is of mathemat-
ical interest in its own right, we want to point out that thereare serious issues associated with the assumption
(21) for Markov chains with memory.

5Thoughzk of remains to be a probability vector, it does not have the same meaning asx(t) which represents the distribution of the
random variableXt at stept. We thus use different notations.

6Z-eigenvectors are not scaling invariant for a general tensor. So care must be taken when performing the normalization which is an
essential part of a power method. For our applications, all iterates are automatically of unit length in 1-norm, so this normalization is not
needed in exact arithmetic.
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• Such an assumption inadvertently implies that the limitingdistribution of memory is a symmetric tensor
and is of tensor rank one, which by our numerical experimentswith (11) is not the case in general. A
consequential fallout is that the stationary distributionx̃ from the real Markov chain (8) does not satisfy
(23) at all.

• One might think of̃z satisfying (23) as a certain kind of approximation to the true stationary distribution
x̃ of the Markov chain with memory. Still, in our numerical experiments, we find that̃zm−1 is not the
best rank-1 tensor approximation to the limiting distribution Π̃.

• Unlike the “almost sure” convergence of power iteration (14), (20), or even the general (11) described in
the preceding section for the joint probability mass function, we find that the set of transition probability
tensors for which the power-like method (24) fails to converge is nonempty and, more importantly, has
a nonzero measure in the ambient space.

More details will be given in the subsequent discussion.
Still, the problem of finding theZ-eigenvectors of a general tensorP , whereas the equation (23) is only

a special case, remains challenging and interesting. See, for example, an interesting discourse in [2] on
counting the number ofZ-eigenvalues. In the next two subsections we offer two results that might help
advance the understanding when restricted to Markov chainswith memory. First, we investigate what part of
a transition probability tensorP affects the rate of convergence of the power-like iteration(24), if it converges
at all. Second, we analyze a situation ofP where the iteration does not converge at all.

4.1. Attribute of the second dominant eigenvalue
For a square matrixA, it is known that its second dominant eigenvalue affects convergence of the power

method. We are curious to know whether there is a similar notion of the second dominant eigenvalue of the
tensorP .

By casting such a power-like method for the dominantZ-eigenvector as a fixed-point iteration, we gain
some insight into the cause of convergence or divergence forZ-eigenvector computation7. In the following,
we work specifically on the transition probability tensorP . With slight modification to take into account that
Z-eigenvectors are not scaling invariant, the approach can be extended to general tensors. Our main point
is to show that for a power-like iteration on tensors the second eigenvalue comes into play in a far more
complicated way.

Let△n−1 denote the standard simplex inRn, that is,

△n−1 = {z ∈ R
n|zi ≥ 0, and

n∑

i=1

zi = 1}. (25)

Define the mapf : Rn → △n−1 by

f(z) =
Pz

m−1

〈Pzm−1,1〉 , (26)

whenever the denominator is not zero. Note thatf |△n−1 = Pz
m−1 maps△n−1 into itself. By the Brouwer

fixed-point theorem, there exists at least one pointz̃ ∈ △n−1 such thatf(z̃) = z̃. We are interesting in
knowing how fast the iteration (24) converges to such a fixed point, if it converges at all.

We have already introduced one kind of tensor product⊛1 in (8), namely,

P ⊛1 z⊗ · · · ⊗ z︸ ︷︷ ︸
m − 1 times

= Pz
m−1 :=




n∑

i2,...,im=1

pν1i2,...imxi2 · · ·xim



n

ν1=1

, (27)

7The same technique offers an interesting base-free argument for analyzing the conventional power method applied to matrices.
Readers might want to read the Appendix first to see how such a local analysis plays out without the burden of dealing with multi-
dimensional arrays.
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where the subscript in⊛1 indicates that the first index inP is excluded from the summation. This tensor
product ends up with a column vector whose entries, for convenience, are indexed byν1. In a similar way,
we now introduce another kind of tensor product⊛1ℓ defined by

P ⊛1ℓ z⊗ · · · ⊗ z︸ ︷︷ ︸
m − 2 times

:=




n∑

i2,...,îℓ,...,im=1

pν1i2...νℓ...imxi2 · · · x̂iℓ · · ·xim



n

ν1,νℓ=1

, (28)

whereîℓ means that quantities associated with this particular index are taken out from the remaining list. The
double subscript in⊛1ℓ indicates that the1-st and theℓ-th indices inP are excluded from the summation.
This product results in ann × n matrix whose entries are double indexed by integers(ν1, νℓ). It is easy to
verify that for any givenh ∈ Rn we can write

P ⊛1 z
ℓ−2 ⊗ h⊗ z

m−ℓ =
(
P ⊛1ℓ z

m−2
)
h, (29)

where the right-hand side is a matrix-to-vector multiplication.
We now calculate the Jacobian matrixDf(z). First, the Fréchet derivativef ′ at z ∈ △n−1 acting on an

arbitraryh ∈ Rn is easy to obtain by the generalized Leibniz product rule,
(
Pz

m−1
)′
.h = P ⊛1 h⊗ z

m−2 + P ⊛1 z⊗ h⊗ z
m−3 + . . .+ P ⊛1 z

m−2 ⊗ h. (30)

By using (29), we can represent the action of the derivative operator in terms of matrix-to-vector multiplica-
tion:

Df(z)h =

(
(
∑m

ℓ=2 P ⊛1ℓ z⊗ · · · ⊗ z)〈Pz
m−1,1〉 − Pz

m−1
1
⊤(
∑m

ℓ=2P ⊛1ℓ z⊗ · · · ⊗ z)

〈Pzm−1,1〉2
)
h (31)

and thus retrieve the Jacobian information. In particular,at a fixed point̃z ∈ △n−1, the equation (23) is
satisfied and the corresponding Jacobian matrix is reduced to the matrix

Df(z̃) = (I − z̃1
⊤)

(
m∑

ℓ=2

P ⊛1ℓ z̃⊗ · · · ⊗ z̃

)

︸ ︷︷ ︸
Ω

. (32)

Lemma 4.1. For generic transition probability tensorP , the spectrum of the Jacobian matrixDf(z̃) is com-
posed of zero and those eigenvalues of the matrixΩ whose moduli are strictly less thanm− 1.

Proof. Clearly, each termP ⊗1ℓ z̃⊗ · · · ⊗ z̃ in the summation forΩ is itself a column stochastic matrix.
Observe further that

Ωz̃ =

(
m∑

ℓ=2

P ⊛1ℓ z̃⊗ · · · ⊗ z̃

)
z̃ =

m∑

ℓ=2

P z̃
m−1 = (m− 1)z̃. (33)

Thusλ1 = m− 1 is the dominant eigenvalue ofΩ with the right eigenvector̃z. It follows from (32) that zero
is an eigenvalue of the JacobianDf(z̃) with z̃ as the corresponding right eigenvector.

Supposewi ∈ Cn is a left eigenvector ofΩ with eigenvaluesλi ∈ C, i = 2, . . . , n. Without loss of
generality, we may assume thatΩ is a positive matrix generically. By the Perron-Frobenius theorem, the
Perron rootλ1 is unique and|λi| < m− 1, i = 2, . . . n. It follows thatw⊤

i z̃ = 0 and, hence,

w
⊤
i Df(z̃) = w

⊤
i (I − z̃1

⊤)Ω = w
⊤Ω = λiw

⊤
i . (34)

So (λi,wi) is a left eigenpair ofDf(z̃). In other words, if the transition probability tensorP is generic
in the sense that the corresponding matrixΩ is positive, then the spectrum of the Jacobian matrixDf(z̃) is
{0, λ2, . . . , λn}.

Letλ2(Ω) denote the second largest eigenvalue in modulus of the matrix Ω. Then, by an argument parallel
to that outlined in the Appendix, we draw the following conclusion.
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Theorem 4.1. Assuming that the transition probability tensorP is generic in the sense that the correspond-
ing Ω is positive, then the limiting behavior of the iteration by the power method (24), if the iteration con-
verges at all, has the rate of convergence|λ2(Ω)| which must be less than 1.

We summarize our observations as follows. The evolution of state distributions in a memoryless Markov
chain is equivalent to the conventional power method applied to the probability transition matrixP defined
in (1) directly. If P is positive, then the second dominant eigenvalue of the matrix P alone determines the
rate of convergence to the stationary distribution. Likewise, the evolution of joint probability mass functions
in a Markov chain with memory induces a power method in the form (14) applied to a transition probability
tensorP defined in (4). It is the second dominant eigenvalue of the flattened matrixA, which depends onP
only, that determines the rate of convergence to a limiting joint probability mass function and, hence, to the
stationary distribution of the states. In contrast, if the power-like method (24) is applied to the same transition
probability tensorP , then it is the second dominant eigenvalue of the matrixΩ that affects the convergence
to a solutioñz of the equation (23). Recall thatΩ is defined by

Ω :=

m∑

ℓ=2

P ⊛1ℓ z̃
m−2 (35)

which involves a summation over the products of different facets ofP with the fixed point̃z. Such a com-
bination is far more complicated than the matrix case. Such an understanding of the cause governing the
iteration (24) is interesting and is probably new.

4.2. Examples of divergence

We have already pointed out thatλ1(Ω) = m−1 and, for convergence, it is necessary that|λ2(Ω)| < 1.
It immediately becomes suspicious that the two dominant eigenvalues ofΩ from a givenP can always be so
widely separated. In this section, we give a family of examples of a transition probability tensor showing that
|λ2(Ω)| > 1 and hence the power-like iteration (24) does not converge.

Consider an order-3 transition probability tensorP overS = {1, 2} with probabilities depicted in Fig-
ure 2, where0 ≤ a, b, c, d ≤ 1 and assumea + d 6= b + c. Denote its dominantZ-eigenvector as

a b

c d

1− a 1− b

1− c 1− d

Figure 2: Order-3 transition probability tensor over 2 states.

z̃ = [z, 1− z]⊤. Then the equation (23) is equivalent to the quadratic equation

(a− b− c+ d)z2 + (b + c− 2d− 1)z + d = 0

whose two real solutions are trivially

z =
2d+ 1− b− c±

√
(b+ c− 1)2 + 4d(1− a)

2(a− b − c+ d)
. (36)
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Given values ofa, b, c, d, we are interested in the root satisfying0 ≤ z ≤ 1. By our theory, the corresponding
Ω is given by

Ω = P ⊗12 z̃+ P ⊗13 z̃ =

[
b + c+ (2a− b− c)z 2d+ (b + c− 2d)z

(−2a+ b+ c)z + 2− b− c (2d− b− c)z − 2d+ 2

]
(37)

which has eigenvalues2 andb+ c− 2d+ 2(a− b− c+ d)z. Thus the second eigenvalue ofΩ is

1±
√
(b+ c− 1)2 + 4d(1− a),

depending on whichz is used.
As an example, takea = 0 and b = c = d = 1. Thenz = −1+

√
5

2 andλ2 = 1 −
√
5. In this

case, therefore, the power-like iteration cannot generatethe limiting stationary distribution vector̃z because
|λ2| > 1. In fact, our numerical experiment indicates that the iterates generated by the power-like method
will have two accumulation points[1, 0]⊤ and [0, 1]⊤ and that the iterations move back and forth between
these two points. The dominant eigenvectorz̃ is repelling equilibrium. By continuity, we see that a small
perturbation ofa, b, c, d while keeping them positive will not change the fact that thecorrespondingλ2 has
modulus larger than 1. This observation suffices to establish the following result.

Theorem 4.2. There exists an open set of positive transition probabilitytensors with nonzero measure for
which the power-like iteration (24) will not converge.

For instance8, takea = ǫ andb = c = d = 1− ǫ. Then the correspondingΩ(ǫ) has its second eigenvalue

1−
√
8ǫ2 − 12ǫ+ 5 < −1 for all 0 ≤ ǫ < 3−

√
7

4 .

4.3. Deviation from true stationary distribution

Even if the given transition probability tensorP is such that the iteration (24) does converge to the
dominantZ-eigenvector, we question the rationale of the assumption (21). Now that we understand that a
true Markov chain with memory should evolve with a dynamics for the sequence of vectors{x(t)} in the
sense of (8) and a dynamics for the sequence of tensors{Πt,t−1,...,t−m+2} in the sense of (11), we perform
some numerical simulations to investigate whether there isa statistically significant deviation between results
based on this assumption and those from the true Markov process.

Denote the limiting joint probability mass function, the stationary distribution, and the dominantZ-
eigenvector bỹΠ, x̃, andz̃, respectively. To simulate the general behavior of these quantities, we have to
try out large samples of Markov chains. It will be sufficiently informative to consider the Markov chain with
memory 2. Toward this goal, the columns (in the sense of (5)) of the order-3 transition probability tensorP
can be thought of as coming from a uniform distribution over the simplex∆n−1.

Lemma 4.2. LetP be a random order-3 tensor with independent and identicallydistributed columns from
the simplex∆n−1. Then the random vectors̃x and z̃ have the same expected value

E(x̃) = E(z̃) =

[
1

n
, . . . ,

1

n

]⊤
. (38)

Also,

E(Π̃) =
1

n2
1, (39)

where1 is then× n matrix with all ones.

8For this example, the valueγ defined by formula (2.2) in [12] is equal to 2, but we do not see convergence. This is in contrast to the
assertion of Theorem 3.1 in [12].
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Correlation between x̃ and z̃

Figure 3: Plots of̃z versusx̃ over 500 randomly generated order-3 transition probability tensorsP . Colors represent different rows in
the vectors.

Proof. Each ofΠ̃, x̃, andz̃ depends onP and, therefore, is itself a random variable of some distributions.
We need not specify the exact distributions ofΠ̃, x̃, andz̃. However, because any column permutation ofP
leads to the same distribution ofP , any row permutation of the vector̃x (or z̃) leads to the same distribution
of x̃ (or z̃). All entries of the vector̃x (or z̃) must share the same contribution. This symmetry implies (38).

Together with the additional fact that any “row” permutation ofP leads to the same distribution ofP , we
conclude that all entries of the limiting joint probabilitymass functioñΠ share the same contribution and,
hence, (39) follows.

The proof for (38) does not rely on the order of the tensor. We may thus say that the dominant Z-
eigenvector̃z is always an unbiased estimator of the stationary distribution x̃ of the Markov chain with
memory. However, for Markov chains with memory 2, we obtain the difference

E(x̃2)− E(Π̃) = E(x̃x̃⊤)− E(x̃)E(x̃)⊤ = E(x̃x̃⊤)− E(z̃)E(z̃)⊤ = cov(x̃) (40)

which clearly indicates the assumption (21) for a Markov chain with memory 2 is off by an average of the
amountcov(x̃). For Markov chains with memory higher than 2, the differencebetweenE(x̃m−1) andE(Π̃)
is algebraically more complicated.

As an illustration, we randomly generate 500 test data over∆4 ⊂ R
5. Each data set includes one order-3

transition probability tensorP and two starting distribution vectorsx−1 andx0. Entries in the data are gen-
erated independently from the identical uniform distribution over the interval[0, 1] and then are normalized
accordingly to meet the stochastic requirements. Let the order-2 tensorΠ0,−1 = x−1⊗x0 represent the joint
probability mass function for the starting memory. After going through the iterative processes described in
the preceding sections, we gather the limiting points of these test data and compare.

We first plot the correlation betweeñx andz̃. Each circle “o” in Figure 3 with one specific color represents
one pair of entries(x̃i, z̃i), i = 1, . . . , 5, from the limiting distributions̃x andz̃ of the same order-3 tensorP .
We already know that all entries of̃x (andz̃) share the same distribution, so it does not matter if we plotthe
regressions of all entries together. Table 1 summarizes theregression valuesR, slopesM , andz-interceptsB
for each row. The highR values suggest that it is reasonable to assume thatx̃ andz̃ are linearly correlated.

(x̃1, z̃1) (x̃2, z̃2) (x̃3, z̃3)) (x̃4, , z̃4) (x̃5, , z̃5)

R 0.9790 0.9729 0.9748 0.9727 0.9750

M 0.9343 0.9332 0.9414 0.9384 0.9488

B 0.0129 0.0134 0.0115 0.0128 0.0102

Table 1: Regression valuesR, slopesM , andz-intercepts
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Figure 4: Comparisons between the stationary distributionx̃ and the dominantZ-eigenvector̃z, and the corresponding distributions of
memory.

Regarding̃x andz̃ as the output from two distinct procedures of the same inputP , it might be curious
to know how they differentiate from each other case by case. We thus plot the histograms of the 2-norms
‖x̃ − z̃‖, ‖x̃2 − Π̃‖, ‖z̃2 − Π̃‖, and‖x̃2 − z̃

2‖ out of the 500 random tests in Figure 4 over the same scale.
Without delving into rigorous statistical testing, we can see that the variations‖z̃− x̃‖ and‖z̃2 − x̃

2‖ shown
in the upper drawing does suggest that the two stationary distributionsz̃ andx̃ might be called statistically
close [1], which is also suggested by the closeness to one of the regression slopsM and to zero of thez-
interceptsB in Table 1. However, the variations in the lower drawing indicate that the difference between the
true limiting joint probability mass functioñΠ and the assumed limiting joint probability mass functionz̃

2

by (21) is statistically more significant. In fact, in the case of Markov chains with memory 2, we have argued
that the difference is averaged at the amountcov(x̃).

Furthermore, based on the same experiment with 500 random data above, we observe that every limiting
joint probability mass functioñΠ is of full matrix rank, whereas the matrix̃z2 is of rank1. We notice that one
singular value of̃Π is always significantly larger than the other four singular values. See Figure 5. However,
we have also checked that the matrixz̃

2 is by no means the best rank-1 approximation toΠ̃ in the sense of
minimizing ‖Π̃ − z

2‖ subject toz ∈ ∆4. Barring this rank difference, it remains open for interpretation
of whetherz̃ can really be used as a reasonable approximation tox̃ in general. If yes, to what degree of
statistical closeness is it acceptable?

5. Conclusions

A Markov chain with memory has a natural representation as a transition probability tensor. The Markov
process involves the progression of two types of distributions. The probability distribution of the states
evolves as a tensor product⊛1 in the way defined in (8), whereas the joint probability mass distribution of
the memory evolves as another tensor product� in the way defined in (9). The latter is essentially the same
as the conventional power method, whereas the stationary distribution of the states can be obtained from the
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Figure 5: Logarithmic plot of singular values of the stationary joint probability mass functioñΠ.

“row sum” of the stationary distribution of the memory. We therefore conclude that for a generic Markov
chain with memory the distribution of the states does converge to a stationary distribution.

We also provide a statistical basis that in average the difference between the true stationary distributionx̃

and theZ-eigenvector̃z calculated from the assumed shortcut memory (21) is statistically indistinguishable.
However, such an assumption on memory is questionable as is evidenced by (40). We further demonstrate by
a family of transition probability tensors that the power-like iteration (24) forZ-eigenvector calculation may
fail to converge.

In all cases, we propose a general approach by casting any of the power-like iterative schemes as a fixed-
point iteration and draw conclusion on the limiting behavior of such an iterative method via the spectrum of
the associated Jacobian matrix. The insight obtained from local analysis on the particular matrixΩ defined
in (32) and the effect of its second dominant eigenvalue is perhaps new.

6. Appendix: Convergence of the power iteration for matrices

Suppose that a given matrixA ∈ Rn×n has a dominant eigenvalueλ1 in the sense that its spectrum
satisfies|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. It is well known that the sequence{xk} generated from the
iterative scheme {

wk+1 := Axk,

xk+1 := wk+1

‖wk+1‖ ,
(41)

converges to the unit eigenvectorv1 associated withλ1. This procedure, known as the power method, has
been the most rudimentary means for eigenvalue computation. Though the power method is not effective
per se, its fundamental principle sheds light on more advanced methods. For example, the Rayleigh quotient
iteration which is a variation of the shifted inverse power method continues to play an integral role due to
its rapid convergence [22], whereas the shiftedQR algorithm which can be interpreted as an application
of the power method on subspaces with reorthogonalization is modern day’s power horse for eigenvalue
computation [29]. In certain cases, the power method remains to be useful for computing the eigenvector
associated with the dominant eigenvalue of a matrix. One such instance is in the application of Markov chain
analysis where the stationary distributionπ satisfyingPπ = π for a column stochastic matrixP is needed.
Recall that the value1 is universally the dominant eigenvalue of any stochastic matrix, soπ is the dominant
right eigenvector.

The ratio |λ2

λ1
| is widely recognized as the convergence rate of a power method, whence defining the

important role of the second dominant eigenvalueλ2 in eigenvalue computation. The search engine Google,
for example, exploits this knowledge by introducing a perturbation to force a bound onλ2 of its hyperlink
matrix which is stochastic. The power method is then employed to approximate the corresponding stationary
distributionπ, known as the PageRank, to help rank the relative importanceof a particular web page [11].
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A typical way in numerical linear algebra to argue the rate ofconvergence of the power method (41) for
a matrixA is to assume the existence of a basis of eigenvectorsv1, . . . ,vn

9. Upon expanding the starting
vector

x0 =

n∑

i=1

civi

in terms of the basis, the iteratexk can then be expressed as

xk =

c1λ
k
1

(
v1 +

∑n

i=2 ci

(
λi

λ1

)k
vi

)

∥∥∥∥c1λk
1

(
v1 +

∑n

i=2 ci

(
λi

λ1

)k
vi

)∥∥∥∥
.

Hence, we see that the non-essential quantities decay at a rate of approximately|λ2

λ1
|. Such a loose argument

is conceptually acceptable, but can hardly be generalized to tensors because the tensor space may not have a
basis of eigenvectors. An alternative argument is to use fixed-point theory. We have done so for tensors in
Section 4.1. We now demonstrate how it applied to matrices.

Let Sn−1 denote the unit sphere inRn. Without loss of generality, supposeA is nonsingular. Define a
mapf : Sn−1 → Sn−1 by

f(x) =
Ax

‖Ax‖2
(42)

where the normalization by the 2-norm is only for convenience. The power method can be cast as the fixed-
point iteration

xk+1 = f(xk). (43)

Sincef is a continuous function mapping from a compact set into itself, by the Brouwer fixed-point theorem,
there is a point̃x ∈ Sn−1 such thatf(x̃) = x̃. In particular, by switching the sign if necessary, we may
assume that the dominant unit eigenvectorv1 is one such a fixed point. We now describe the local behavior
of f nearbyv1.

Forxk sufficiently nearv1, we have the linear approximation

xk+1 − v1 = f(xk)− f(v1) ≈ Df(v1)(xk − v1), (44)

where it is easy to see that the Jacobian matrix off is given by

Df(x) =
A

‖Ax‖2
− Axx⊤A⊤A

‖Ax‖32
. (45)

It follows that atv1 we have

Df(v1) =
1

|λ1|
(I − v1v

⊤
1 )A. (46)

Obviously,v⊤
1 Df(v1) = 0. Let wi ∈ Cn be any eigenvector ofA⊤ associated with eigenvalueλi ∈ C,

i = 2, . . . n. Then it is known thatw⊤
i v1 = 0 sinceλi 6= λ1. Thusw⊤

i Df(v1) =
λi

|λ1|w
⊤
i . In all, we make

the following conclusion.

Lemma 6.1. The spectrum of the Jacobian matrixDf(v1) is precisely
{
0, λ2

|λ1| ,
λ3

|λ1| , . . . ,
λn

|λ1|

}
.

9In case that the matrixA is defective, some arguments can still be made. See, for example, detailed discussions in the classic book
[7]. The local analysis presented in this section, however,does not require such a basis.
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As a simple demonstration, consider the generic case that the matrixDf(v1) has a spectral decomposition
Df(v1) = U−1ΛU . Then by (44) we can write

U(xk+1 − v1) ≈ ΛU(xk − v1), (47)

implying that

‖U(xk+1 − v1)‖∞ ≈
∣∣∣∣
λ2

λ1

∣∣∣∣ ‖U(xk − v1)‖∞. (48)

It is in this sense that oncexk is sufficiently close tov1, thenxk+1 is even closer and that the rate of linear
convergence is given by the ratio|λ2

λ1
|.
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