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Abstract. This paper concerns the construction of a structured low rank matrix that is nearest to a given matrix.
The notion of structured low rank approximation arises in various applications, ranging from signal enhancement to
protein folding to computer algebra, where the empirical data collected in a matrix do not maintain either the
specified structure or the desirable rank as is expected in the original system. The task to retrieve useful information
while maintaining the underlying physical feasibility often necessitates the search for a good structured lower rank
approximation of the data matrix. This paper addresses some of the theoretical and numerical issues involved in
the problem. Two procedures for constructing the nearest structured low rank matrix are proposed. The procedures
are flexible enough that they can be applied to any lower rank, any linear structure, and any matrix norm in the
measurement of nearness. The techniques can also be easily implemented by utilizing available optimization packages.
The special case of symmetric Toeplitz structure using the Frobenius matrix norm is used to exemplify the ideas
throughout the discussion. The concept, rather than the implementation details, is the main emphasis of the paper.
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1. Introduction. Finding a low rank approximation of a general data matrix is a critical
task in many disciplines. The list of applications includes images compression, noise reduction,
seismic inversion, latent semantic indexing, principal component analysis, regularization for ill-posed
problems, and so on. A practical means to tackle this low rank approximation, if the 2-norm
or the Frobenius norm is used in the measurement of closeness, is the truncated singular value
decomposition (TSVD) method [5, 6, 17, 22]. When the desired rank is relatively low and the data
matrix is large and sparse, a complete SVD becomes too expensive. Some less expensive alternatives
for numerical computation, e.g., the Lanczos bidiagonalization process [30, 37] and the Monte-Carlo
algorithm [34], are available. Some geometric properties of low rank symmetric matrices are discussed
in [25]. None of these methods, however, can address the underlying matrix structure that is also
part of the constraint. The introductory note is meant to provide some initial investigations into this
structured low rank approximation problem. We shall treat some mathematical properties, point
out some interesting applications, and outline some numerical procedures.

A general structured low rank approximation problem can be described as follows.
Problem 1. Given a matrix A ∈ Rm×n, an integer k, 1 ≤ k < rank(A), a class of matrices Ω,

and a fixed matrix norm ‖ · ‖, find a matrix B̂ ∈ Ω of rank k such that

‖A− B̂‖ = min
B∈Ω, rank(B)=k

‖A−B‖. (1.1)

We point out immediately that any feasible approximation B must satisfy both the structural
constraint specified by Ω and the rank constraint specified by k. As such, the problem is sometimes
referred to as a structure preserving rank reduction problem. The structural constraint is immaterial
if Ω is simply the entire space Rm×n. On the other hand, the low rank approximation by specially
structured matrices becomes a much harder problem. We should also point out that the measurement
used in problem (1.1) need not be the usual 2-norm or the Frobenius norm. If other norms are used,
solving (1.1) presents another degree of difficulty for TSVD-based methods. We shall see that our
approach is capable of handling this general case.

It is worth noting that the low rank approximation can be considered using different settings.
Suppose a given matrix A is known a priori to have k singular values larger than ε. An idea in [42],
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for instance, is to find all rank-k approximates Â such that ‖A− Â‖2 < ε. See also [20] for a similar
approximation. The objective in [42] is not to compute an approximate Â of rank k that minimizes
‖A− Â‖2, but rather to compute the one in which the approximation error is limited. In contrast,
there are no restrictions on the singular values of A in our formulation. Furthermore, our methods
compute a best approximate matrix Â belonging to a specified affine subspace Ω.

A serious challenge associated with problem (1.1) is that generally there is no easy way to
characterize, either algebraically or analytically, a given class of structured lower rank matrices.
This lack of explicit description of the feasible set makes it difficult to apply classical optimization
techniques. In this note we first provide some theoretical insight into the structure preserving low
rank approximation problem. We then propose two numerical procedures to tackle this structure
preserving rank reduction problem. Our discussion by no means is complete. Further investigation
is needed both theoretically and numerically. There appears to be little information available in the
literature. We thus consider this article as merely a beginning step toward fully understanding the
problem. Nonetheless, we stress that the framework we are about to outline is quite flexible in that
the procedures can be applied to problems of any rank, any linear structure, and any matrix norm.

This paper is organized as follows: We first outline some applications in §2. In §3 we offer
some theoretical bases for solving (1.1). Particularly, the existence question of structured low rank
matrices is considered. We query the solvability of (1.1) even after knowing that the feasible set is
not empty. In §4 we discuss a practical way to track down a structured low rank matrix. We utilize a
lift-and-project method that alternates iterations between low rank matrices and structured matrices
to introduce a point-to-point map Pk so that from any given initial matrix T its image Pk(T ) is
expected to satisfy both the structural and the rank conditions. In §5 we propose two procedures that
reformulate the problem in such a way that standard optimization software can be applied directly
to seek for numerical solutions. The first approach uses the SVD as a way to characterize low rank
matrices. The desired matrix structure is then formulated as a set of equalities among the singular
values and singular vectors. The resulting formulation becomes an equality constrained optimization
problem. The second approach involves using the point-to-point map Pk(T ) as a handle to capture
structured low rank matrices. The resulting formulation becomes an unconstrained optimization
problem. Along with the discussions of these methods, we demonstrate our ideas by experimenting
with some existing software packages. The structure preserving rank reduction problem presents
many challenges in both analytic and computational aspects. It is hoped that the discussion in this
article will help to generate some further interest and research in this direction.

2. Applications. In this paper we shall limit our attention to the case where the structured
matrices form an affine subspace Ω. This class of constraints arises naturally in applications due to
the interrelation of matrix elements in some prescribed fashion. The so called linear structure in [5],
for instance, is an affine constraint. Some examples of linear structure include symmetric Toeplitz,
block Toeplitz, Hankel, upper Hessenberg, Sylvester, or banded matrices with fixed bandwidth. On
the other hand, the low rank condition is often predestined and is inherent to the system behind the
physical setup. In addition to being of theoretical interest in its own right, the structure preserving
rank reduction problem (1.1) deserves consideration also for practical reasons. We shall briefly
mention some applications in this sections.

Low rank approximation is a common tool used for noise removal in signal processing or image
enhancement. Many research results, particularly in the signal processing application, can be found.
We mention [3, 4, 5, 12, 28, 38, 36, 43, 44] as a few starting points for further study. Because research
activities in this area have been vigorous and literature is abundantly available, we shall not discuss
any specific application to save space. Generally speaking, the underling covariance matrix often
has Toeplitz or block Toeplitz structure. The rank to be removed corresponds to the noise level
where the signal to noise ration (SNR) is low.

Likewise, low rank approximation can be used for model reduction problems in speech encoding
and filter design [14, 41, 35]. The underlying structure often is Hankel [15, 29, 33, 39]. The rank
to be restored corresponds to the number of sinusoidal components contained in the original signal.
An example is given in §3.1.

Structured low rank approximation also finds applications in computer algebra. One fundamen-
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tal question in algebra is to compute the greatest common divisor (GCD) of polynomials. To compute
the exact GCD for a system of polynomials, it suffices to know how to compute the GCD for two
given two polynomials. Given two polynomials p(x) = an

∏n
i=1(x−αi) and q(x) = bm

∏m
j=1(x−βj),

it is known that the resultant of p(x) and q(x) with respect to x, is zero if and only if p(x) and q(x)
have common divisors. The resultant is the determinant of the Sylvester matrix S(p(x), q(x) where

S(p(x), q(x)) =




an an−1 . . . a0 0 . . . 0
0 an . . . a0

...
. . .

0 0 0 an an−1 . . . a0

bm bm−1 . . . b0 . . . 0
...

. . . . . .
0 0 0 bm . . . b0




. (2.1)

The rank deficiency of S(p(x), q(x)) therefore is precisely the degree of the GCD [11, 27]. Suppose
now the coefficients of the given polynomials are inexact. An interesting question is to compute
a pair of polynomials with a non-trivial common divisor close to the given polynomials. In this
way, the problem of approximating the greatest common divisor (GCD) for polynomials can be
formulated as a low rank approximation problem with Sylvester structure. Similar formulation can
be set up for multivariate polynomials.

Low rank approximation can also be applied to molecular structure modelling for the protein
folding problem in R3. It is known that the three dimensional shape of a protein largely determines
how the protein functions or acts. It is an incredibly important problem of determining a three
dimensional structure of a protein. Assuming that the sequence of amino acid molecules are located
at points x1, . . .xn in R3, their relative positions then gives rise to the Euclidean distance matrix
E = [eij ] ∈ Rn×n where eij = ‖xi−xj‖22 for i, j = 1, . . . , n. If we knew all the interatomic distances
in the protein, the three dimensional structure would relatively easy to be generated. It can be
proved that D is of rank no more than five [18]. The trouble is that with current technologies,
such as x-ray crystallography, we cannot “see” well the entries in the matrix D. Thus we have an
observed matrix that is not quite a distance matrix. A symmetric and nonnegative matrix of rank
5 is a necessary condition for the approximation [19].

Finally, we remark that in latent semantic indexing (LSI) application, the low rank approx-
imation should be the principal factors capturing the random nature of the indexing matrix [9].
Also, there are some discussions on using structure preserving rank reduction computation as a
regularization tool in the solution of certain ill-posed inverse problems [22, 23].

3. Theoretical Considerations. In this section we address some primary notions related
to the approximation by structured low rank matrices. Two basic questions are raised in this section
with only partial answers: The first question concerns the feasible set. Can structured matrices have
arbitrary lower rank? The second question concerns the solvability. Can a given matrix always be
approximated by a matrix with a specific structure and a specific lower rank?

3.1. Substance of Feasible Set. Before any numerical method is attempted, a funda-
mental question associated with problem (1.1) is whether low rank matrices with specified structure
actually exist. Toward that end, we first observe the following result.

Theorem 3.1. Given a matrix A ∈ Rm×n, an integer k, 1 ≤ k < rank(A), a closed subset Ω of
matrices in Rm×n, and a fixed matrix norm ‖ · ‖, the matrix approximation problem

min
B∈Ω, rank(B)≤k

‖A−B‖ (3.1)

is always solvable, as long as the feasible set is non-empty.
We quickly point out that problem (3.1) is different from problem (1.1). In (3.1) the rank

condition is less than or equal to k while in (1.1) the rank condition is required to be exactly equal
to k. In (3.1) the feasible matrices form a closed set while in (1.1) the feasible set might be open.
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Pathologically it is possible that a given target matrix A does not have a nearest structured rank-k
matrix approximation, but does have a nearest structured matrix approximation that is of rank k−1
or lower. That is, it is pathologically possible that problem (3.1) has a solution while (1.1) does not.
See §3.2 for more comments.

For special classes of matrices, it is sometime possible to prove that low rank matrices with
specified structures do exist. We mention two specific examples below.

Theorem 3.2. Symmetric Toeplitz matrices can have arbitrary lower rank.
Theorem 3.3. There are n× n Hankel matrices with any given lower rank.
The construction in Theorem 3.3 in fact is a known correspondence between low rank Hankel

matrices and noiseless time-domain signals comprising k components of exponentially decaying si-
nusoids [3, 6, 31, 33]. When noise is added to H, the rank k is lost. In this instance, one of the
prevailing reasons for considering (1.1) where A stands for the noisy data matrix is to gain insight
into the original signal by removing the noise, maintaining the Hankel structure, and reducing the
rank. A specific and detailed application of the structure preserving rank reduction problem to
medical science can be found in the lecture note by de Beer [3].

For engineering applications, the existence question might not be as important as deriving a
reliable method for achieving a closest possible approximation matrix. The question itself, however,
is an important step before such an achievement can be obtained. For other types of linear structures,
the existence question generally is a challenging algebraic problem that is of interest in its own right.
We are not aware of any definitive studies on this subject.

3.2. Solvability of Nearest Approximation. Even if we could establish the fact that
the feasible set of (1.1) is not empty, it remains to find a nearest approximation to the given (noisy)
target matrix from within the feasible set. We must be cautious, however, that the existence of lower
rank matrices of specified structure does not guarantee that one of such matrices will be closest to
a given target matrix.

It appears that very little is known about the solvability of problem (1.1). Similar comments
were echoed in the discussion [33]. A proof that problem (1.1) is solvable (recall Theorem 3.1) for a
specific structure Ω would be a significant accomplishment. We speculate that one of the difficulties
in proving the solvability is due to its finite dimensionality. For the infinite dimensional case, the
solvability issue is completely settled by the following result [1, 2]. It does not seem possible that
the proof can be extended to finite-dimensional matrices.

Theorem 3.4. Suppose the underlying matrices are of infinite dimension. Then the closest
approximation to a Hankel matrix by a low rank Hankel matrix always exists and is unique.

The difference between finding a structured low rank matrix and finding the closest structured
low rank approximation to a given target matrix need to be carefully discerned. Indeed, in the latter
part of this paper we shall point out that a popular method, the Cadzow algorithm [3, 6], somehow
has overlooked this distinction. As a result, the Cadzow algorithm only finds a structured low rank
matrix that is nearby a given target matrix, but certainly is not the closest even in the local sense.
We shall provide a numerical example that shows that the Cadzow algorithm does not give rise to
the nearest structured low rank approximation.

4. Tracking Structured Low Rank Matrices. If low rank matrices with a specified
structure cannot be characterized analytically, we must devise other means to accomplish this con-
struction. In this section we introduce a mechanism that is capable of tracking down low rank
matrices of any linear structure iteratively, if such a matrix exists. The idea is equivalent to a spe-
cial application of Cadzow’s composite property mapping algorithm [5] that, in turn, is a variation
of von Neumann’s alternating projection scheme [8, 16, 24].

4.1. Alternating Projection Method. Imagine that the set of all rank-k matrices forms
a surface R(k) and the set Ω comprising matrices with the specified structure forms another surface.
Then the desired set of structured rank-k matrices can be regarded as the intersection of these two
geometric entities. A linearly convergent method, called lift-and-project, can be formulated to find
points at this intersection. The basic idea is to alternate projections between these two sets so that
the rank constraint and the structural constraint are satisfied alternatively while the distance in
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Fig. 4.1. Algorithm 1 with intersection of lower rank matrices and Toeplitz matrices

between is being reduced. The algorithm is outlined below. The geometry of lift and project is
depicted in Figure 4.1.

Algorithm 4.1. (Lift-and-Project Algorithm) Let Ω denote the set of matrices with the speci-
fied structure. Starting with an arbitrary A(0) = A ∈ Ω, iterate the following two steps for ν = 0, 1, . . .
until convergence:

1. LIFT. Compute the rank-k matrix B(ν) in R(k) that is nearest to A(ν).
2. PROJECT. Compute the projection A(ν+1) of B(ν) onto the subspace Ω.

To carry out these steps in action, we remark that the lift usually can be done by the TSVD.
That is, from A(ν) ∈ Ω, first compute its SVD

A(ν) = U (ν)Σ(ν)V (ν)T
.

Let s
(ν)
1 , s

(ν)
2 , . . . denote the singular values along the diagonal of Σ(ν). Replace the matrix Σ(ν) by

diag{s(ν)
1 , . . . , s

(ν)
k , 0, . . . , 0} and define

B(ν) := U (ν)Σ(ν)V (ν)T
.

In turn, the projection usually involves solving a few simple (linear) equations whose setup depends
upon the structure in Ω.

In the process of lifting and projecting, the sequence {A(ν)} of matrices will not necessarily have
the desirable rank k. However, it is clear that

‖A(ν+1) −B(ν+1)‖F ≤ ‖A(ν+1) −B(ν)‖F ≤ ‖A(ν) −B(ν)‖F . (4.1)

Thus, Algorithm 4.1 is a descent method. In the above, we should clarify that this descent property
(4.1) is measured only with respect to the Frobenius norm which is not necessarily the same norm
used in problem (1.1). Regardless of whichever norm ‖ · ‖ is used in (1.1), the descent property (4.1)
of Algorithm 4.1 guarantees that if all A(ν) are distinct then the iteration converges to a structured
matrix of rank k. In principle, it is possible that the iteration could be trapped in an impasse where
A(ν) and B(ν) will not improve any more. That will be the case when, for example, R(k)

⋂
Ω = ∅.

As an illustration, the projection for the case Ω = Tn of symmetric Toeplitz matrices is particu-
larly simple. The diagonals of A(ν+1) are simply the averages of diagonals of B(ν), respectively. For
structures other than Toeplitz, only minor modification in the projection part is needed. See. for
example, [19, 26].

4.2. A Point-to-Point Map. The usefulness of the above lift and project approach is
that it provides a means to calculate a point Pk(T ) ∈ Ω

⋂R(k) for each given T ∈ Ω. The map

Pk : Ω −→ Ω
⋂
R(k) (4.2)
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is defined to be the limit point Pk(T ) if the above lift-and-project iteration procedure starting with
T converges.

Despite of the descent property (4.1), one must not be mistaken to think that Pk(T ) is the
closest rank-k matrix in Ω to T . Given a target matrix A, the resulting Pk(A) is not the solution to
the structure preserving rank reduction approximation problem (1.1). Unfortunately, we have seen
in many references citing that Pk(A) is the solution.

It is worth noting that, even in the case n = 2, the iteration procedure in Algorithm 4.1 with
k = 1 applied to toeplitz(t1, 0) or toeplitz(0, t2) converges to the zero matrix, instead of a rank
one matrix. This observation suggests that the map P1 can be at most piecewise continuous. This
observation also reiterates what we have discussed in Theorem 3.1, that the nearest point is not
necessarily of the desired rank k matrix.

5. Numerical Methods. In this section we begin to touch upon numerical methods for
solving the structure preserving rank reduction problem (1.1). With the understanding that there is
a mammoth volume of research on this topic in engineering literature alone and that new methods
are continually being developed, our goal has to be limited. Our purpose is not to evaluate or
compare existing methods. Rather, we are proposing a general computational framework that can
accommodate any kind of structure, any kind of norm, and any low rank and. It is also helpful
that our formulation can easily adapt existing optimization package to solve the problem. It is the
concept, not the implementation details, that we want to emphasize in this section.

We shall recast the problem in two different optimization formulations. The difference between
these two formulations is the way we parameterize the structured low rank matrices. Along with
the discussion, we shall use some very primitive experimental results to demonstrate our approach.
A similar setting, employing penalty techniques, has recently been studied in [33].

5.1. Explicit Optimization. One convenient way to parameterize low rank matrices is via
the singular value decomposition. That is, any rank k square matrix M can be identified by the triplet
(U,Σ, V ) if M = UΣV T , where U and V are orthogonal matrices and Σ = diag{s1, . . . , sk, 0, . . . , 0}
with s1 ≥ . . . ≥ sk > 0. We use the singular values s1, . . . , sk as well as entries in U and V
as parameters to specify a low rank matrix. Any structural constraints can then be qualified via
a set of algebraic equalities among these variables. A rewriting of (1.1) in this way is called an
explicit formulation, inferring that every constraint is explicitly represented in the description of
the problem. If symmetry is part of the structural constraint, then nonzero eigenvalues and the
corresponding eigenvectors in the spectral decomposition could be used as the parameterization
variables instead. This would effectively reduce the number of unknowns.

Using the symmetric Toeplitz structure to exemplify this idea, in the explicit formulation we
intend to minimize the objective function

g(α1, . . . , αk,y(1), . . . ,y(k)) := ‖A−M(α1, . . . , αk,y(1), . . . ,y(k))‖ (5.1)

subject to the constraints that, if

M(α1, . . . , αk,y(1), . . . ,y(k)) :=
k∑

i=1

αiy(i)y(i)T
= [mij ], (5.2)

then

mj,j+s−1 = m1,s, s = 1, . . . n− 1, j = 2, . . . , n− s + 1, (5.3)

αi 6= 0, and y(i)T
y(j) = δij , i, j = 1, . . . k. (5.4)

The algebraic interrelationship among variables α1, . . . , αk,y(1), . . . ,y(k) are used to ensure that M
is symmetric Toeplitz, of rank k, and that vectors yi, i = 1, . . . , k, are mutually orthonormal.

The idea in forming an equality constrained optimization problem such as above can be extended
to general cases. For nonsymmetric or rectangular matrices, singular values and singular vectors
are used as variables. To reflect various types of structures, we only need to modify the constraint
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statements (5.3) for the structure and (5.4) for the orthogonality accordingly. Note again that the
norm used in (5.1) to measure the closedness of approximation can be arbitrary.

The notion of explicit formulation outlined above is fairly robust. Almost all kinds of structure
preserving low rank approximation problems can be rewritten in this way. The drawback, however,
is that it induces considerable redundancy in the description of the problem. As an example, it
is well known that symmetric Toeplitz matrices have special spectral properties, i.e., dn/2e of the
eigenvectors are symmetric and bn/2c are skew-symmetric [7]. This additional structure of eigenvec-
tors y(j) has not been taken into account in (5.3. Even if we do want to include this structure in the
constraint statements, we face another dilemma because we are not sure which eigenvalue should
be associated with, say, an even eigenvector. The formulation does not exploit any additional inter-
nal relationship among the current equality constraints. This could cause, inadvertently, additional
computational complexity and difficulties as we report below.

In our first experiment, we take advantage of the matrix manipulation capacity in MATLAB
and existing routines in its Optimization Toolbox for our application. Clearly, many other software
packages, e.g., [13, 32], can be used as well. The algorithm fmincon in MATLAB uses a sequential
quadratic programming technique to focus on the solution of the Kuhn-Tucker equations that, in
turn, are solved by a quasi-Newton updating procedure. As an experiment, we consider the sym-
metric Toeplitz matrix A = toeplitz([1, 2, 3, 4, 5, 6]) as the given target matrix whose rank is to be
reduced. Let the termination tolerance required on the solution as well as on the objective function
be set at 10−6. Start with T (0) = Pk(A) as the initial value, we simply ask fmincon to solve prob-
lem (1.1) for k = 5, 4, 3, 2, 1, respectively. By default, the code estimates any required derivative
information by finite difference approximations. Denote, for each k, the calculated optimal solution
by T ∗k , if the algorithm converges. We find that T ∗5 (whose values are listed later in Table 5.2) does
give smaller objective value than P5(A). However, for k < 5, the iterations by fmincon simply
will not improve the objective values throughout the computation. The exit condition of fmincon
reports that the optimization is terminated successfully, but we find that ‖T ∗k − Pk(A)‖ ≈ 10−6,
indicating that the optimal solution claimed is considered to be the same as the initial point. One
might mistakenly think then (and many did in the literature and applications) that T ∗k = Pk(A) for
k = 4, 3, 2, 1. However, we shall see below by using other software or algorithms under the same
circumstances that this is not the case.

Suppose we turn to the package lancelot as the next optimization solver. This code, available
on the NEOS Server [13, 21], is a standard Fortran 77 package for solving large-scale nonlinearly
constrained optimization problems. As it turns out, lancelot is able to find optimal solutions of
problem (5.1) for all values of k without any difficulties. Furthermore, the solutions obtained by
using lancelot agree, up to the required accuracy 10−6, with those obtained by using our second
method (See Table 5.2.) The overhead cost of using lancelot for our test problem is reported
in Table 5.1. The “# of variables” used by lancelot is (n + 1)k for a problem of size n and
desired rank k. The “# of f/c calls” refers to the number of function/gradient evaluations as well
the constraint/Jacobian evaluations. The total time in seconds given in Table 5.1 seems to suggest
that the choice of the rank affects the computational cost nonlinearly.

The experience that fmincon in MATLAB fails and lancelot in NEOS succeeds in solving
the very same problem (5.1) is a clear signal that any numerical solutions obtained by one algorithm
need to be compared carefully with results from other algorithms. We should stress that it is not
clear whether the proposed formulation would run into the same difficulties even with lancelot as
those we have experienced with fmincon, when the problem size becomes larger. We also should
point out that there are many other algorithms available from NEOS [13, 21] that we have not tried
yet for our problem.

5.2. Implicit Optimization. By regarding the function Pk(T ) in (4.2) as a way to char-
acterize low rank matrices, the rank reduction problem (1.1) can now be formulated as minimizing
the objection function

f(T ) = ‖A− Pk(T )‖ (5.5)
7



rank k 5 4 3 2 1

# of variables 35 28 21 14 7
# of f/c calls 108 56 47 43 19

total time 12.99 4.850 3.120 1.280 .4300

Table 5.1
Cost overhead in using lancelot for n = 6.

with T ∈ Ω. Though Pk(T ) may not be defined for all T , the above formulation at least provides us
with a handle to manipulate the objective function for most matrices T .

It is important to note that Pk(T ) is not necessarily the closest rank k approximation to T .
Nowhere in Algorithm 4.1 is it suggested that Pk(A) is a solution to (1.1). Unfortunately, in the
literature and in many applications, Pk(A) has been mistaken to be the nearest approximation to
A. For instance, a quote by Cadzow [5, 6] claims that Algorithm 4.1 alone (namely, Pk(A)) would
serve “as a cleansing process whereby any corrupting noise, measurement distortion or theoretical
mismatch present in the given data set (namely, A) is removed.” Similar misconception seems to
prevail in many other applications using Cadzow’s algorithm [3, 15, 29] and in the discussion in
[33]. We emphasize that more need to be done in order to find the closest structured low rank
approximation to the given A since Pk(A) is known to be merely one candidate in the feasible set.
The fact that more has to be done to obtain the closest structured low rank matrix has somehow
been overlooked. An interesting discussion in [14] suggests that this situation does have some impact
on real applications.

With the formulation (5.5) in hand, the structure preserving rank reduction problems become
more tractable. The constraint that T ∈ Ω can easily be handled. For example, if Ω = Tn, then
only n independent variables t1, . . . , tn are needed to specify T = toeplitz([t1, . . . , tn]). Therefore,
the function Pk(T ) can actually be written as P (t1, . . . , tn) and can be evaluated point by point
by the black box function described earlier. We call (5.5) an implicit formulation of the structure
preserving rank reduction problem, inferring to the fact that the constraints, particularly the rank
condition, are hidden inside the point-to-point map Pk(T ). We stress that this implicit formulation
is in fact an unconstrained optimization problem because the structural constraint T ∈ Ω can be
replaced by independent variables. This is in contrast to the explicit formulation discussed in the
preceding section.

Knowing how to compute Pk(T ) point by point is sufficient for the application of a wide spectrum
of unconstrained optimization methods to problem (5.5). An ad hoc optimization technique that
does not use the gradient information, for example, is the Nelder-Mead simplex search method. The
simplex search method (e.g., fminsearch in Matlab) requires only function evaluations, a feature
that our point-to-point map Pk(T ) can satisfactorily provide. For more sophisticated methods,
the gradient information can be calculated by using either numerical or automatic differentiation
techniques. Using exactly the same example as in the previous section for the explicit formulation, we
apply the the MATLAB routine fminunc, a BFGS quasi-Newton method using a mixed quadratic
and cubic line search procedure, to the implicit formulation. The results are summarized in Table 5.2.
The “# of iterations” refers to the number of function evaluations of the map P called by the search
in fminunc. Each call of P requires the computation of SVD several times. The “# of SVD calls”
is the number of lifts done in Algorithm 4.1 for the entire calculation. The large number of SVD
calls even for this small size toy problem seems to indicate the degree of difficulty for this structure
preserving rank reduction problem.

Three important observations are due from this experiment. First, we are able to calculate all
low rank matrices while maintaining the symmetric Toeplitz structure. This is somewhat surprising.
We know from Theorem 3.2 that symmetric Toeplitz matrices can have arbitrary lower rank, but
there is no general theory that guarantees the “nearest” symmetric Toeplitz approximation of any
lower rank to a given matrix. Is this observation true in general? Does it extend to other structures?
This existence question of a solution to problem (1.1) deserves further investigation. Secondly, we
note in Table 5.2 that the distance between A and T ∗k is quite significant, strongly indicating that
the noisy data could be substantially “filtered” using our numerical procedures. Thirdly, the optimal
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rank k 5 4 3 2 1

# of iterations 59 49 39 29 18
# of SVD calls 1013 2914 2200 1860 589

optimal solution

2
666664

1.1046
1.8880
3.1045
3.9106
5.0635
5.9697

3
777775

2
666664

1.2408
1.8030
3.0352
4.1132
4.8553
6.0759

3
777775

2
666664

1.4128
1.7980
2.8171
4.1089
5.2156
5.7450

3
777775

2
666664

1.9591
2.1059
2.5683
3.4157
4.7749
6.8497

3
777775

2
666664

2.9444
2.9444
2.9444
2.9444
2.9444
2.9444

3
777775

‖A− T∗k ‖ 0.5868 0.9581 1.4440 3.2890 8.5959

singular values

2
666664

17.9851
7.4557
2.2866
0.9989
0.6164

3.4638e−15

3
777775

2
666664

17.9980
7.4321
2.2836
0.8376

2.2454e−14
2.0130e−14

3
777775

2
666664

18.0125
7.4135
2.1222

1.9865e−14
9.0753e−15
6.5255e−15

3
777775

2
666664

18.2486
6.4939

2.0884e−14
7.5607e−15
3.8479e−15
2.5896e−15

3
777775

2
666664

17.6667
2.0828e−14
9.8954e−15
6.0286e−15
2.6494e−15
2.1171e−15

3
777775

Table 5.2
Test results for a case of n = 6 symmetric Toeplitz structure using fminunc.

Toeplitz T ∗5 given in Table 5.2 has a calculated singular value 3.4638 × 10−15, suggesting that T ∗5
is computationally of rank 5. We remark that T ∗5 can only be perceived as a local minimizer, as
is generally expected for nonlinear optimization problems. Nevertheless, we note that ‖T ∗5 − A‖ ≈
0.586797 < 0.589229 ≈ ‖P5(A)−A‖. Although this difference only represents a slight improvement
on the objective value, it is a piece of clear evidence that the Cadzow’s initial iteration alone does
not give rise to an optimal approximation to the noisy data.

6. Conclusions. The structure preserving rank reduction problem concerns the construc-
tion of the nearest approximation to a given matrix by a matrix with a specific rank and a specific
linear structure. This approximation is needed in many important applications. In this paper we
have investigated some theoretical and numerical issues associated with structure preserving rank
reduction problems. Many questions remain to be answered. We have proposed two general frame-
works to reformulate the problem. We have illustrated how the resulting optimization problems can
then be tackled numerically by utilizing existing software packages. Our approach can readily be
generalized to rank reduction problems of any given linear structure and of any given matrix norm.
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[13] J. Czyzyk, M. Mesnier, and J. Moré, The Network-Enabled Optimization System (NEOS) Server, Preprint
MCS-P615-1096, Argonne National Laboratory, 1996. See also http://www.mcs.anl.gov/neos/Server.

[14] B. De Moor, Total least squares for affinely structured matrices and the noisy realization problem, IEEE Trans.
Signal Processing, 42(1994), 3104-3113.

[15] M. Dendrinos, S. Bakamidis, and G. Carayannis, Speech enhancement from noise: A regenerative approach,
Speech Communication 10(45-57), 1991.

[16] F. Deutsch, von Neumann’s alternating method: the rate of convergence, Approximation Theory IV, C. Chui,
L. Schumaker and J. Ward, ed., Academic Press, New York, 1983, 427-434.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore,
MD, 1996.

[18] J. C. Gower, Eculidean distance geometry, Math. Scientist, 7(1982), 1-14.
[19] W. Glunt, T. L. Hayden, S. Hong, and J. Wells, An alternating projection algorithm for computing the nearest

Euclidean distance matrix, SIAM J. Matrix Anal. Appl., 11(1990), 589-600.
[20] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudoskeleton approximations, Linear

Alg. Appl., 261(1997), 1–21.
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