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Abstract

The problem of simultaneous reduction of real matrices by either orthogo�
nal similarity or orthogonal equivalence transformations is considered� Based
on the Jacobi idea of minimizing the sum of squares of the complementary
part of the desired form to which matrices are reduced� the projected gradi�
ent method is used in this paper� It is shown that the projected gradient of
the objective function can be formulated explicitly� This gives rise to a sys�
tem of ordinary di�erential equations that can be readily solved by numerical
software� The advantages of this approach are that the desired form to which
matrices are reduced can be almost arbitrary� and that if a desired form is
not attainable� then the limit point of the corresponding di�erential equa�
tion gives a way of measuring the distance from the best reduced matrices
to the nearest matrices that have the desired form� The general procedure
for deriving these di�erential equations is discussed� Some applications are
given�



� Introduction

In this paper� we are interested mainly in real�valued matrices although
the discussion in the sequel can be generalized to the complex�valued case�
The generalization will become clear at the end of this paper�
Let Rn�n denote the space of n � n real�valued matrices and let G�n�

denote the group of all nonsingular matrices in Rn�n� The following is a
classical problem in the �eld of algebra�

Problem � Given k arbitrary matrices A�� � � � � Ak � Rn�n� identify the sim�
ilarity class �orbit�

f�B�� � � � � Bk�jBi � T��AiT� i � 	� � � � � k
T � G�n�g �	�

under the action of G�n��

Let S�n� denote the subspace of all symmetric matrices in Rn�n and
let O�n� denote the subgroup of all orthogonal matrices in Gn� Then an
associated problem is�

Problem � Given k arbitrary matrices A�� � � � � Ak � S�n�� identify the sim�
ilarity class

f�B�� � � � � Bk�jBi � QTAiQ� i � 	� � � � � k
Q � O�n�g ���

under the action of O�n��

It is known that the classi�cation of similarity classes of k�tuples of matri�
ces can be reduced to the classi�cation of simultaneous similarity of commut�
ing pairs of matrices �	�� Only recently have the complex�valued versions of
the above two long�standing problems been theoretically solved in the paper
�	��� The technique used is highly algebraic in nature� Roughly speaking� the
orbit is determined by the values of certain rational functions in the entries of
A�� � � � � Ak� Various problems in which the classi�cation of orbits is needed
and various results for Problem 	 can be found in �	�� and the references
contained therein� But no numerical procedure has ever been attempted�
Because of concerns about numerical stability� numerical analysts usu�

ally prefer orthogonal transformations to general invertible transformations�
Therefore� it is of practical interest to consider the following problem�

	



Problem � Given k arbitrary matrices A�� � � � � Ak � Rn�n� identify the sim�
ilarity class

f�B�� � � � � Bk�jBi � QTAiQ� i � 	� � � � � k
Q � O�n�g ���

The only di�erence between Problem � and Problem � is that we have
replaced symmetric matrices by general matrices� We have reasons to believe
that this replacement makes Problem � harder to analyze� We mention� for
example� the well�known real Schur decomposition theorem �	�� p����� that
is related to the case k � 	 in Problem ��

Theorem ��� �RSD� If A � Rn�n� then there exists an orthogonal matrix
Q � O�n� such that QTAQ is upper quasi�triangular� that is� QTAQ is block
upper�triangular where each diagonal block is either a 	�	 matrix or a ���
matrix having complex conjugate eigenvalues�

Obviously the RSD Theorem has not yet fully identi�ed the orthogonal sim�
iliarity orbit of a general matrix A � Rn�n� Only when A is symmetric� then
the similarity orbit of A in S�n�� being diagonalizable through the transfor�
mation QTAQ� is perfectly classi�ed�
We usually are interested in identifying a matrix by its canonical form�

In application� quite often a canonical form is meant to be of a special matrix
structure� In this paper� we shall further require the canonical form be such
that all matrices having that structure form a linear subspace in Rn�n� The
structure could be� for instance� a diagonal matrix� a bidiagonal matrix� an
upper triangular matrix� and so on� The Jordan canonical form� however�
is out of our consideration because Jordan matrices do not form a linear
subspace� A di�erent view of Problem �� therefore� is to consider the following
problem�

Problem � Given k speci�ed �but possibly the same� canonical forms for
matrices in Rn�n� determine if the orbit of k matrices A�� � � � � Ak � Rn�n

under the action of O�n� contains an element such that each QTAiQ has the
speci�ed structure�

We mention a related but slightly di�erent problem to illustrate an ap�
plication of Problem � For decades� the problem of simultaneous diago�
nalization of two symmetric matrices has received much attention� See� for
example� ��� 	�� ��� ��� ���� and a historical survey ����� A classical result in
this direction is stated as follows�
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Theorem ��� If A is symmetric and B is symmetric and positive de�nite�
then there exists a nonsingular X such that both XTAX and XTBX are
diagonal matrices�

We note that most of the diagonalization processes for symmetric matrices
involve nonsingular �congruence� transformations which usually are not or�
thogonal� This is partly due to the reason that orthogonal transformations
are too limited to result in the diagonal form� But then it is curious to know
how much reduction orthogonal transformations can accomplish�
The type of transformation QTAQ with Q � O�n� will be referred to�

henceforth� as the �real� orthogonal similarity transforamtion� In numerical
analysis there is another type of transformation� QTAZ with Q�Z � O�n��
which will be referred to as the �real� orthogonal equivalence transformation�
The importance of the real orthogonal equivalence transformation can been
seen from the singular value decomposition theorem �	�� p��	��

Theorem ��� �SVD� If A � Rm�n� then there exist orthogonal matrices
Q � O�m� and Z � O�n� such that QTAZ is a diagonal matrix� �� � Rm�n

is understood to be a diagonal matrix if and only if �ij � � whenever i �� j��

Analogous to ���� the equivalence orbit of any given k arbitrary matrices
A�� � � � � Ak � Rm�n �under the action of O�m� and O�n�� is de�ned to be the
set

f�B�� � � � � Bk�jBi � QTAiZ� i � 	� � � � � k
Q � O�m�� Z � O�n�g� ��

Motivated by Problem � we ask the following question�

Problem � Given k speci�ed �but possibly the same� canonical forms for
matrices in Rm�n� determine if the equivalence orbit of k matrices A�� � � � � Ak �
Rm�n contains an element such that each QTAiZ has the speci�ed structure�

The SVD Theorem settles the special case k � 	 in Problem �� When
k � �� then Problem � is partially answered by the so called generalized real
Schur decomposition theorem �	�� p������

Theorem ��� �GRSD� If A�B � Rn�n� then there exist orthogonal matri�
ces Q and Z such that QTAZ is upper quasi�triangular and QTBZ is upper
triangular�

�



We should distinguish GRSD from another analogous but di�erent appli�
cation known as the generalized singular value decomposition theorem �����
�����

Theorem ��� �GSVD� If A � Rm�n and B � Rp�n� then there exist or�
thogonal U � O�m�� V � O�p� and invertible X � Rn�n such that UTAX
and V TBX are diagonal matrices�

We note that besides the generality of dimensions of A and B� the GSVD
is fundamentally di�erent from GRSD in that the orthogonal matrix Q is
not the same for A as for B and that the orthogonalilty of the matrix Z is
replaced by the nonsingularity�
All the aforementioned special cases of either Problem  or Problem �

have found signi�cant applications in numerical analysis� Enormous amount
of e�orts have already been devoted to the study of these special matrix
decompositions �See �	�� and the references cited therein�� We mention just
one example � Based on Theorem 	� a numerically stable method� called
the QZ algorithm ��	�� has been developed to solve the important generalized
eigenvalue problem Ax � �Bx� On the other hand� for the general cases of
either Problem  or Problem �� we �nd little is known in the literature�
Conceibably� when more matrices are involved� the simultaneous reduction
problem becomes more di�cult both theoretically and numerically�
In this paper we recast the simultaneous reduction problem as an equality�

constrained optimization problem and apply the projected gradient method�
We develop a di�erential equation approach that can be used as a numerical
method for answering both Problem  and Problem �� Our approach is
�exible in at least two aspects�

	� The di�erential equations for various types of canonical forms can easily
be derived within a uniform framework for a given k�

�� The framework can easily be modi�ed if k is changed�

In view of these advantages� we think we have established a tool by which
one may experiment with combinations of many di�erent canonical forms
with only slight modi�cations in the computer program� Furthermore� if
the desired form is not attainable� then the limit point of the corresponding
di�erential equation gives a way of measuring the distance from the best





reduced matrices to the nearest matrices that have the desired form� This
information sometimes is useful in applications�
The QR algorithm� the SVD algorithm and the QZ algorithm are a few

of the iterative methods that play very prominent roles in matrix computa�
tions� Earlier the author has developed di�erential equations to model these
iterative processes� Some references can be found in the review paper ����
Most of the ideas there have been based on the fact that a �nite� nonperiodic
Toda lattice is a continuous analog of the QR algorithm �����
The di�erential equation approach developed in this paper is based on the

idea of using the projected gradient method to minimize the sum of squares
of the undesired portions of the matrices� So in some sense our approach is
a continuous analog of the so called Jacobi method for symmetric eigenvalue
problems� A collection of variations and references of the Jacob method
can be found in �	�� p������ In the past� attempts have been made to
extend the Jacobi iteration to other classes of matrices and to push through
corresponding convergence results� But success has been reported only for
normal matrices �	�� which� then� was employed to solve the closest normal
matrix problem ����� For non�normal matrices� the situation is considerably
more di�cult� Simultaneous reduction of more than one general matrices
is thus an even harder problem� It turns out that our di�erential equation
approach o�ers a fairly easy but systematic reduction procedure� In fact� the
approach is so versatile that one can examine the �similarity or equivalence�
orbit of k given matrices for many di�erent combinations of reduced forms�
In �	� p����� the following question was raised�

What is the simplest form to which a family of matrices depend�
ing smoothly on the parameters can be reduced by a change of
coordinates depending smoothly on the parameters�

Our di�erential equation approach to Problem  and Problem � can be re�
garded as a special tool to answer this general question�
This paper is organized as follows� In Section �� we �rst derive a gen�

eral framework of constructing di�erential equations for Problem � The
development is parallel to that in an earlier paper ��� where a framework
was proposed for solving spectrally constrained least squares approximation
problems� In particular� we show how the projected gradient can be calcu�
lated explicitly� In Section � we demonstrate a special application to the
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simultaneous diagonalization of two symmetric matrices� Di�erential equa�
tions for Problem � are derived in Section � In the last section� we combine
techniques from both Section � and Section  to show how the argument can
be generalized to complex�valued case� An application to the closest normal
matrix problem is discussed there�
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� Orthogonal Similarity Transformation

In this section we develop an ordinary di�erential equation that can be
used to solve Problem  numerically�
We �rst de�ne some notation� Let Ai � Rn�n� i � 	� � � � � k denote k given

matrices� For each i� let Vi � Rn�n denote the subspace of all matrices
having the speci�ed form to which Ai is supposed to be reduced� We shall
use the Frobenius inner product

hX�Y i �� trace�XY T � �
nX

i�j��

xijyij ���

and the Frobenius matrix norm jjXjj �� hX�Xi��� in the space Rn�n� Given
any X � Rn�n� its projection onto the subspace Vi is denoted as Pi�X�� For
any matrix X � Rn�n� we de�ne the residual operator

�i�X� �� XTAiX � Pi�X
TAiX�� ���

We remark here that the choice of the subspace Vi can be quite arbitrary�
For example� V� may be taken to be the subspace of all diagonal matrices�
V� the subspace of all upper Hessenberg matrices� and so on� Our idea in
approaching Problem  is to consider the following optimization problem�

Problem �

Minimize F �Q� ��
	

�

kX
i��

k�i�Q�k
� ���

Subject to QTQ � I�

That is� while moving along the orthogonal similarity orbit of the given ma�
trices A�� � � � � Ak� we want to minimize the total distance between the point
QTAiQ and the subspace Vi for all i� One may regard Problem � as a stan�
dard equality�constrained optimization problem and thus solves the problem
by many existing numerical algorithms found in� for example� �	��� In doing
so� however� one has to interpret a matrix equation as a collection of n� non�
linear equations� The computation of derivatives in the unpacked form proves
to be very inconvenient� In the following we discuss an interesting geometric
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approach that preserves matrix operations and leads to the construction of
a di�erential equation�
We �rst note that the feasible set O�n� �� fQjQTQ � Ig is a well�de�ned

smooth manifold in Rn�n� It can be shown ��� that the tangent space to O�n�
at any orthogonal matrix Q is given by

TQ�O�n�� � QS�n��� ���

and that the orthogonal complement of TQ�O�n�� in Rn�n is given by

NQ�O�n�� � QS�n�� ���

The Fr�echet derivative of the objective function F in ��� at a general
X � Rn�n acting on a general Y � Rn�n can be calculated as follows�

F
�

�X�Y �
kX
i��

h�i�X�� �
�

i�X�Y i

�
kX
i��

h�i�X��X
TAiY � Y TAiX � Pi�X

TAiY � Y TAiX�i

�
kX
i��

hAT
i X�i�X� �AiX�

T
i �X�� Y i� �	��

In the second equation above we have used the fact that the projections Pi
are linear� In the third equation above we have used the fact that �i�X� is
perpendicular to Vi� We also have used the adjoint property

� X�Y Z ��� Y TX�Z ��� AZT � Y � �		�

to rearrange terms� The equation �	�� suggests that with respect to the
Frobenius inner product� we may interpret the gradient of F at a general
point X as the matrix

rF �X� �
kX
i��

�AT
i X�i�X� �AiX�

T
i �X��� �	��

Since Rn�n � TQO�n� �NQO�n�� every element X � Rn�n has a unique
orthogonal splitting

X � Qf
	

�
�QTX �XTQ�g�Qf

	

�
�QTX �XTQ�g �	��

�



as the sum of elements from TQO�n� and NQO�n�� Therefore� the projection
g�Q� ofrF �Q� into to the tangent space TQO�n� can be calculated as follows�

g�Q� �
Q

�
fQTrF �X��rF �X�TQg

�
Q

�

kX
i��

��QTAT
i Q��i�Q�� � �Q

TAiQ��
T
i �Q���� �	�

In �	� we have adopted the Lie bracket notion �X�Y � �� XY � Y X�
Now that g�Q� is tangent to the manifold O�n� �Note that the big sum�

mation in �	� ends up with a skew�symmetric matrix�� the vector �eld

dQ

dt
� �g�Q� �	��

de�nes a �ow on the manifold O�n�� By the way we construct it� this �ow
moves in the steepest descent direction for the objective function F �Q��
For convenience� we de�ne

Xi�t� �� Q�t�TAiQ�t� �	��

for i � 	� � � � � k� Upon di�erentiation and substitution� we �nd that each
Xi�t� must satisfy the ordinary di�erential equation�

dXi

dt
�

dQT

dt
AiQ�QTAi

dQ

dt

�

�
�Xi�

	

�

kX
j��

��Xj� P
T
j �Xj�� � �X

T
j � Pj�Xj��

�
� � �	��

It is worthwhile to note that the above arguments can be reversed ����
That is� any solution X�t� to �	�� can be written in the form of �	�� with Q�t�
satisfying �	��� We note also that the big summation in the �rst bracket of
�	�� is always a skew�symmetric matrix� Therefore� the �ow Xi�t� naturally
stays on the isospectral surface M�Ai� �� fQTAiQjQ � O�n�g if it starts
from an initial value Xi��� �M�Ai�� One obvious choice of the initial value
will be Xi��� � Ai� The di�erential system �	�� may be integrated by many
readily available ODE solvers� In doing so� we are following a �ow that has
the potential of solving Problem  for any prescribed set of canonical forms�
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Even if the prescribed canonical form is not attainable� the solution �ow X�t�
still provides a systematic way of simultaneously reducing the norm of the
residuals� It is in this sense we think our �ow is a continuous realization of
the classical Jacobi approach�
We observe from �	�� that the vector �eld for each component is� in

general� a homogeneous polynomial of degree �� Such a complicated dynam�
ical system is di�cult to analyze theoretically� The initial value problem�
however� is easy to solve numerically� By varying the subspaces Vi �and�
correspondingly� the projections Pi�� therefore� we have established an in�
strument for testing numerically if a given set of matrices A�� � � � � Ak can
be simultaneously reduced to certain desired forms through orthogonal sim�
ilarity transformations� We think the versatility of our approach is quite
interesting�
As an application� we now consider the case k � 	 in the di�erential

equation �	�� and comment on the Jacobi algorithm for eigenvalue problems�
The initial value problem to be solved is given by

dX

dt
�

�
X�
�X�P T

� �X��� �X�P
T
� �X��

T

�

�
�	��

X��� � A� �general��

We �rst choose V� to be the subspace of all upper triangular matrices� Ac�
cording to our theory� the solution of �	�� de�nes an isospectral �ow that
moves �for t � �� to minimize the norm of the strictly lower triangular ele�
ments� This idea clearly generalizes that of the Jacobi method for symmetric
eigenvalue problems� Indeed� we note from �	�� that if X is symmetric� then
so is dX�dt� If the initial value A� is symmetric� then so is X�t� for all t� In
this case� we may be better o� if V� is chosen to be the subspace of all diago�
nal matrices so that the norm of all o��diagonal elements is being minimized�
With this choice� the di�erential system �	�� becomes

dX

dt
� �X� �X� diag�X��� �	��

X��� � A� �symmetric�

where diag�X� denotes the diagonal matrix diagfx��� x��� � � � � xnng� The so�
lution �ow to �	�� is a continuous analog of the classical Jacobi method for
symmetric eigenvalue problems�
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It remains to determine to where a solution �ow of �	�� will converge�
Our numerical experience indicates that for a general initial matrix A�� the
solution �ow of �	�� in minimizing the norm of the strictly lower triangular
elements may converge to a limit point which does not even look like an
upper triangular matrix� This can easily be demonstrated by a numerical
example� Starting with the initial matrix

A� �

�
����

	����� ������ ������ ������
������� 	����� ������ �����
������ ������ ������ ������
������ ������ ������ �����

�
���� � ����

we integrated the equation �	�� by using the subroutine ODE in ��� with
local tolerance set at 	����� We assumed that convergence had occurred if
the di�erence between two consecutive output values �at intervals of 	�� was
less than 	����� We found the solution �ow converged to the limit point

�
����

������ ����� ��	�	� ������
������� ������ ������ ��	��	
����� ������ ������ ���	��

������ ������ ������� ������

�
���� � ��	�

Although the initial matrix ���� is an upper quasi�triangular matrix �as is
de�ned in Theorem 	���� the limit point ��	� is a full matrix� We observed
also that along the solution �ow� the norm of the strictly lower triangular
elements had been reduced monotonically from � to 	�	�	�� This example
con�rms that the upper quasi�triangular matrix guaranteed by the RSD the�
orem is not necessarily a stationary point when minimizing all the strictly
lower triangular elements �����
We shall say that a matrix is of structure B if it is block upper�triangular

and if all diagonal blocks are ��� matrices except possibly the last one which
is 	�	� We note that structureB is more general than upper quasi�triangular�
If a matrix A� can be reduced by orthogonal similarity transformations to
be of structure B� then eigenvalues of A� are readily known� Toward this
end� we may choose V� involved in equation �	�� to be the subspace of all
matrices of structure B� Our numerical experiments with structure B seems
to indicate that the ��limit set of any solution �ow contains only a singleton
which is of structure B� Thus� we conjecture that structure B is always

		



attainable� The proof of this dynamics and the experimentation with the
associated discrete Jacobi�type algorithm are currently under investigation
and we shall report the result elsewhere�
Meanwhile� the classi�cation of all critical points for �	�� has been com�

pletely analyzed in ���� It is worth noting that the diagonal matrices are
proved to be the only stable equilibrium points for the dynamical system
�	��� Furthermore� any of these �isospectral� diagonal matrices corresponds
to a global minimizer of Problem �� Once again� this phenomenon is very
analogous to that known for the classical Jacobi method�
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� A Nearest Commuting Pair Problem

In this section we discuss another application of the di�erential system
�	��� Let A� and A� be two given matrices in Rn�n� In general� A� and A�

do not commute� It is interesting to determine how far the pair �A�� A�� is
away from being commutable� This problem can be formulated as follows�

Problem 	

Minimize F �E�� E�� ��
	

�

�X
i��

kEi �Aik
� ����

Subject to E�E� � E�E� � ��

Again� Problem � is a typical equality constrained optimization problem
and can be solved by many available methods� In applying the method of
Lagrange multipliers� for example� we need to solve the following system of
matrix equations

E� �A� � �E
T
� � ET

� � � �

E� �A� � ET
� �� �E

T
� � � ����

E�E� �E�E� � �

for the variables E�� E� and the multiplier �� This approach su�ers from
some obvious di�culties�
Suppose both A� and A� are symmetric� A problem slightly less general

than Problem � is to determine how far �A�� A�� is away from a symmetric�
commuting pair ���� Let E� and E� be any symmetric� commuting pair�
We shall assume further that at least one of these two matrices has distinct
eigenvalues �This is the generic case�� It is not di�cult to show that E� and
E� can be simultaneously diagonalized by a Q

T �Q transformation �	�� p�����
Corollary 	�� Let Di � QTEiQ� i � 	� � be the diagonal matrices for some
orthogonal matrix Q� We observe from the relation

�X
i��

kEi �Aik
� �

�X
i��

kDi �QTAiQk
� ���

that the left�hand side of ��� will be minimized if one �rst �nds an orthogonal
matrix Q such that the matrices QTAiQ are as close to diagonal matrices
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as possible� and then sets Di � diag�QTAiQ�� Thus the problem of �nding
a nearest commuting pair to a given pair of symmetric matrices is boiled
down to the problem of simultaneous reduction of o��diagonal elements of
the given pair by orthogonal transformations� The latter problem �ts in as
a special case of our general framework in the preceding section� We simply
proceed as follows�
Both Vi� i � 	� � are taken to be the subspace of diagonal matrices� Ac�

cording to �	��� the descent �ow is given by the initial value problem�

dXi

dt
�

�
�Xi�

�X
j��

�Xj� diag�Xj��

�
� ����

Xi��� � Ai� i � 	� �

since both Xi and diag�Xi� are symmetric matrices�
In the event that A� and A� cannot be diagonalized simultaneously� the

limit point of the �ow gives a way of measuring the distance from �A�� A��
to the nearest commuting pair �See ����� Comparing with the system �	���
one �nds immediately that ���� is a direct generalization of the Jacobi al�
gorithm� It is known the straightforward �diagonalize one� then diagonalize
the other� approach for simultaneously diagonalizing pairs of symmetric ma�
trices is subject to numerical hazards that may prevent convergence ���� We
think our approach gives a new twist to the algorithm�

	



� Orthogonal Equivalence Transformation

In this section we develop an ordinary di�erential equation that can be
used to solvee Problem � numerically� Our approach is analogous to that in
Section ��
Let Ai � Rm�n� i � 	� � � � � k be given matrices� For each i� let Vi � Rm�n

denote the subspace of all matrices having the speci�ed form to which Ai is
supposed to be reduced� The projection operator from Rm�n to Vi is denoted
by Pi� For any X � Rm�m and Y � Rn�n� we de�ne

�i�X�Y � �� XTAiY � Pi�X
TAiY �� ����

We reformulate Problem � as�

Problem 


Minimize F �Q�Z� ��
	

�

kX
i��

k�i�Q�Z�k
� ����

Subject to QTQ � In

ZTZ � Im�

It will prove useful to consider the product topology by introducing the
induced Frobenius inner product

h�X�� Y��� �X�� Y��iP �� hX��X�i� hY�� Y�i� ����

on the space Rm�m � Rn�n� The feasible set of Problem � is considered
to be the product O�m� � O�n�� The tangent space to O�m� � O�n� at
�Q�Z� � O�m� �O�n� is given by

T�Q�Z�O�m� �O�n� � QS�m�� � ZS�n��� ����

and the normal space is given by

N�Q�Z�O�m��O�n� � QS�m�� ZS�n�� ����

	�



The Fr�echet derivative of the objection function in ���� at a general
�X�Y � � Rm�m �Rn�n acting on a general �H�K� � Rm�m �Rn�n is

F
�

�X�Y ��H�K�

�
kX
i��

h�i�X�Y ��H
TAiY �XTAiK � Pi�H

TAiY �XTAiK�i

�
kX
i��

�
hAiY �

T
i �X�Y ��Hi � hA

T
i X�i�X�Y ��Ki

	
� ��	�

Therefore� with respect to the induced Frobenius inner product� we may
interpret the gradient of F at �X�Y � as the pair�

rF �X�Y � �



kX
i��

AiY �
T
i �X�Y ��

kX
i��

AT
i X�i�X�Y �

�
� ����

We note that there is a considerable similarity between �	�� and �����
Because of the product topology� we may use the same principle as in

�	� to calculate the projection g�Q�Z� of rF �Q�Z� into the tangent space
T�Q�Z�O�m��O�n�� After simpli�cation� we claim that

g�Q�Z� �



Q

�

kX
i��

�QTAiZ�
T
i �Q�Z�� �i�Q�Z�Z

TAT
i Q��

Z

�

kX
i��

�ZTAT
i Q�i�Q�Z�� �Ti �Q�Z�Q

TAiZ�

�
� ����

Therefore� the vector �eld

d�Q�Z�

dt
� �g�Q�Z� ���

de�nes a steepest descent �ow on the manifoldO�m��O�n� for the objective
function F �Q�Z��
For i � 	� � � � � k� we de�ne

Xi�t� �� Q�t�TAiZ�t� ����

where �Q�t�� Z�t�� satis�es the di�erential equation ���� Upon di�erentia�
tion and substitution� it is not di�cult to see that each Xi�t� satis�es the

	�



equation

dXi

dt
�

kX
j��

�
Xi

XT
j Pj�Xj�� P T

j �Xj�Xj

�
�
Pj�Xj�XT

j �XjP
T
j �Xj�

�
Xi


�

����
By specifying the initial values� say Xi��� � Ai� and the subspaces Vi� we
now have an instrument in hand to explore various simultaneous reduction
problems numerically simply by integrating the equation �����
One special case of k � 	 is worth mentioning� Take V� to be the subspace

of all diagonal matrices in Rm�n �In a rectangular matrix� the extra rows or
columns are �lled with zero�� Then the equation ���� becomes

dX

dt
�
	

�

n
X
�
XT �diagX�� �diagX�TX

	
�
�
�diagX�XT �X�diagX�T

	
X�
o

����
In spirit� the di�erential equation ���� is parallel to a Jacobi�like approach
to the singular value decomposition �	�� p����� The stability property of all
equilibrium points of ���� can be further analyzed� In fact� it can be proved
that diagonal matrices �of the singular values� are the only stable equilibrium
points� Readers are referred to ��� and ��� for more details�
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� The Closest Normal Matrix Problem

All the techniques discussed in Section � and Section  can be generalized
to the complex�valued case� Without given too much repetition� we demon�
strate in this section how this generalization should be done by working on
the closest normal matrix problem�
The determination of a closest normal matrix to a given square complex

matrix has already recieved consierable attention �See �	�� and the refer�
ences therein�� This problem has only recently been completely solved �in
the Frobenius norm� in �		�� and independently in ����� We shall cast this
problem into our framework from which we obtain new and clear geometric
characterization of the �rst and the second order optimality condition�
Let Cn�n denote the space of n � n complex�valued matrices� U�n� the

group of all unitary matrices in Cn�n and D�n� the subspace of all diagonal
matrices in Cn�n� We recall the well�known fact that �	���

Theorem ��� A matrix Z � Cn�n is normal if and only if there exists a
unitary U � U�n� such that U�ZU � D�n��

Therefore� given an arbitrary matrix A � Cn�n� the closest normal matrix
problem can be formulated as

Problem �

Minimize F �U�D� ��
	

�
kA� UDU�k� ����

Subject to U � U�n� and D � D�n��

with the Frobenius norm jjZjj� ��
Pn

i�j�� jzijj
��

We note that in the minimization of ����� the two matrix variables U and
D are considered to be independent of each other� Let Z �� UDU�� however�
we observe the relationship

kA� Zk� � kU�AU �Dk� ����

holds� Obviously� for any given U � U�n�� the best D � D�n� that will
minimize the right�hand side of ���� is diag�U�AU�� Therefore� at global
extrema� Problem � is equivalent to

	�



Problem ��

Minimize F �U� �
	

�
kU�AU � diag�U�AU�k� ���

Subject to U�U � I�

Since unitary transformations do not alter the Frobenius norm of a ma�
trix� minimizing the sum of squares of o��diagonal elements of a matrix is
equivalent to maximizing the sum of squares of diagonal elements� From ����
we conclude that the closest normal matrix is characterized by the following
theorem ��� �		��

Theorem ��� Let A � Cn�n and let Z � UDU� where U � U�n� and
D � D�n�� Then Z is a closest normal matrix to A in the Frobenius norm
if and only if

�� The unitary matrix U maximizes jjdiag�V �AV �jj among all V � U�n��

�� The diagonal matrix D is such that D � diag�U�AU��

We see from Problem 	� and Theorem ��� that except for complex�valued
matrices� the situation is just like that discussed in Section � � We want to
minimize the norm of the o��diagonal elements by unitary similarity trans�
formations on A�
The ideas discussed in Section � can be applied almost without change

to the complex�valued case� We brie�y describe our procedure as follows�
We shall regard Cn�n as the vector space Rn�n �Rn�n over the �eld of real
numbers� That is� we shall identify the complex matrix Z as a pair of real
matrices ��Z��Z�� where �Z and �Z represent the real and the imaginary
part of Z� respectively� The inner product on Cn�n is de�ned by

hX�Y iC �� h�X��Y i � h�X��Y i �	�

We note that hZ�ZiC � jjZjj�� The topology imposed on Cn�n by �	�
resembles that on Rm�m � Rn�n given by ����� We may thus also take
advantage of the techniques developed in Section � In this context� the
analog to ��� is that the tangent space to U�n� at any unitary matrix U is
given by

TUU�n� � UH�n�� ���

	�



where H�n� is the collection of all Hermitian matrices in Cn�n� Furthermore�
identifying Z � ��Z��Z�� one can calculate the Fr�echet derivative and the
gradient for the objective function F in ���� It is not di�cult to prove that
all the calculation can be carried out formally just as in the real�valued case�
In particular� one can show that the projected gradient g�U� of F onto the
�real� manifold U�n� is given by

g�U� �
U

�
f�diag�U�AU�� U�A�U �� �diag�U�AU�� U�A�U ��g � ���

From ���� we obtain the following �rst order optimality condition�

Theorem ��� Let W �� U�AU � Then for U to be a stationary point of
Problem ��� it is necessary that

�diag�W ��W �� � �diag�W ��W ���� ��

Let wij denote the �i� j��component of W � It is easy to see that condition
�� is equivalent to

wji�wii � wjj� � wij�wjj �wii�� ���

If we de�ne a matrix H � �hij� by

hij �

� wij

wii�wjj
if wii �� wjj

� if wii � wjj

� ���

condition ��� is then equivalent to assuming that H is Hermitian� This
observation is in concordance with the notion of  H�matrix introduced in
�		� 	�� 	�� ���� We think our derivation� being di�erent from those done in
the literature� is of interest in its own right�
Furthermore� the explicit form of the projected gradient ��� can signif�

icantly facilitate the computation of the projected Hessian on the tangent
space of U�n�� The projected Hessian� needed in describing second order
optimality conditions� usually are formulated from the Lagrangian function
�See� �	�� p������ For a general nonlinear optimization problem� rarely is
the closed form of the projected Hessain available� In our context� however�
we can derive the explicit projected Hessian without using the Lagrangian
function�

��



We �rst extend the projected gradient function g formally to the entire
space Cn�n� i�e�� we assume the equation ��� is de�ned for general complex
matrices� Since the extended g is smooth� we may formally take its Fr�echet
derivative� In ��� we have observed that the quadratic form of the extended
Fr�echet derivative applied to tangent vectors corresponds exactly to the pro�
jected Hessian of the Lagrangian function� We recall that the tangent space
of our feasible U�n� is given by UH�n��� Therefore� we are able to calculate
the quadratic form

hUK� g��U�UKi � h�diag�W ��K�� diag��W�K��� �W�K�iC ���

with unitary U and skew�Hermitian K� In this way� we establish a second
order optimality condition for Problem 	��

Theorem ��� Let W �� U�AU � Then necessary �su	cient� conditions for
U � U�n� to be a local minimizer of Problem �� are that


�� The matrix �diag�W ��W �� is Hermitian�

�� The quadratic form h�diag�W ��K�� diag��W�K��� �W�K�iC is nonneg�
ative �positive� for every skew�Hermitian matrix K�

We note that the approach in ���� utilized the Lagrangian function with
a Hermitian matrix as the Lagrange multipliers� The second order condition
�either formula �	�� or formula �	�� in ����� also involved the Lagrangian
multipliers� Our description in the above theorem does not need any infor�
mation of the Lagrangian multipliers� We believe our result in Theorem ��
is new in its kind�
In ����� the Jacobi algorithm for normal matrices �	�� was used to solve

the nearest normal matrix problem � The matrix A was �rst transformed
by rotations into a  H�matrix� U�AU � then Z �� Udiag�U�AU�U� is a
putative nearest normal matrix�
Based on our preceding discussion� we now propose a continuous analog

which� nevertheless� does not need to compute any shift� phase or rotation
angle as did in ����� We simply need to integrate the di�erential system

dU

dt
� U

�W�diag�W ���� �W�diag�W ����

�
dW

dt
�

�
W�
�W�diag�W ���� �W�diag�W ����

�

�
���

�	



for the unitary matrix U�t� and the variable W �t� �� U�t��AU�t� until con�
vergence occurs� for then the matrix Z �� !Udiag� !W � !U� �where !denotes a
limit point of ���� will be a putative nearest normal matrix� As a numerical
experiment� we integrated the systems ��� with initial values U��� � I and

W ��� �

�
����	� � 	�����i �	��� � �����i

�	����� � ������i ��	��� � ������i

�
�

At t 	 ���� we concluded that convergence had occurred� The approximated
limit point of ��� is given by

!W 	

�
�����		����� � 	��	�������i ����������� � ������������i

���������	�� � �����������i �	��	��	����� � 	���	�����i

�

and

!U 	

�
�����������	 � ������������i ������������ � ��	��������i

������������� � ��	��������i �����������	 � ������������i

�
�

The matrix !W agrees with the one given in ���� only in its diagonal elements�
However� after substitution� the matrix Z � !Udiag� !W � !U� is the same as that
given in �����
It is interesting to note that there is an obvious similarity between �	��

and ����

��



� Conclusion

Two types of simultaneous reductions of real matrices by orthogonal
transformations are formulated as constrained optimization problems� The
objective functions are formed following the spirit in the well�known Jacobi
method�
The projected gradients of the objective functions onto the feasible set

can be calculated explicitly� Thus we are able to develop systems of ordi�
nary di�erential equations ��	�� and ������ The framework in deriving these
equations is quite general in that the number of the given matrices and the
desired forms to which the given matrices are supposed to be reduced can be
almost arbitrary�
By integrating the corresponding di�erential equation� we have thus es�

tablished a general numerical tool that one can use to answer Problem  and
Problem � for various reduced forms� In the event that a speci�ed form is
not attainable� the limit point of the corresponding di�erential equation still
gives a way of measuring how far the matrices can be reduced�
The framework can also be generalized to the complex�valued case� The

nearest normal matrix problem can be treated as a special application of our
theory�
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