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Abstract� Two data analysis problems� the orthonormal Procrustes problem and the Penrose
regression problem� are reconsidered in this paper� These problems are known in the literature for their
importance as well as di�culty� This work presents a way to calculate the projected gradient and the
projected Hessian explicitly� One immediate result of this calculation is the complete characterization
of the �rst order and the second order optimality conditions for both problems� Another application
is the natural formulation of a continuous steepest descent �ow that can serve as a globally convergent
numerical method� Applications are demonstrated by numerical examples�
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�� Introduction� The problem of matching data matrices to maximal agreement
by orthogonal rotations arises in many areas of disciplines� An concise and instructive
discussion of its application to factor analysis and multidimensional scaling can be found
in ���� For general consideration� Ten Berge proposes a taxonomy of matching proce�
dures based on gauging criteria� orthogonality� simultaneity� generality and symmetry
����� In this paper we derive the �rst order and the second order optimality conditions
for two of the most important cases in the family of problems� Our result includes as
a special case what is already known in the literature� and appears to be the strongest
possible provision for assessing a local optimizer�

The �rst problem of great interest is the matrix regression subject to orthonormal�
ity constraints� also known as the orthonormal Procrustes problem 	OPP
� For �xed
matrices A � Rn�p and B � Rn�q� the OPP is concerned with the following equality
constrained optimization problem�

Minimize kAQ�Bk	�


Subject to Q � Rp�q� QTQ � Iq	


where Iq stands for the q � q identity matrix�
The second problem considered is the more general Penrose regression problem

	PRP
� For �xed A � Rn�p� C � Rq�m and B � Rn�m� the PRP concerns the optimiza�
tion�

Minimize kAQC � Bk	�


Subject to Q � Rp�q� QTQ � Iq�	�


When p � q� the variable Q becomes an orthogonal matrix� This is the so called
symmetric problem according to the taxonomy by Ten Berge� also known as the orthog�
onal Procrustes problem� In this case� the optimal solution for the OPP is well known�
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In fact� the solution is given by Q � V UT where V and U come from the singular value
decomposition of ATB � V�UT ��� ��� The more interesting yet challenging case is the
so called asymmetric problem where p �� q 	We shall assume henceforth p � q�
 We
are not aware of any direct solution for the asymmetric problem� An iterative solution
suggested by Green and Gower has been discussed in ����� Iterative methods for the
PRP can be found in ��� and ����� Thus far� the best known optimality condition for
the OPP is that at a minimizer Q the corresponding matrix BTAQ must be symmetric
and positive semi�de�nite� We shall see in the sequel that this necessary condition can
be further strengthened�

Our approach in this paper is based on the recent development in the so called con�
tinuous realization methods� The idea has been to seek after the connection between the
dynamics of a certain di�erential equation and a certain discrete numerical algorithm�
See �� for a recent review on this subject� The continuous formulation often has the
advantage of furnishing better understanding about the properties of the solution for
the underlying problem� Also� we have seen problems that are seemingly impossible to
tackle by conventional discrete methods but can be solved by properly formulated con�
tinuous realization processes� In this paper we shall utilize the continuous realization
approach to reconsider the above two problems� Speci�cally� we shall �rst study in the
topology of the so call Stiefel manifold

O	p� q
 �� fQ � Rp�qjQTQ � Iqg�	�


and then show that gradient �ows for either problem can be reformulated without

much di�culty� Our approach here is similar in spirit to that in ���� but with much
more manipulation� An important feature of our approach is that the problems can be
treated in a completely uni�ed manner� We shall derive matrix di�erential equations
describing gradient �ows for both problems� Following the solution of these equations
lead us to the solution to the corresponding regression problems� More importantly�
we can specify the necessary and su�cient optimality conditions characterizing the
optimizers�

This paper is organized as follows� Some important topological properties� par�
ticularly the tangent space� of the manifold O	p� q
 are brie�y discussed in x� These
properties are then applied to the OPP in x�� We derive the projected gradient and the
project Hessian of a certain objective function in great details that enable us to specify
the �rst order and the second order su�cient and necessary conditions for a local min�
imizer of the OPP� The same ideas can be used for the PRP� We state the results in x�
without the tedious technicality� Finally� we present some numerical experiment in x��

�� Stiefel Manifold� The set O	p� q
 of all p� q real matrices with orthonormal
columns forms a smooth manifold of which the topology has been considered by Stiefel
in ���� For a quick grasp of its main properties� we recommend the paper by Edelman et
al ���� We outline in this section some main points that will be useful for the discussion�

We shall regard O	p� q
 as embedded in the pq dimensional Euclidean space Rp�q

equipped with the Frobenius inner product�

hX� Y i �� trace	XY T 

�



for any X� Y � Rp�q� The tangent space TQO	p� q
 of O	p� q
 at any Q � O	p� q
 is
given by

TQO	p� q
 � fH � Rp�qjQTH is skew�symmetricg�

To further characterize a tangent vector� we recall that a least squares solution X to
the equation

MX � N

is given by

X �M yK � 	I �M yM
W

where M y is the Moore�Penrose inverse of M � I is an identity matrix� and W is an
arbitrary matrix of proper dimension� Applied to our case with M � QT where Q �
O	p� q
 and N � K � Rq�q where K is skew�symmetric� we note that 	QT 
y � Q� The
following theorem therefore follows�

Theorem ���� Any tangent vector H � TQO	p� q
 has the form

H � QK � 	Ip �QQT 
W	�


where K � Rq�q and W � Rp�q are arbitrary� and K is skew�symmetric�
For convenience� we shall abbreviate Ip as I� Denote

S	q
 �� fall symmetric matrices in Rq�qg�

It is not di�cult to check by the dimension counting arguments that the normal spaces
of O	p� q
 at any orthonormal matrix Q is given by�

NQO	p� q
 � QS	q
�	�


It is worthy to mention the following decomposition of the space Rp�q�
Theorem ���� The space Rp�q can be written as the direct sum of three mutually

perpendicular subspaces

Rp�q � QS	q
�QS	q
� �N 	QT 
�	�


where S	q
� is simply the orthogonal complement of S	q
 with respect to the Frobenius
inner product and N 	QT 
 �� fX � Rp�qjQTX � �g�

We therefore are able to de�ne the following projections�
Corollary ���� Let Z � Rp�q� Then

�T 	Z
 �� Q
QTZ � ZTQ


� 	I �QQT 
Z	�


de�nes the projection of Z onto the the tangent space TQO	p� q
� Similarly�

�N 	Z
 �� Q
QTZ � ZTQ


	��


de�nes the projection of Z onto the normal space NQO	p� q
�
�



�� Orthogonal Procrustes Problem� Let A � Rn�p and B � Rn�q be given
and �xed� Consider the function F � Rp�q �� R de�ned by

F 	Q
 ��
�


hAQ� B�AQ� Bi �	��


Apparently� the OPP is equivalent to the minimization of the function F 	Q
 over the
feasible set O	p� q
�

With respect to the Frobenius inner product� the gradient rF 	Q
 of the objective
function F 	Q
 should be interpreted as the matrix

rF 	Q
 � AT 	AQ� B
�	�


Suppose the projection g	Q
 of the gradient rF 	Q
 onto the tangent space TQO	p� q

can be computed explicitly� Then the di�erential equation

dQ

dt
� �g	Q
	��


naturally de�nes the steepest descent �ow for the function F on the feasible set O	p� q
�
By applying Corollary ��� this projected gradient g	Q
 indeed is given by

g	Q
 �
Q



�
QTrF 	Q
� 	rF 	Q

TQ

�
� 	I �QQT 
rF 	Q


�
Q


	BTAQ�QTATB
 � 	I �QQT 
AT 	AQ�B
�	��


Thus the di�erential equation

dQ

dt
�
Q


	QTATB � BTAQ
� 	I �QQT 
AT 	AQ� B
	��


de�nes a steepest descent �ow on the manifold O	p� q
 for the objective function F in
	��
� Starting with an initial point� say�

Q	�
 �

�
Iq
�

�
�	��


we may use this �ow to approximate a solution to the OPP�
Another advantage of knowing the projected gradient g	Q
 explicitly is that we can

describe the �rst order optimality condition for a stationary point�
Theorem ���� For Q � O	p� q
 to be a stationary point of the OPP� the following

two conditions must hold simultaneously�
�a�� BTAQ is symmetric� and
�b�� 	I �QQT 
AT 	AQ�B
 � ��
Proof� For Q to be a stationary point� it is necessarily that g	Q
 � �� Since the two

factors in 	��
 are mutually perpendicular� each individual factor must zero by itself�
The condition 	a
 follows from pre�multiplying the �rst factor in 	��
 by QT �





We remark here that the condition 	a
 in Theorem ��� is a known fact in the liter�
ature ����� but the condition 	b
 somehow has been overlooked� Our result apparently
is new and rectify that defect�

We can also derive an explicit projected Hessian formula to further identify the
stationary points� The development is based on an extension idea discussed in ��� that
signi�cantly cuts short the work of what would be if going through the classical notion
of Lagrangian multipliers� The task is to �rst extend the function g	Q
 de�ned on the
manifold O	p� q
 to the function G	Z
 de�ned on the entire space Rp�q by�

G	Z
 ��
Z


	BTAZ � ZTATB
 � 	I � ZZT 
AT 	AZ �B
�	��


The Fr�echet derivative of G at Z acting on a general H is�

G�	Z
H �
�



�
H	BTAZ � ZTATB
 � Z	BTAH �HTATB


�
�	HZT � ZHT 
AT 	AZ � B
 � 	I � ZZT 
ATAH�	��


We then consider the action of G� at a stationary point Z � Q � O	p� q
 on any tangent
vector H � QK � 	I �QQT 
W for arbitrary K � S	q
� and W � Rp�q� This action�
according to the arguments in ���� produces exactly the same action of the projected
Hessian for the OPP� For convenience� we divide the action into four parts�

First of all� we observe

hG�	Q
QK�QKi �
�
�



�
QK	BTAQ�QTATB
 �Q	BTAQK �KTQTATB


�
�	QKQT �QKTQT 
AT 	AQ� B
 � 	I �QQT 
ATAQK�QK

E

�
�
�



�
Q	BTAQK �KTQTATB


�
� 	I �QQT 
ATAQK�QK

�

�
�
�



�
BTAQK �KTQTATB

�
� K

�

�
D
BTAQK�K

E
�	��


In the above� the second equality follows from condition 	a
 in Theorem ��� and the
fact that K is skew�symmetric� The third equality utilizes the adjoint property

hM�NP i �
D
NTM�P

E
for any three conformal matrices M�N and P � and the fact that

QT 	I �QQT 
 � ��	�


Secondly� we haveD
G�	Q
QK� 	I �QQT 
W

E
�

�
Q



�
	BTAQK �KTQTATB


�
�	I �QQT 
ATAQK� 	I �QQT 
W

E
�

D
	I �QQT 
ATAQK� 	I �QQT 
W

E
�

D
ATAQK� 	I �QQT 
W

E
�	�







In the above� the third equality follows from 	�
 and the fact that

	I �QQT 
� � I �QQT �	


Thirdly� we haveD
G�	Q
	I �QQT 
W� 	I �QQT 
W

E

�
�
Q



�
	BTA	I �QQT 
W �W T 	I �QQT 
ATB


�
�
�
	I �QQT 
WQT �QW T 	I �QQT 


�
AT 	AQ� B


�	I �QQT 
ATA	I �QQT 
W� 	I �QQT 
W
E

�
D
�WQTAT 	AQ�B
 � ATA	I �QQT 
W� 	I �QQT 
W

E
�	�


Again� we have used 	�
 and 	
 in the above to induce the last equality�
Finally� we observe thatD

G�	Q
	I �QQT 
W�QK
E

�
�
Q



�
	BTA	I �QQT 
W �W T 	I �QQT 
ATB


�
�
�
	I �QQT 
WQT �QW T 	I �QQT 


�
AT 	AQ�B
� QK

E
�

D
BTA	I �QQT 
W �W T 	I �QQT 
AT 	AQ� B
� K

E
�

D
�W T 	I �QQT 
ATAQ�K

E
�
D
ATAQK� 	I �QQT 
W

E
�	�


Putting all pieces together� the quantityD
G�	Q
	QK � 	I �QQT 
W 
� QK � 	I �QQT 
W

E
	�


represents the action of the projected Hessian of F at tangent vectors� and hence we
obtain the following theorem from the constrained optimization theory ��� Section �����

Theorem ���� At a stationary point Q � O	p� q
 satisfying Theorem ���� a second�
order necessary condition for Q to be a minimizer of the OPP is that the inequalityD

BTAQK�K
E
� 

D
ATAQK� 	I �QQT 
W

E
�
D
ATA	I �QQT 
W� 	I �QQT 
W

E
	�


�
D
	I �QQT 
WQTAT 	AQ� B
� 	I �QQT 
W

E
� �

holds for all skew�symmetric matrices K � Rq�q and arbitrary matrices W � Rp�q� If
�	
� holds with the strict inequality� then it is su�cient that Q is a local minimizer of
the OPP�

The condition in Theorem �� is the best one can hope for from the general theory of
nonlinear equality constrained optimization� The complete and explicit characterization
in 	�
 appears to be known the �rst time� Note that we have purposefully rewritten
the last term on the left�hand side of 	�
 in the quadratic form of 	I �QQT 
W �

�



Two special cases of Theorem �� are of great interest� With W � �� the necessary
condition in 	�
 becomes

D
BTAQK�K

E
� �	�


for all skew�symmetric matrices K in Rq�q� With K � �� the necessary condition
becomesD

A	I�QQT 
W�A	I �QQT 
W
E
�
D
	I�QQT 
WQTAT 	AQ� B
� 	I�QQT 
W

E
	�


for arbitrary matrix W � Rp�q� We shall show below that 	�
 is equivalent to the
condition known in the literature ����� But 	�
 apparently is new�

Observe that K � Rq�q is skew�symmetric if and only if its singular value decom�
position is of the form

K � U�JTUT �	�


where U is an q � q orthogonal matrix� � � diagf��� � � � � �qg contains singular values
with ��i�� � ��i� i � �� � � � � b

q

�
c� and �q � � if q is odd� and

J �

��������
������	

Ib q
�
c �

�
� �

�� �

�
� if q is even�


�� Ib q
�
c �

�
� �

�� �

�
�

� �


�� � if q is odd�

It follows that

K� � �U��UT	��


which in fact is the spectral decomposition of K�� We know from Theorem ��� that
BTAQ is necessarily symmetric at any stationary point Q� Let

BTAQ � V �V T

denote the corresponding spectral decomposition� Note thatD
BTAQK�K

E
�

D
V �V T � U��UT

E

�
qX

i��

�i

�
qX

t��

p�it�
�
t

�

where P � 	pij
 � V TU � Since the orthogonal matrix P � Rq�q can be arbitrary�
in order to maintain the inequality in 	�
 it must be that all entries ��� � � � � �q are
nonnegative� We have proved the following result�

Corollary ���� A necessary condition for the stationary point Q � O	p� q
 to be
a solution of the OPP is that the matrix BTAQ be positive semi�de�nite and that the
inequality �	�� be held for arbitrary W � Rp�q�

�



�� Penrose Regression Problem� The more general Penrose regression problem
can be considered parallel to the orthonormal Procrustes problem� For given matrices
A � Rn�p� C � Rq�m and B � Rn�m� we solve the Penrose regression problem by
minimizing the function

E	Q
 �
�


hAQC � B�AQC � Bi	��


over the feasible set Q � O	p� q
� Without repeating the details� we directly present
results as follows�

The gradient rE	Q
 of E	Q
 with respect to the Frobenius inner product should
be interpreted as the matrix

rE	Q
 � AT 	AQC �B
CT �	�


The projected gradient g	Q
 of rE	Q
 onto the tangent space TQO	p� q
 is given by�

g	Q
 �
Q


	QTAT 	AQC �B
CT � C	AQC �B
TAQ


�	I �QQT 
AT 	AQC � B
CT �	��


The steepest descent �ow for E	Q
 in 	��
 is characterized by the di�erential equation�

dQ

dt
�

Q


	C	AQC � B
TAQ�QTAT 	AQC � B
CT 


�	I �QQT 
AT 	AQC � B
CT �	��


Again� we may approximate a solution of the PRP by solving the di�erential equation
	��
 with an initial value� say�

Q	�
 �

�
Iq
�

�
�

Similar to Theorem ���� we also can specify the �rst order optimality condition�
Theorem ���� For Q � O	p� q
 to be a stationary point of the PRP� the following

two conditions must hold simultaneously�
�a�� C	AQC � B
TAQ is symmetric� and
�b�� 	I �QQT 
AT 	AQC �B
CT � ��
Upon extending the projected gradient g	Q
 in 	��
 to the function G	Z
 de�ned

over the entire space Rp�q�

G	Z
 ��
Z


	ZTATAZCCT � ZTATBCT � CCTZTATAZ � CBTAZ


�	I � ZZT 
AT 	AZC � B
CT �	��


we calculate the action of the Fr�echet derivative of G at Z on a general H�

�



G�	Z
H ��
H


	ZTATAZCCT � ZTATBCT � CCTZTATAZ � CBTAZ


�
Z


	HTATAZCCT � ZTATAHCCT �HTATBCT

�CCTHTATAZ � CCTZTATAH � CBTAH


�	HZT � ZHT 
AT 	AZC � B
CT � 	I � ZZT 
ATAHCCT �	��


We then consider the action of G� at a stationary point Z � Q � O	p� q
 on any tangent
vector H � QK � 	I � QQT 
W for arbitrary K � S	q
� and W � Rp�q� This action
produces exactly the same action of the projected Hessian for the PRP� For the record�
we present the �nal results of our calculation in the following� The details can be �lled
in by the same arguments as for the OPP�

We claim that

hG�	Q
QK�QKi �
D
QTATAQKCCT �QTAT 	AQC � B
CTK�K

E
�	��
 D

G�	Q
QK� 	I �QQT 
W
E
�

D
ATAQKCCT � 	I �QQT 
W

E
�	��


We also haveD
G�	Q
	I �QQT 
W� 	I �QQT 
W

E
�

D
�WQTAT 	AQC � B
CT � ATA	I �QQT 
WCCT � 	I �QQT 
W

E
�

D
ATA	I �QQT 
WC� 	I �QQT 
WC

E
�
D
	I �QQT 
WQTAT 	AQC �B
CT � 	I �QQT 
W

E
�	��


and �nally D
G�	Q
	I �QQT 
W�QK

E
�
D
ATAQKCCT � 	I �QQT 
W

E
�	��


Similar to Theorem ��� we therefore have the following second�order optimality
condition

Theorem ���� At a stationary point Q � O	p� q
 satisfying Theorem ��� a second�
order necessary condition for Q to be a minimizer of the PRP is that the inequalityD

QTATAQKCCT �QTAT 	AQC � B
CTK�K
E

�
D
ATAQKCCT � 	I �QQT 
W

E
�
D
ATA	I �QQT 
WC� 	I �QQT 
WC

E
�
D
	I �QQT 
WQTAT 	AQC � B
CT � 	I �QQT 
W

E
� �	��


holds for all skew�symmetric matrices K � Rq�q and arbitrary matrices W � Rp�q� If
��� holds with the strict inequality� then it is su�cient that Q is a local minimizer for
the PRP�

	



We note that when m � q and C � Iq� then the PRP is reduced to the OPP� The
above theory generalizes the results in x� and shows how the presence of C complicates
the conditions�

With W � �� the necessary condition in 	��
 becomes

D
QTATAQKCCT � K

E
�
D
C	AQC � B
TAQ�K�

E
� �	�


for all skew�symmetric matrices K in Rq�q� Another necessary condition� when K � ��
is the inequality

D
A	I�QQT 
WC�A	I�QQT 
WC

E
�
D
	I�QQT 
WQTAT 	AQC�B
CT � 	I�QQT 
R

E
�

	��

for arbitrary matrix W � Rp�q�

Denote the spectral decompositions of the following matrices�

C	AQC � B
TAQ � V �V T �

ATA � T�T T �

CCT � S�ST �

where each of V� S � Rq�q and T � Rp�p is orthogonal� Note that all entries in
� � diagf��� � � � � �pg and � � diagf��� � � � � �qg are nonnegative� Using 	��
� we obtain

hG�	Q
QK�QKi � h�R�� Ri �
D
V �V T � U��UT

E

�
pX

j��

�j

�
qX

s��

r�js�s

�
�

qX
i��

�i

�
qX

t��

p�it�
�
t

�
	��


where P � 	pit
 �� V TU and R � 	rjs
 �� T TQKS� Thus the following second order
optimality condition is proved�

Corollary ���� A necessary condition for the stationary point Q � O	p� q
 to
be a solution of the PRP is that the matrix C	AQC �B
TAQ be negative semi�de�nite
and that the inequality ��� be held for arbitrary W � Rp�q�

�� Numerical Experiment� In this section� we report some experiences of our
experiment with the di�erential equation 	��
 applied to the OPP� We have observed
similar experience of 	��
 applied to the PRP� To avoid repetition� results for PRP will
not be presented here�

The computation is carried out by MATLAB ��a on an ALPHA ��������LX work�
station� The solvers used for the initial value problem are ode��� from the MATLAB
ODE SUITE ����� The code ode��� is a PECE implementation of Adams�Bashforth�
Moulton methods for non�sti� systems� More details of this code can be found in the
document ����� The reason for using this code is simply for convenience and illustration�
Any other ODE solvers can certainly be used instead�

In our experiments� the tolerance for both absolute error and relative error is set
at ������ This criterion is used to control the accuracy in following the solution path�

��



The high accuracy we required here has little to do with the dynamics of the underlying
vector �eld� and perhaps is not needed in practical data analysis application� We exam�
ine the output values at time interval of ��� The integration terminates automatically
when the relative improvement of F 	Q
 between two consecutive output points is less
than ����� indicating local minimizer has been found� So as to �t the data comfortably
in the running text� we report only the case n � � and display all numbers with �ve
digits� All codes used in this experiment are available upon request�

One important feature of 	��
 	and similarly of 	��

 is that the resulting Q	t

should automatically stay on the manifold O	p� q
� In numerical calculation� however�
round�o� errors and truncations errors easily throw the computed Q	t
 o� the manifold
of constraint� To remedy this problem� we adopt an additional non�linear projection
scheme suggested by Gear ���� Suppose Q is an approximate solution to 	��
 satisfying

QTQ � I �O	hr


where r represents the order of the numerical method� Let Q � �QR be the unique QR

decomposition of Q with diag	R
 � �� Then

�Q � Q�O	hr
	��


and �Q � O	p� q
� The condition diag	R
 � � is important to ensure the transition of
Q	t
 is smooth in t� In our implementation� the matrix Q on the right�hand side of 	��

is replaced by the corresponding �Q�

Example �� In practice� the data in A and B often represent two di�erent ordina�
tions of the same samples or populations� Based on this idea� we produce the test data
for this experiment by �rst using the random number generator rand in MATLAB to
create the matrix

A �



�������

����� ������ ����� ������
������ ������ ������ ������
������ ������ ������ ������
������ ������ ������ ������
������ ������ ������ �����


�������
�

We then use the command randperm in MATLAB to generate a random permutation

Q� �



�����
� � �
� � �
� � �
� � �


����� �

Finally� we de�ne B �� AQ� so that the underlying OPP� though may have many local
solutions due to its non�linearity� has exactly one global solutionQ� at which F 	Q�
 � ��
We emphasize here that the data obtained this way are not realistic because in practice
B can rarely be a simple permutation of columns of A� In fact� it is precisely for the
reason that it is often di�cult to determine the relationship between B and A that an

��
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Fig� �� A semi�log plot of F �Q�t�� and ��Q�t�� for Example ��a��

orthonormal Procrustes analysis is needed ���� We present the following examples just
to illustrate how the descent �ow behaviors�

�a�� Obviously� the initial value determines where our descent �ow will converges
to� For instance� suppose we start with the matrix

Q	�
 �



�����
����� ������ ������
����� ������� ������
����� ������ ������
����� ������ ������


�����	��


that represent a non�trivial perturbation of Q�� Figure � records the history of the
changes of the objective value F 	Q	t

 � kAQ	t
 � Bk where Q	t
 is determined by
integrating the di�erential equation 	��
� Clearly� the global solution is obtained in this
case�

Also recorded in Figure � is the history of the function

 	Q	t

 �� kIq �Q	t
TQ	t
k	��


that measures the deviation of Q	t
 from the manifold of constraint O	p� q
� It is seen
that Q	t
 is well kept within the local tolerance�

�b�� Suppose the initial value Q	�
 is taken to be that suggested in 	��
� Then we
can only reach a local minimizer

Q� �



�����

������ ������ �������
������ ������ ������
������ ������� �����

������� ���� ������


�����

with objective value kAQ� � Bk � ����� The test results are presented in Figure �
It is interesting to note that both conditions in Theorem �� are satis�ed�

��
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Fig� �� A semi�log plot of F �Q�t�� and ��Q�t�� for Example ��b��

Example �� Suppose B � AQ� �
�
�
! where

! �



�������

������ ������ ������
������� ������ ������
������ ������� �������
������� ������� �������
������ ����� �������


�������

represents a random perturbation from normal distribution N	�� �
� With Q � Q�� this
noise has the magnitude kAQ� � Bk � ������ But by following 	��
 with Q	�
 given
by 	��
� we obtain

Q� �



�����
������ ������ ������
������ ����� �����
������ ������� �����
������ ����� ������


�����

with kAQ� � Bk being reduced to ������ The test results are recorded in Figure ��
Again� we can only report that a local minimizer is found�

�� Conclusion� We have reconsidered the orthonormal Procrustes problem and
the Penrose regression problem� By using the projected gradient idea� we are able to
completely characterize the �rst order and the second order optimality conditions for
a local minimizer� The results extend what is already known in the literature� and
provides a new numerical method for solving these problems�
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