THE ORTHOGONALLY CONSTRAINED REGRESSION REVISITED
MOODY T. CHU* AND NICKOLAY T. TRENDAFILOV'

Abstract. Two data analysis problems, the orthonormal Procrustes problem and the Penrose
regression problem, are reconsidered in this paper. These problems are known in the literature for their
importance as well as difficulty. This work presents a way to calculate the projected gradient and the
projected Hessian explicitly. One immediate result of this calculation is the complete characterization
of the first order and the second order optimality conditions for both problems. Another application
is the natural formulation of a continuous steepest descent flow that can serve as a globally convergent
numerical method. Applications are demonstrated by numerical examples.

Key words. Constrained regression, Procrustes rotation, Penrose regression, Projected gradient,
Optimality condition, Continuous-time method.

1. Introduction. The problem of matching data matrices to maximal agreement
by orthogonal rotations arises in many areas of disciplines. An concise and instructive
discussion of its application to factor analysis and multidimensional scaling can be found
in [7]. For general consideration, Ten Berge proposes a taxonomy of matching proce-
dures based on gauging criteria, orthogonality, simultaneity, generality and symmetry
[13]. In this paper we derive the first order and the second order optimality conditions
for two of the most important cases in the family of problems. Our result includes as
a special case what is already known in the literature, and appears to be the strongest
possible provision for assessing a local optimizer.

The first problem of great interest is the matrix regression subject to orthonormal-
ity constraints, also known as the orthonormal Procrustes problem (OPP). For fixed
matrices A € R™P? and B € R"*Y, the OPP is concerned with the following equality
constrained optimization problem:

(1) Minimize ||AQ — B]|
(2) Subject to @ € RP*Y, QTQ = I,

where I, stands for the ¢ x ¢ identity matrix.

The second problem considered is the more general Penrose regression problem
(PRP). For fixed A € R™?,C € R”™ and B € R™™, the PRP concerns the optimiza-
tion:

(3) Minimize ||AQC — B]|
(4) Subject to  Q € RP*Y, QTQ = I,

When p = ¢, the variable ) becomes an orthogonal matrix. This is the so called
symmetric problem according to the taxonomy by Ten Berge, also known as the orthog-
onal Procrustes problem. In this case, the optimal solution for the OPP is well known.
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In fact, the solution is given by Q = VUT where V and U come from the singular value
decomposition of ATB = VXUT [8, 6]. The more interesting yet challenging case is the
so called asymmetric problem where p # ¢ (We shall assume henceforth p > ¢.) We
are not aware of any direct solution for the asymmetric problem. An iterative solution
suggested by Green and Gower has been discussed in [13]. Iterative methods for the
PRP can be found in [9] and [10]. Thus far, the best known optimality condition for
the OPP is that at a minimizer @) the corresponding matrix BT AQ must be symmetric
and positive semi-definite. We shall see in the sequel that this necessary condition can
be further strengthened.

Our approach in this paper is based on the recent development in the so called con-
tinuous realization methods. The idea has been to seek after the connection between the
dynamics of a certain differential equation and a certain discrete numerical algorithm.
See [2] for a recent review on this subject. The continuous formulation often has the
advantage of furnishing better understanding about the properties of the solution for
the underlying problem. Also, we have seen problems that are seemingly impossible to
tackle by conventional discrete methods but can be solved by properly formulated con-
tinuous realization processes. In this paper we shall utilize the continuous realization
approach to reconsider the above two problems. Specifically, we shall first study in the
topology of the so call Stiefel manifold

(5) Op,q) == {Q € RPQ"Q = I},

and then show that gradient flows for either problem can be reformulated without
much difficulty. Our approach here is similar in spirit to that in [1], but with much
more manipulation. An important feature of our approach is that the problems can be
treated in a completely unified manner. We shall derive matrix differential equations
describing gradient flows for both problems. Following the solution of these equations
lead us to the solution to the corresponding regression problems. More importantly,
we can specify the necessary and sufficient optimality conditions characterizing the
optimizers.

This paper is organized as follows: Some important topological properties, par-
ticularly the tangent space, of the manifold O(p, q) are briefly discussed in §2. These
properties are then applied to the OPP in §3. We derive the projected gradient and the
project Hessian of a certain objective function in great details that enable us to specify
the first order and the second order sufficient and necessary conditions for a local min-
imizer of the OPP. The same ideas can be used for the PRP. We state the results in §4
without the tedious technicality. Finally, we present some numerical experiment in §5.

2. Stiefel Manifold. The set O(p, q) of all p x ¢ real matrices with orthonormal
columns forms a smooth manifold of which the topology has been considered by Stiefel
in [12]. For a quick grasp of its main properties, we recommend the paper by Edelman et
al [3]. We outline in this section some main points that will be useful for the discussion.

We shall regard O(p, ¢q) as embedded in the pg dimensional Euclidean space RP*?
equipped with the Frobenius inner product:

(X,Y) = trace(XY7)
2



for any X,Y € RP*9. The tangent space ToO(p,q) of O(p,q) at any Q € O(p,q) is
given by

ToO(p,q) = {H € RP*QT H is skew-symmetric}.

To further characterize a tangent vector, we recall that a least squares solution X to
the equation

MX =N
is given by
X=MEK+(I—-MMW
where MT is the Moore-Penrose inverse of M, I is an identity matrix, and W is an
arbitrary matrix of proper dimension. Applied to our case with M = Q7 where Q €
O(p,q) and N = K € R7Y where K is skew-symmetric, we note that (Q7)" = Q. The

following theorem therefore follows.
THEOREM 2.1. Any tangent vector H € ToO(p, q) has the form

(6) H = QK + (I, - QQ")W

where K € R and W € RP*Y are arbitrary, and K s skew-symmetric.
For convenience, we shall abbreviate I, as I. Denote

S(q) := {all symmetric matrices in R7*7}.

It is not difficult to check by the dimension counting arguments that the normal spaces
of O(p, q) at any orthonormal matrix () is given by:

(7) NoO(p,q) = QS(q).

It is worthy to mention the following decomposition of the space RP*1.
THEOREM 2.2. The space RP*? can be written as the direct sum of three mutually
perpendicular subspaces

(8) R =QS(q) ® QS(q)" ® N(Q"),

where S(q)* is simply the orthogonal complement of S(q) with respect to the Frobenius
inner product and N'(QT) := {X € RP*|QTX = 0}.

We therefore are able to define the following projections.

COROLLARY 2.3. Let Z € RP*9. Then

Q"7 - 7"Q
@ wr(7) = QE T (1 qo"yz
defines the projection of Z onto the the tangent space ToO(p,q). Similarly,
TZ + ZT
(10) n(2) = QL2 EE

defines the projection of Z onto the normal space NoO(p,q).
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3. Orthogonal Procrustes Problem. Let A € R"*? and B € R"*Y be given
and fixed. Consider the function F': RP*? — R defined by

(11) FQ) = % (AQ — B, AQ — B).

Apparently, the OPP is equivalent to the minimization of the function F(Q) over the
feasible set O(p, q).

With respect to the Frobenius inner product, the gradient VF(Q) of the objective
function F(Q) should be interpreted as the matrix

(12) VF(Q) = A"(AQ — B).

Suppose the projection ¢g(Q) of the gradient VF(Q) onto the tangent space ToO(p, q)
can be computed explicitly. Then the differential equation
aQ _

(13) o = 9(Q)

naturally defines the steepest descent flow for the function F' on the feasible set O(p, q).
By applying Corollary 2.3, this projected gradient ¢(@) indeed is given by

9@ = L(QVFQ - (VFQ)'Q)+ (1 - Q") VF(@)
(14) = UBTAQ - QTATB) + (1 - QQT)AT(AQ ~ B).

Thus the differential equation

dQ — Q
(15) 2 = 2(QUATB - BTAQ) - (I - QQ")A"(4Q - B)
defines a steepest descent flow on the manifold O(p, ¢) for the objective function F' in

(11). Starting with an initial point, say,

(16 oo ={ ).

we may use this flow to approximate a solution to the OPP.

Another advantage of knowing the projected gradient g(Q) explicitly is that we can
describe the first order optimality condition for a stationary point.

THEOREM 3.1. For Q € O(p,q) to be a stationary point of the OPP, the following
two conditions must hold simultaneously:

(a). BTAQ is symmetric, and

(b). (I - QQT)AT(AQ — B) =0.

Proof. For @ to be a stationary point, it is necessarily that g(@) = 0. Since the two
factors in (14) are mutually perpendicular, each individual factor must zero by itself.
The condition (a) follows from pre-multiplying the first factor in (14) by Q. 0O
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We remark here that the condition (a) in Theorem 3.1 is a known fact in the liter-
ature [13], but the condition (b) somehow has been overlooked. Our result apparently
is new and rectify that defect.

We can also derive an explicit projected Hessian formula to further identify the
stationary points. The development is based on an extension idea discussed in [1] that
significantly cuts short the work of what would be if going through the classical notion
of Lagrangian multipliers. The task is to first extend the function ¢g(@) defined on the
manifold O(p, ¢) to the function G(Z) defined on the entire space RP*? by:

(17) G(Z) = g(BTAZ ~ZTATB) + (I — ZZ")AY (AZ — B).
The Fréchet derivative of G’ at Z acting on a general H is:

G'(Z)H = % (H(B"AZ — Z"ATB) + Z(B" AH — H" A" B))
(18) —(HZ" + ZH"AT(AZ — B) + (I — ZZ")AT AH.

We then consider the action of G’ at a stationary point Z = @ € O(p, ¢) on any tangent
vector H = QK + (I — QQT)W for arbitrary K € S(q)* and W € RP*4. This action,
according to the arguments in [1], produces exactly the same action of the projected
Hessian for the OPP. For convenience, we divide the action into four parts:

First of all, we observe

1
2
~(QKQ" + QK"Q"A(AQ - B) + (I - QQ")A"AQK, QK )
_ <% (Q(BTAQK — K"QTA™B)) + (I — QQ)ATAQK, QK>

. <% (B"AQK — K" Q" A" B) ,K>

(19) = <BTAQK, K> .

In the above, the second equality follows from condition (a) in Theorem 3.1 and the
fact that K is skew-symmetric. The third equality utilizes the adjoint property

(M,NP) =(N"M,P)
for any three conformal matrices M, N and P, and the fact that
(20) Q"(I-QQ") =0
Secondly, we have

(@K, (1-Qa" W) = (& ((BTAQK - KTQTA"B))

(I - QQ)ATAQK, (I - QQT)W)
_ <([ —QQNATAQK, (I — QQT)W>

(21) = (ATAQK, (I - QQ")W).
)



In the above, the third equality follows from (20) and the fact that

(22) (I-QQ")*=1-QQ".

Thirdly, we have

(G = QMW (T - QQ")W)

_ <% ((B"A(I - Q"YW —W"(I - QQ")A"B))
(- Q@NWQ™ + QW"(1 - Q") AT(AQ - B)
(I = QQ")AT A(I - QQ"YW, (I — QQ")W)

(23) = (-WQ"AT(AQ — B) + ATA(I - QQ")W, (I - QQ")W).

Again, we have used (20) and (22) in the above to induce the last equality.
Finally, we observe that

(G - QQ"W,QK)
= (9 ((Bmau - qanw — w1 - @A R)
— (1= QQ"WQ" +QW" (I - QQ")) A"(AQ - B),QK)
= (B"A(I - QQ"W - WT(I - QQ")AT(AQ - B), K )
(24) = (=W - QQNATAQ, K) = (ATAQK, (I - QQ")W).
Putting all pieces together, the quantity
(25) (G'@QQK + (- QQNW), QK + (I - QQ")W)

represents the action of the projected Hessian of F' at tangent vectors, and hence we

obtain the following theorem from the constrained optimization theory [4, Section 3.4]:
THEOREM 3.2. At a stationary point Q@ € O(p, q) satisfying Theorem 3.1, a second-

order necessary condition for () to be a minimizer of the OPP 1is that the inequality

(26) (BTAQK, K') + 2 (ATAQK, (I — QQTYW ) + (ATA(I — QQ"W, (I — QQ")W)
— (I - QR"WQTAT(AQ - B),(I - QQ"W) > 0

holds for all skew-symmetric matrices K € RY*? and arbitrary matrices W € RP*1. If
(26) holds with the strict inequality, then it is sufficient that Q is a local minimizer of
the OPP.

The condition in Theorem 3.2 is the best one can hope for from the general theory of
nonlinear equality constrained optimization. The complete and explicit characterization
in (26) appears to be known the first time. Note that we have purposefully rewritten
the last term on the left-hand side of (26) in the quadratic form of (I — QQT)W.
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Two special cases of Theorem 3.2 are of great interest. With W = 0, the necessary
condition in (26) becomes

(27) (B"AQK,K) >0

for all skew-symmetric matrices K in R?*?. With K = 0, the necessary condition
becomes

(28) (A(T-QQNW, A(I - QQ"W ) >((I-QQ")WQTAT(AQ - B), (I-QQ")W)

for arbitrary matrix W € RP*?. We shall show below that (27) is equivalent to the
condition known in the literature [13]. But (28) apparently is new.

Observe that K € R7*? is skew-symmetric if and only if its singular value decom-
position is of the form

(29) K=UxJ"U",
where U is an ¢ x ¢ orthogonal matrix, ¥ = diag{oy,...,0,} contains singular values
with 091 = 095, i =1,...,|Z], and 0, = 0 if ¢ is odd, and
01 i
IL%J(X)(_I 0), if ¢ is even;
J = I @ 0 1
3] -1 0 , if ¢ is odd.
0 1

It follows that
(30) K?*=-Ux?U"

which in fact is the spectral decomposition of K2?. We know from Theorem 3.1 that
BT AQ is necessarily symmetric at any stationary point @. Let

BTAQ =VAVT
denote the corresponding spectral decomposition. Note that

<BTAQK,K> - <VAVT,U22UT>
q

q
- Z)‘i (szzt@:z)
i=1  \t=1

where P = (p;;) = VTU. Since the orthogonal matrix P € R?*? can be arbitrary,
in order to maintain the inequality in (27) it must be that all entries A;,..., A, are
nonnegative. We have proved the following result:
COROLLARY 3.3. A necessary condition for the stationary point Q € O(p,q) to be
a solution of the OPP is that the matriz BT AQ be positive semi-definite and that the
inequality (28) be held for arbitrary W € RP*9.
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4. Penrose Regression Problem. The more general Penrose regression problem
can be considered parallel to the orthonormal Procrustes problem. For given matrices
A e RP C € R and B € R™™, we solve the Penrose regression problem by
minimizing the function

(31) B(Q) = § (AQC ~ B, AQC - B)

over the feasible set @ € O(p,q). Without repeating the details, we directly present
results as follows.

The gradient VE(Q) of E(Q) with respect to the Frobenius inner product should
be interpreted as the matrix

(32) VE(Q) = AT(AQC — B)CT.

The projected gradient g(@Q) of VE(Q) onto the tangent space ToO(p, q) is given by:

9@ = LQUAT(4QC - BIC" ~ C(AQC - B 4Q)
(33) +(I — QM AT (AQC — B)C™.

The steepest descent flow for F(Q) in (33) is characterized by the differential equation:

% - %(C(AQC ~ B)TAQ - Q"AT(AQC - B)CT)
(34) —(I - QQ")AT(AQC - B)C".

Again, we may approximate a solution of the PRP by solving the differential equation
(34) with an initial value, say,

Similar to Theorem 3.1, we also can specify the first order optimality condition.

THEOREM 4.1. For Q € O(p,q) to be a stationary point of the PRP, the following
two conditions must hold simultaneously:

(a). C(AQC — B)TAQ is symmetric, and

(b). (I —QQTYAT(AQC — B)CT =0.

Upon extending the projected gradient ¢(Q) in (33) to the function G(Z) defined
over the entire space RP*?:

G(Z2) = g(ZTATAZC’CT — ZTATBCT —CCTZTATAZ + CBTAZ)

(35) +(I — Z2Z"AT(AZC — B)CT,

we calculate the action of the Fréchet derivative of G at Z on a general H:



G'(Z2)H = g(ZTATAZCC’T — ZTATBCT — CCTZTATAZ + CBTAZ)

Z

+§(HTATAZCCT + 7zt ATAHCCT — HTATBCT

—~CCTHTATAZ — CCTZTATAH + CBT AH)
(36) —(HZ" + ZH")AT(AZC — B)C" + (I — ZZ")ATAHCC".
We then consider the action of G’ at a stationary point Z = @ € O(p, ¢) on any tangent
vector H = QK + (I — QQT)W for arbitrary K € S(¢)* and W € RP*4. This action
produces exactly the same action of the projected Hessian for the PRP. For the record,
we present the final results of our calculation in the following. The details can be filled

in by the same arguments as for the OPP.
We claim that

(37) (G'(QQK,QK) = (Q"ATAQKCCT — Q"AT(AQC - B)CTK,K),
(38) (G'(Q)QK, (I - QQTYW) = (ATAQKCCT, (I - QQMW).
We also have
(G - QQ"W, (I - QR"HW)
= (-WQ"AT(AQC - B)C" + ATA(I - QQ"YWCC” (I - QQ")W)
= (ATA(I - QQ"YWC, (I - QQ"YWC)

(39) —((I - QQ"WQTAT(AQC — B)CT (I - QQ")W),
and finally
(40) (G'(QI - QQTW, QK ) = (ATAQKCCT, (I — QQT)W).

Similar to Theorem 3.2, we therefore have the following second-order optimality
condition

THEOREM 4.2. At a stationary point Q@ € O(p, q) satisfying Theorem 4.1, a second-
order necessary condition for () to be a minimizer of the PRP is that the inequality

<QTATAQKCCT —QTAT(AQC — B)C'K, K>
+2 <ATAQKCCT, (I - QQT)W>
+(ATA(I - QQTYWC, (I - QQ)WC)
(41) — (I = QQTWQTAT(AQC — B)C™, (I - QQT)W) > 0

holds for all skew-symmetric matrices K € RY*Y and arbitrary matrices W € RP*9. If

(41) holds with the strict inequality, then it is sufficient that Q) is a local minimizer for
the PRP.
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We note that when m = ¢ and C' = I, then the PRP is reduced to the OPP. The
above theory generalizes the results in §3 and shows how the presence of C' complicates
the conditions.

With W = 0, the necessary condition in (41) becomes

(42) (QTATAQKCC™ K) + (C(AQC — B)"AQ,K?) >0

for all skew-symmetric matrices K in R9*7. Another necessary condition, when K = 0,
is the inequality

(AT-QQ"WC, AI-QQ"WC)>((I-QQ")WQ" AT (AQC-B)C™, (I-QQ")R) .
(43)
for arbitrary matrix W € RP*9,

Denote the spectral decompositions of the following matrices:

C(AQC — B)TAQ = VAVT,
ATA = ToT7,
cct = Sust,

where each of VS € R?? and T € RP*P is orthogonal. Note that all entries in
¢ = diag{¢1,...,¢p} and ¥ = diag{¢, ..., 1, } are nonnegative. Using (30), we obtain

(@ (QQK,QK) = (®RU,R)— (VAVT,US?UT)

where P = (p;;) := V'U and R = (rjs) := TTQKS. Thus the following second order
optimality condition is proved.

COROLLARY 4.3. A necessary condition for the stationary point Q@ € O(p,q) to
be a solution of the PRP is that the matriz C(AQC — B)T AQ be negative semi-definite
and that the inequality (43) be held for arbitrary W € RP*1.

5. Numerical Experiment. In this section, we report some experiences of our
experiment with the differential equation (15) applied to the OPP. We have observed
similar experience of (34) applied to the PRP. To avoid repetition, results for PRP will
not be presented here.

The computation is carried out by MATLAB 4.2a on an ALPHA 3000/300LX work-
station. The solvers used for the initial value problem are ode113 from the MATLAB
ODE SUITE [11]. The code odel13 is a PECE implementation of Adams-Bashforth-
Moulton methods for non-stiff systems. More details of this code can be found in the
document [11]. The reason for using this code is simply for convenience and illustration.
Any other ODE solvers can certainly be used instead.

In our experiments, the tolerance for both absolute error and relative error is set
at 107'2. This criterion is used to control the accuracy in following the solution path.
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The high accuracy we required here has little to do with the dynamics of the underlying
vector field, and perhaps is not needed in practical data analysis application. We exam-
ine the output values at time interval of 10. The integration terminates automatically
when the relative improvement of F(()) between two consecutive output points is less
than 1071? indicating local minimizer has been found. So as to fit the data comfortably
in the running text, we report only the case n = 5 and display all numbers with five
digits. All codes used in this experiment are available upon request.

One important feature of (15) (and similarly of (34)) is that the resulting Q(t)
should automatically stay on the manifold O(p,¢). In numerical calculation, however,
round-off errors and truncations errors easily throw the computed Q(¢) off the manifold
of constraint. To remedy this problem, we adopt an additional non-linear projection
scheme suggested by Gear [5]: Suppose @ is an approximate solution to (15) satisfying

Q"Q=1+0(I)

where r represents the order of the numerical method. Let Q = QR be the unique QR
decomposition of () with diag(R) > 0. Then

(45) Q=Q+0(h)

and Q € O(p,q). The condition diag(R) > 0 is important to ensure the transition of
Q(t) is smooth in ¢. In our implementation, the matrix @ on the right-hand side of (15)
is replaced by the corresponding Q.

Example 1. In practice, the data in A and B often represent two different ordina-
tions of the same samples or populations. Based on this idea, we produce the test data
for this experiment by first using the random number generator rand in MATLAB to
create the matrix

0.2190 0.3835 0.5297 0.4175
0.0470 0.5194 0.6711 0.6868
A= 0.6789 0.8310 0.0077 0.5890
0.6793 0.0346 0.3834 0.9304
0.9347 0.0535 0.0668 0.8462

We then use the command randperm in MATLAB to generate a random permutation

Qo =

o O = O
o O O
o = O O

Finally, we define B := A(@), so that the underlying OPP, though may have many local

solutions due to its non-linearity, has exactly one global solution @)y at which F'(Q) = 0.

We emphasize here that the data obtained this way are not realistic because in practice

B can rarely be a simple permutation of columns of A. In fact, it is precisely for the

reason that it is often difficult to determine the relationship between B and A that an
11
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Fia. 1. A semi-log plot of F(Q(t)) and Q(Q(t)) for Example 1(a).

orthonormal Procrustes analysis is needed [7]. We present the following examples just
to illustrate how the descent flow behaviors.

(a). Obviously, the initial value determines where our descent flow will converges
to. For instance, suppose we start with the matrix

0.2618  0.9198 —0.2333
0.8912 —0.3467 —0.2333
0.2618  0.1301  0.9399
0.2618  0.1301  0.0876

(46) Q(0) =

that represent a non-trivial perturbation of )y. Figure 1 records the history of the
changes of the objective value 2F(Q(t)) = ||[AQ(t) — B|| where Q(t) is determined by
integrating the differential equation (15). Clearly, the global solution is obtained in this
case.

Also recorded in Figure 1 is the history of the function

(47) QQ()) = I, - Q)" Q)

that measures the deviation of Q(¢) from the manifold of constraint O(p, q). It is seen
that Q(¢) is well kept within the local tolerance.

(b). Suppose the initial value Q(0) is taken to be that suggested in (16). Then we
can only reach a local minimizer

0.0094  0.3811 —0.5768
0.9999  0.0094  0.0088
0.0088 —0.5768  0.4625
—0.0110  0.7225  0.6733

Q*:

with objective value ||AQ. — B|| &~ 0.2234. The test results are presented in Figure 2.
It is interesting to note that both conditions in Theorem 3.2 are satisfied.
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Example 2. Suppose B = AQ, + %A where

0.5383  0.9503  0.6004

—0.6168  0.3468  1.0047

A= | —1.2161 —0.9547 —0.3608
—0.8900 —0.7598 —0.6719
—1.9832  0.3192 —0.6037

represents a random perturbation from normal distribution N(0,1). With @ = @, this
noise has the magnitude ||AQy — B|| = 1.7152. But by following (15) with Q(0) given
by (46), we obtain

—0.3582  0.8064  0.4669
0.8186  0.2608  0.2344
0.0800 —0.4655  0.8275
0.4418  0.2549 —-0.2056

Qu =

with ||[AQ4 — B|| being reduced to 1.5132. The test results are recorded in Figure 3.
Again, we can only report that a local minimizer is found.

6. Conclusion. We have reconsidered the orthonormal Procrustes problem and
the Penrose regression problem. By using the projected gradient idea, we are able to
completely characterize the first order and the second order optimality conditions for
a local minimizer. The results extend what is already known in the literature, and
provides a new numerical method for solving these problems.
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