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Abstract�
Many mathematical problems� such as existence questions� are studied by using an appropriate

realization process� either iteratively or continuously� In this article di�erential equation techniques
are used as a special continuous realization process for linear algebra problems� The matrix di�erential
equations are cast in fairly general frameworks of which special cases have been found to be closely
related to important numerical algorithms� The main thrust is to study the dynamics of various
isospectral �ows� This approach has potential applications ranging from new development of numerical
algorithms to theoretical solution of open problems� Various aspects of the recent development and
application in this direction are reviewed in this article�

�� Introduction�

Continuous realization methods are based on the idea of connecting two abstract problems

through a mathematical bridge� Usually one of the abstract problems is a make�up whose solu�

tion is trivial while the other is the real problem whose solution is di�cult to �nd� The bridge� if it

exists� is regarded as a continuous path in the problem space� Following the path means deforming

the underlying abstract problem mathematically� It is hoped that by following the path� the obvious

solution will systematically be deformed into the solution that we are seeking for�

In applying a continuous realization method� two basic tasks should be carried out �rst since

they are most accountable for the success�

�� One needs to establish a mathematical theory that can ensure the existence of bridge con�

necting the two abstract problems�

	� One needs to develop a numerical algorithm that can e�ectively follow the path�

The bridge usually takes the form as an integral curve of an ordinary di�erential equation describing

how the problem data are transformed from the simple system to the more complicated system� The

numerical algorithm thus should be an e�cient ODE solver�

Depending upon how the bridge is constructed� continuous realization methods appear in di�erent

forms� One of the best known continuous realization methods in the literature perhaps is the so

called homotopy method 
�� 	� ��� ��� ��� The philosophy behind the homotopy method is quite

straightforward� We use the homotopy method to demonstrate the idea of continuation as follows�

Suppose the original problem is to solve a nonlinear equation

f�x� � ����

where f � Rn �� Rn is a continuously di�erentiable function� We consider the homotopy function

H � Rn�� �� Rn de�ned by

H�x� t� � f�x�� tf�x���	�

where x� is an arbitrarily �xed point in Rn� Clearly� the solution to the equation H�x� �� � �

is x� and the solution to the equation H�x� �� � � is the same as that to ���� By tracing the

solution of the equation H�x� t� � � while the value of t is gradually changed from � to �� we

hope we will be led to a solution of ���� The idea is mathematically appealing because the zero set
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H����� � f�x� t�jH�x� t� � �g is indeed a smooth curve in Rn��� provided � � Rn is a regular value

for H 
��� ��� This smooth curve is what we refer to �the bridge�� Upon di�erentiation� we see that

the homotopy curve is characterized by the initial value problem�

f ��x�
dx

ds
� �

t
f�x�

dt

ds
� �

x��� � x�

t��� � �

�
dx

ds
�� � �

dt

ds
�� � ����

where s represents the arc length� The system ��� can be solved numerically by many available

software packages�

What is not clear in ��� �and is crucial in all continuous realization methods� is whether the curve

will ever reach the level t � �� Properties of f and the selection of x� must be taken into account in

order that the bridge really makes the desired connection� Numerous applications together with their

very own special homotopy functions have been studied in the literature� Far from being complete� we

simply mention� for example� 
��� for eigenvalue problems� 
��� for nonlinear programming problem�


�� for physics applications and boundary value problems� 
��� ��� for polynomial systems� Some

special purpose curve tracing techniques can be found in 
��� for HOMPACK� 
��� for eigenvalue

problems� 
��� for pseudo�arc length technique� 
��� for parameterized nonlinear systems and 
��� for

polynomial systems�

The idea of continuation can also be motivated through iterative methods� It is a well known

fact that iterative methods have played very signi�cant roles in a variety of ways for solving important

mathematical problems� In our context� iterative methods may as well be regarded as discrete real�

ization processes� It has been observed that many of the iterative methods used in numerical analysis

may be regarded as the discrete realization of certain continuous dynamical systems� Suppose� for

example� that the Jacobian matrix f ��x� in ��� is invertible� Then the di�erential equation may be

written as

dx

ds
�

dt

ds

�

t
�f ��x����f�x����

With the appropriate step size chosen� it is clear that one Euler step applied to the di�erential equation

��� is equivalent to one regular iteration of the classical Newton method applied to the equation ���


���� In a recent paper 
�	�� we have already reviewed the development in the continuous realization

of some of the basic iterative methods� including the Newton method� the QR algorithm� the RQI

method� the SVD algorithm� the QZ algorithm and so on�

In this article� we want to address another facet of continuous realization methods� We shall

examine how the continuation idea can be used to study linear algebra problems� including some of

those where no numerical algorithm is available and some of those where the existence theory is yet

to be settled� Our approaches described below are entirely di�erent from those discussed in 
�	��

yet the spirit of continuous realization is manifested clearly throughout the settings� In other words�

unlike those discussed in 
�	�� the dynamical systems to be considered are not constructed arti�cially

from attempts to model existing iterative methods� Rather� the construction of bridges are monitored

by the values of certain speci�ed functions through which we hope certain desired properties will

eventually be realized�

Most of the matrix di�erential equations discussed in this article are in the same basic form of

dX

dt
� 
X� k�X�����

	



where X � X�t� � Rn�n� t � R� k stands for a certain matrix�valued operator acting on the matrix X�

and 
A�B� �� AB�BA denotes the Lie bracket� Of particular importance is the case when k is skew�

symmetric� Under appropriately formulated k� the equation ��� has found applications in eigenvalue

or singular value problems� spectrally or singular�value constrained least squares approximation prob�

lems� inverse Toeplitz or non�negative eigenvalue problems� nearest normal matrix problem� quadratic

programming problems� and simultaneous reduction problems� This paper summarizes some of the

recent contributions in these aspects�

In addition� we think the approach by continuous realization methods might have the following

advantages�

� There are many well�developed classical results for continuous dynamical systems� The study
of continuous system might shed critical insights into the understanding of the dynamics of

the corresponding discrete methods�

� In contrast to the local properties for some discrete methods� the continuous approach
usually o�ers a global method for solving the underlying problem�

� Some existence problems� seemingly impossible to be tackled by any conventional discrete
methods� may be solved by formulating a special di�erential equation that ensure a speci�c

task is taking place�

� Continuous realization sometimes uni�es di�erent discrete methods as special cases of its
discretization and often gives rise to the design of new numerical algorithms�

� In a sense a continuation process means a spontaneous evolution of a problem� Thus it
has potential applications in numerical analysis� control theory� signal processing� matrix

theory� and mathematical programming� This opens up a new direction of applying numer�

ical ODE techniques� although the di�erential systems resulted from continuous realization

present immediate challenge to most current ODE methods� In particular� we would like to

have an ODE solver that can e�ectively approximate the asymptotically stable attractors

of a dynamical system 
���� Also� matrix di�erential equations are especially suitable for

integration on a massively data�parallel computing system� such as the Connection Ma�

chine� Thus matrix di�erential equations may be used as large�scale benchmark problems

for testing parallel ODE techniques 
	��� Conversely� parallel ODE techniques may bene�t

the numerical solution of matrix di�erential equations�

We shall see that the solution X�t� of ��� represents� in a sense� the evolution of X��� under a

smooth change of coordinate systems 
��� From this viewpoint� we think the ideas conveyed in this

paper should be of interest to readers from di�erent research �elds�
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�� Isospectral Flows�

In this section we consider some general properties of the di�erential equation ����

Let G�n� denote the Lie group 
	�� ��� �� of all nonsingular matrices in Rn�n� Associated with

any given matrix X� � Rn�n� we de�ne an isospectral surface

M�X�� �� fZ��XZjZ � G�n�g���

We note that every element inM�X�� is similar to X� � Suppose Z�t�� with Z��� � �� represents a

di�erentiable curve on the manifold G�n�� Then

X�t� �� Z�t���X�Z�t����

de�nes a di�erentiable curve� with X��� � X� on the surfaceM�X��� Upon di�erentiation� it is easy

to see the curve X�t� is the solution of the initial value problem

dX�t�

dt
� 
X�t�� k�t��

X��� � X����

with k�t� de�ned by

k�t� �� Z�t���
dZ�t�

dt
����

Conversely� given any ��parameter family of matrices k�t� in Rn�n� it can be proved that the solution

of ��� can be written in the form ��� where Z�t� satis�es

dZ�t�

dt
� Z�t�k�t�

Z��� � I�����

Henceforth� we shall call the system ���� the dual problem of ����

With di�erent choices of k�t�� the di�erential equation in ��� de�nes di�erent isospectral curves�

all emanating from the same initial value X� � Obviously� the asymptotic behavior of X�t�� if there

is any� on the surface M�X�� will be determined by that of the corresponding Z�t� on the manifold

G�n�� and vise versa�
A special case of the above discussion is particularly important� We may replace the group G�n�

by the subgroup O�n� of all orthogonal matrices and repeat the above argument� Without causing
ambiguity� we shall use the same notationM�X�� to represent

M�X�� � fQTX�QjQ � O�n�g�����

We note that in the equation ����� Q�t� � O�n� if and only if k�t� is skew�symmetric� We note also
that kX�t�k� � kX�k� so long as k�t� is de�ned and remains to be skew�symmetric� It is important
to recognize that the tangent space of the manifold O�n� at any orthogonal matrix Q is given by

	�� ��� ��

TQO�n� � QS�n����	�

where S�n� is the subspace of all symmetric matrices in Rn�n and S�n�� is the orthogonal complement
of S�n� under the Frobenius inner product

� A�B ��� trace�ABT � �
X
i�j

aijbij �����

�



Since S�n�� is the subspace of all skew�symmetric matrices� the dual problem ���� indeed de�nes a
�ow on the manifold O�n��

The di�erential equation ��� is another important special case of ��� in which k�t� � k�X�t���

That is� ��� is an autonomous system� If� in addition� k�t� is also skew�symmetric� then X�t� exists

and is bounded for all t � ������� Also� because of the relationship ���� the curve Q�t� on the
manifold O�n� is self�determined by the dual initial value problem

dQ�t�

dt
� Q�t�k�Q�t�TX�Q�t��

Q��� � I����

which is independent of X�t��

When k is skew�symmetric� the dual system ���� has an interesting physical interpretation in

terms of rigid body motions 
���� We demonstrate the simple case when n � �� Suppose we write the

operator k�t� as

k�t� �

�
�� � ���t� ����t�
����t� � ���t�

���t� ����t� �

�
������

and de�ne

��t� �� 
���t�� ���t�� ���t��
T ����

Also we write the transpose of Q�t� in columns

Q�t�T � 
p��t�� p��t�� p��t�������

Then the dual system ���� implies� for i � �� 	� ��

dpi
dt

� � � pi

pi��� � ei����

where ei is the i�th standard unit basis vector in R
� and � denotes the usual cross�product in R�� The

di�erential equation in ���� describes the linear velocity of the vector pi�t� and the vector ��t� may

be interpreted as the angular velocity of the motion� As a whole� the dual system then describes the

rotation of an orthogonal coordinate system about the origin� If the initial matrix X� is symmetric

and positive de�nite� then X�t� stays to be symmetric and positive de�nite� We may thus interpret

X�t� as the moment of inertia tensor of a rigid body motion� In this case� the total kinetic energy of

motion is given by 
���

T �t� ��
�

	
��t�TX�t���t������

If the kinetic energy is dissipated to zero� then the motion eventually stops�

The idea of rigid body motion can be generalized to higher n� The di�erential system ���� with

skew�symmetric k� therefore� represents a smooth change of coordinate systems and the solution X�t�

of ��� is simply the same transformation as X��� expressed in di�erent coordinate systems�

�



�� QR�type Algorithms�

It is a well known fact that every matrix in Rn�n can be factored as the product of an orthogonal

matrix and an upper triangular matrix 
��� ���� Such a decomposition is called the QR decomposition�

Based on the QR decomposition� the unshifted QR algorithm generates a sequence of matrices fAkg
according to the scheme�

Ak � QkRk �� Ak�� �� RkQk�	��

where QkRk is the QR decomposition of Ak � This algorithm is very important in the computation

of eigenvalues for A� 
��� We also consider the matrix equation �known as the Toda lattice��

dX

dt
� 
X����X��

X��� � X��	��

where ���X� �� �X
��� �X��T � X� is the strictly lower triangular part of X� Recently it has been

shown 
��� that the sequence fexp�X�k��g obtained by sampling X�t� at integer times corresponds
exactly to the sequence fAkg generated by �	�� if A� � exp�X��� Therefore� the convergence properties

of the QR algorithm may be understood by studying the dynamics of �	�� 
�� 	�� ����

In this section we shall show that the system �	�� is a special case of a more general setting from

which more iterative processes may arise�

Suppose the space Rn�n is split as the direct sum of two subspaces V� and V�� Let P� and
P� represent the natural projection mappings from Rn�n into V� and V�� respectively� Consider the
initial value problem�

dX

dt
� 
X� P��X��

X��� � X���		�

Since 
X�t�� X�t�� � �� the solution of �	�� also satis�es the initial value problem�

dX

dt
� 
P��X�� X�

X��� � X���	��

Correspondingly� from the discussion in the preceding section� there exist dual problems

dZ�
dt

� Z�P��X�

Z���� � I�	��

and

dZ�
dt

� P��X�Z�

Z���� � I�	��

whose solutions satisfy

X�t� � Z��t�
��X�Z��t� � Z��t�X�Z��t�

����	�

Furthermore� the matrices Z��t� and Z��t� are related in a special way 
����

Theorem ���� Suppose X�t�� Z��t� and Z��t� exist on the interval 
�� T � � Then

exp�tX�� � Z��t�Z��t��	��

exp�tX�t�� � Z��t�Z��t��	��





for all t � 
�� T ��
If we set t � � in Theorem ���� then it follows that

exp�X���� � Z����Z�����	��

exp�X���� � Z����Z���������

Since the di�erential equation �		� is autonomous� it follows that the �swapping multiplication�

relationship observed in �	�� and ���� will hold at every feasible integer time� In this sense� the dual

systems �	�� and �	�� give rise to an abstract matrix factorization �of the matrix exp�X�t��� and the

isospectral �ow �		� gives rise to a speci�c QR�like iterative process�

The Toda lattice corresponds to the special splitting of Rn�n where V� is the subspace of all
skew�symmetric matrices and V� is the subspace of all upper triangular matrices� Such a splitting is
a Lie algebra decomposition of Rn�n and therefore there corresponds a Lie group decomposition of

G�n� which is the QR decomposition� Other kinds of Lie algebra decompositions and the associated
isospectral �ows are discussed in 
	�� ��� �	� ��� ����

Our approach has the advantage that only subspace decomposition of Rn�n is involved� which

should be much easier to manipulate than Lie algebra decomposition 
���� Nonetheless� we have

proved that the time�� mapping of the solution X�t� of �		� still enjoys a QR�type algorithm� With

special choices of the subspaces �and� hence� the projections�� We are able to unify several matrix

decomposition algorithms and give rise to a number of new decompositions�

As an example� the following theorem generalizes the well�known Schur theorem 
��� in the sense

that one can zero out any pattern of o��diagonal elements of a symmetric matrix by orthogonal

similarity transformation 
����

Theorem ���� Suppose X� is symmetric� Let � be an arbitrary subset of the index set f�i� j�j� �
j � i � ng� For each X � Rn�n� de�ne �X so that

�xij ��

�
xij if �i� j� � �
� otherwise

����

and de�ne

P��X� �� �X � �XT ���	�

Then the solution X�t� to the system ���� with P� de�ned by ���� is de�ned for all t� stays to be

symmetric� and converges to a limit point as t ���� Furthermore� xij�t� �� � if �i� j� � ��
As another example� the following theorem suggests how to change a non�symmetric matrix into

a stair�case matrix by using orthogonal similarity transformations 
����

Theorem ���� Suppose X� has only simple eigenvalues� Let � be the collection of indices

corresponding to any block strictly lower triangular matrix� For any X � Rn�n� de�ne �X and P��X�

as in ���� and ����� Then the same conclusion as in Theorem ��� holds�

A special application of Theorem ��� is worth mentioning� We conjecture that the Hamiltonian

eigenvalue problem should enjoy a QR�type algorithm that preserves the Hamiltonian structure 
�� ����

A matrix X � R�n��n is Hamiltonian if and only if it is of the form

X �

�
A N

K �AT

�
����

where K�N � Rn�n are symmetric� Suppose we de�ne

P��X� �

�
� �K
K �

�
�����

�



Then it is easy to see that 
X�P��X�� is also Hamiltonian� With this in mind� starting with a

Hamiltonian matrix X� � we de�ne the dynamical system �		� with P� given by ����� Then the

solution Z�t� to the corresponding dual problem �	�� is both orthogonal and sympletic� and the

solution X�t� � Z��t�
TX�Z��t� to �		� remains Hamiltonian for all t� Furthermore� by Theorem ����

we know that P��X� �� � as t �� �� Unfortunately� the associated iterative algorithm is not
explicitly known due to lacking knowledge of the structure of the corresponding Z��t�� As a matter

of fact� to �nd an e�cient numerically stable iterative process that also preserves the Hamiltonian

structure is still an open problem� See Bunse�Gerstner et al� 
�� and the many references contained

therein�

A similar approach that considers the linkage between QR�type algorithms and solutions to

the Yang�Baxter equation can be found in 
��� ���� In particular� the relationship between an explicit

iterative scheme associated with a group decomposition of the simpletic group and a dynamical system

of the form �		� that preserves the Hamiltonian structure is established� Although the iterative scheme

is explicit and is proved to be convergent� it does not involve any orthogonal transformation and� hence�

is possibly unstable�
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�� Projected Gradient Flows�

In this section we shall restrict our attention to the subspace S�n�� Let V be either a single
matrix V or a subspace in S�n�� For any X � S�n�� the projection of X into V is denoted as P �X�� If
V is a single matrix� then P �X� � V � otherwise� the projection is taken with respect to the Frobenius

inner product� We shall consider another special case of ���� i�e�� we shall consider equation of the

form�

dX

dt
� 
X� 
X�P �X���

X��� � X�����

with X� � S�n��
We �rst note that the system ���� evolves in the space S�n� since X � S�n� implies

k�X� �� 
X� P �X�����

is skew�symmetric and dX
dt
� S�n�� and vise versa� It is also clear that X�t� is orthogonally similar to

X��

The system ���� is derived from the following minimization problem�

Minimize F �X� ��
�

	
kX � P �X�k�

Subject to X �M�X������

where k 	 k stands for the Frobenius matrix norm� Literally� problem ���� is minimizing the distance

�� between the two sets M�X�� and V� From this prospect� we may thus use ���� to continuously
realize the solution to� for example� the following linear algebra problems�

�Problem A� Given a real symmetric matrix N � �nd a least squares approximation of N that is

still symmetric but has a prescribed set of eigenvalues f��� � � � � �ng� In this setting� we choose V � N

and X� � diagf��� � � � � �ng�

�Problem B� Given a set of real numbers f��� � � � � �ng� construct a symmetric Toeplitz matrix
that has the prescribed set as its spectrum� In this setting� we choose V to the the subspace T of all
symmetric Toeplitz matrices and X� to be any matrix orthogonally similar to diagf��� � � � � �ng�

�Problem C� Given a matrix A � S�n�� �nd its eigenvalues� In this setting� we choose V to be
the subspace of all diagonal matrices and X� � A�

Problem ���� is equivalent to

Minimize G�Q� ��
�

	
� QTX�Q� P �QTX�Q��Q

TX�Q� P �QTX�Q� �

Subject to Q � O�n������

It is easy to see that with respect to the Frobenius inner product� the gradient of G at Q � O�n� is
the matrix

rG�Q� � 	X�Q�Q
TX�Q� P �QTX�Q�������

We observe that

Rn�n � TQO�n�
 TQO�n�� � QS�n�� 
QS�n������

�



Therefore� the projection g�Q� of rG�Q� onto the manifold O�n� can be calculated explicitly 
����

g�Q� � Q
n
�

	
�QTrG�Q��rG�Q�TQ�

o
� Q
P �QTX�Q�� Q

TX�Q������

It is now obvious that the dual problem of �����

dQ

dt
� Qk�QTX�Q�

Q��� � I��	�

with k de�ned by ��� signi�es a steepest descent �ow on O�n� for problem ����� Equivalently� ����
de�ned a descent �ow onM�X�� for problem �����

Because ���� �or ��	�� is a gradient �ow� the function F �X�t�� �or G�Q�t�� is a natural Lyapunov

function� The Lyapunov function can be used to characterize the dynamics of the �ow� By using a

Lyapunov function� it is possible to derive an e�ective� strictly stable multistep method for approx�

imating the ��limit set� See� for example� 
	��� and 
���� This direction certainly is worth further

investigation�

The system ���� applied to Problem A becomes

dX

dt
� 
X� 
X�N ��

X��� � X������

The dynamics of ���� has been studied independently by Chu 
��� 		� and Brockett 
� ��� The main

results are as follows�

Theorem ���� Suppose both N and X� have distinct eigenvalues� Let the eigenvalues of N and

X� be ordered as �� � � � � � �n and �� � � � � � �n� respectively� Then as t �� �� the solution X�t�

of ���� converges to the unique limit point

�X � ��q�q
T
� � � � � � �nqnq

T
n����

where q�� � � � � qn are the normalized eigenvectors of N corresponding respectively to ��� � � � � �n�

Theorem ���� Suppose N is a diagonal matrix with distinct eigenvalues �but X� may have

repeated eigenvalues�� Then as t �� �� the solution X�t� of ���� converges to a diagonal matrix

whose elements are similarly ordered as those in N �

At the �rst glance� it is quite amazing that the ��limit point of ���� �and� hence� the solution to

Problem A� can be expressed explicitly� After further consideration� we �nd that Theorem ��� may be

regarded as a reproof of the well known Wielandt�Ho�man Theorem 
��� ���� In fact� we have proved

that the bound in Wielandt�Ho�man Theorem is sharp�

Recently it is also observed 
� and 
�� that� due to the special �sorting property� of ����� the

continuous realization idea can even be applied to solve data matching problem and a variety of generic

combinatorial optimizations� We demonstrate one application to the linear programming problem�

Consider the LP problem�

Maximize cTx

Subject to Ax � b����

where c� x � Rn and we shall assume the feasible set P �� fxjx � Rn� Ax � bg is a convex polytope
with vertices at a�� � � � � ap � Rn� It is a well known fact that one of the values �i �� cT ai� i � ����� p

will be the optimum for problem ����� To sort out this particular vertex� we de�ne T � Rn�p as

��



T �� 
a�� � � � � ap�� Obviously T maps the standard simplex S �� fdjd � Rp� di � ��
Pp

i��
di � �g

onto the given polytope P� Let X� �� diagf�� �� � � � � �g � Rp�p and let N �� diagf��� � � � � �pg� Then�
by Theorem ��	� the corresponding isospectral �ow X�t� converges to a diagonal matrix �X� The

elements of �X must be a permutation of those of X� and must be arranged in an order similar to that

of N � By identifying the index corresponding to the value � in �X� we locate the optimal vertex�

In applying the system ���� to Problem B� the projection P can easily be calculated from

P �X� �

nX
k��

� X�Ek � Ek���

where fE�� � � � � Eng is an orthogonal basis of T � Denoting Ek by �e
�k�
ij �� then one natural basis is

e
�k�
ij �

	
�

�
��
p
	�n� k � �� if � � k � n and ji� jj � k � �

��
p
n if k � � and i � j

� otherwise�

����

To our knowledge� the existence question of a solution to the inverse Toeplitz eigenvalue problem

when n � � is still an open problem 
�� 	�� Yet our descent �ow formulation o�ers a numerical
method for computing the solution� We should point out� however� that the di�erential system ����

applied to Problem B may have asymptotically stable ��limit points other than those that are in T � If
this happens� we should change to a di�erent course of integration by starting with a di�erent initial

value� Another approach to circumvent this di�cult will be discussed in a later section�

The system ���� applied to Problem C becomes

dX

dt
� 
X� 
X� diag�X���

X��� � A����

where diag�X� denotes the diagonal matrix whose elements are those along the diagonal of X� Recall

that the system ���� is derived by minimizing the sum of squares of the o��diagonal elements of X�

Thus the system ���� may be regarded as a continuous analog of the classical Jacobi method for the

eigenvalue problem 
���� Although the di�erential equation itself has many equilibrium points� most

of them are not stable� If fact� it can be proved 
	�� that

Theorem ���� As t �� �� the solution X�t� of ��	� converges to a diagonal matrix� Thus�

if A has distinct eigenvalues� then on the manifold M�A� there are exactly n� asymptotically stable
equilibrium points�

We have just discussed three possible applications of ����� Indeed� the liberty of choosing the

projected space V suggests that the system ���� might have broader applications in other areas� It
is interesting to see that for di�erent choices of V� the system ���� generates di�erent descent �ows
evolving on the manifold M�X��� In the next section� we shall apply the same idea to consider the

simultaneous reduction problems�

��



	� Simultaneous Reduction Problems�

Undoubtedly� orthogonal similarity transformations QTAQ and orthogonal equivalence transfor�

mations QTAZ with Q�Z � O�n� play important roles in the computation of eigenvalues and singular
values� respectively� for a general matrix A � Rn�n 
��� ��� These transformations reduce A to some

simpler forms� Simultaneous reduction of more than one matrix� on the other hand� �nds applica�

tions in areas like control theory or mechanics for the identi�cation of multivariable systems or for

the study of small oscillations about a stable equilibrium 
���� A few theoretical results concerning

the simultaneous diagonalization of two symmetric �or hermitian� matrices can be found in 
���� The

reduction problem for more than two or for more general matrices are considerably more di�cult both

in theory and in computation� In this section we shall discuss another special case of ��� that induces

an easy but versatile reduction procedure�

Suppose Ai � Rn�n� i � �� � � � � p are the matrices under consideration to be reduced by orthogo�

nal similar transformations� For each i� let Vi denote the subspace of all matrices having the speci�ed
form to which Ai is supposed to be reduced� These subspaces need not to be the same� Given any

A � Rn�n� let Pi�A� denote the projection of A into the subspace Vi with respect to the Frobenius
inner product� For convenience� we also de�ne the residual operator

�i�Q� �� QTAiQ� Pi�Q
TAiQ������

We shall use the same idea as in problem ���� to solve the problem�

Minimize F �Q� ��
�

	

pX
i��

k�i�Q�k�

Subject to Q � O�n������

That is� while moving along the orthogonal similarity orbit of the given matrices A�� � � � � Ap� we want

to minimize the total distance between the point QTAiQ and the subspace Vi for all i�
The gradient of F is given by 
���

rF �Q� �
pX
i��

�AT
i Q�i�Q� �AiQ�

T
i �Q�������

By using ����� the projection of rF �Q� onto the manifold O�n� is calculated to be

g�Q� � Q

pX
i��


QTAiQ��
T
i �Q��� 
QTAiQ��

T
i �Q��

T

	
���	�

Therefore� the di�erential equation

dQ

dt
� Qk�Q�����

with

k�Q� �� �
pX
i��


QTAiQ��
T
i �Q��� 
QTAiQ��

T
i �Q��

T

	
�����

de�nes a steepest descent vector �eld on the manifold O�n� for problem ����� Note that ���� is again
in the form of ����� Together with the initial value Q��� � I� the equation ���� is the dual problem

of the system

dXi

dt
� 
Xi� k�Q��

�

�
Xi�

pX
j��


Xj � P
T
j �Xj�� � 
Xj � P

T
j �Xj��

T

	

�

Xi��� � Ai����

�	



where Xi�t� �� Q�t�TAiQ�t�� and i � �� � � � � p�

The solution fX��t�� � � � � Xp�t�g of ���� represents a continuous evolution from fA�� ���� Apg in
realizing the prescribed reduction forms while members are in�uenced by each others in such a way

that the total distance F �Q� is monotonically decreased� We note that such a continuous realization

process has the advantages that the desired form to which matrices are reduced can be almost arbitrary�

and that if a desired form is not attainable then the limit point of the di�erential equation gives a

way of measuring the distance from the best reduced matrices to the nearest matrices that have the

desired form�

Similarly� suppose Ai � Rm�n� i � �� � � � � p are the matrices being considered by using orthogonal

equivalence transformations� De�ne

	i�Q�Z� �� QTAiZ � Pi�Q
TAiZ����

and consider the problem

Minimize G�Q�Z� ��
�

	

pX
i��

k	i�Q�Z�k�

Subject to Q � O�m�
Z � O�n������

By introducing the product topology on Rm�m � Rn�n where the induced inner product is

de�ned by

� �A�� B��� �A�� B�� ���� A�� A� � � � B�� B� ������

we know that 
���

rG�Q�Z� �


pX
i��

AiZ	
T
i �Q�Z��

pX
i��

AT
i Q	i�Q�Z�

�
�����

De�ne

k��Q�Z� �� �
pX
i��

QTAiZ	
T
i �Q�Z�� �QTAiZ	

T
i �Q�Z��

T

	
����

k��Q�Z� �� �
pX
i��

ZTAT
i Q	i�Q�Z�� �ZTAT

i Q	i�Q�Z��
T

	
����

�	�

Note k� � Rm�m and k� � Rn�n are both skew�symmetric� Since

T�Q�Z�O�m��O�n� � QS�m��� ZS�n������

using the same principle as in ����� we �nd the projection of rG�Q�Z� onto the manifold O�m��O�n�
is given by

g�Q�Z� � ��Qk��Q�Z���Zk��Q�Z������

Thus the system

d�Q�Z�

dt
� �Qk��Q�Z�� Zk��Q�Z��

�Q���� Z���� � �Im� In����

��



de�nes a steepest descent �ow on O�m��O�n� and is the dual problem of the system

dXi

dt
� Xik��Q�Z�� k��Q�Z�Xi

�

pX
j��

�
Xi

XT
j Pj�Xj�� P T

j �Xj�Xj

	
�
Pj�Xj�X

T
j �XjP

T
j �Xj�

	
Xi

�

Xi��� � Ai��

where Xi�t� �� Q�t�TAiZ�t�� and i � �� � � � � p� We note that �� is not quite in the same form as ����

In contrast to the approach of deriving ��� it is worthwhile to mention two other matrix

di�erential systems�

dX

dt
� X���XXT �����XTX�X

X��� � A���

and

dX�

dt
� X����X

��
� X������X�X

��
� �X�

dX�

dt
� X����X

��
� X������X�X

��
� �X�

X� � A�

X� � A� ����

We have proved earlier that� just as the Toda lattice �	�� models the QR algorithm� the system

��� models the SVD algorithm 
��� for the A � Rm�n� and ��� models the QZ algorithm 
��� for

the matrix pencil �A�� A�� � Rn�n � Rn�n� Although ��� and ��� are quite similar to ��� the

way they are derived has nothing to do with optimization of any objective function� On the other

hand� suppose we take p � � and V to be the subspace of all diagonal matrices in Rm�n� Then the

di�erential equation in �� becomes

dX

dt
�X

XT diag�X���XTdiag�X��T

	
�
diag�X�XT��diag�X�XT �T

	
X����

which� in spirit� is a continuous analog of the Jacobi method for the singular value decomposition�

The asymptotic stability property of ��� is similar to that of Theorem ��� 
����

��




� Nearest Normal Matrix Problems�

Thus far� we have kept the discussion in the real context� But such a restriction is solely for the

reason of facilitating the notion� With appropriate modi�cations� all the discussion can be generalized

to the complex�valued case� Applications of such a generalization include� for example� the following

problems�

�Problem D� Given a general matrix A � Rn�n and a set of eigenvalues f�� � i
�� � � � � �q �
i
q � ��q��� � � � � �ng where �k� 
k are real numbers and 
k � �� �nd a real normal matrix that has the
prescribed set as its spectrum and best approximate A in the Frobenius norm�

�Problem E� Given an arbitrary matrix A � Cn�n� �nd its closest normal matrix in the

Frobenius norm 
�	� ����

Problem D can be reformulated as 
����

Minimize F �Q� ��
�

	
kQT�Q�Ak�

Subject to Q � O�n�����

where

� ��

��
�� 
�

�
� ��

�
� � � � �

�
�q 
q

�
q �q

�
� ��q��� � � � � �n

�
����

Note Problem D is not equivalent to the Wielandt�Ho�man Theorem in that the normal matrix QT�Q

is only real�valued 
���� Using the same idea as before� we �nd that 
		�

dQ

dt
� Q


QT�Q�AT �� 
QT�Q�AT �T

	
Q��� � I��	�

de�nes a steepest descent �ow for problem ���� and is the dual problem of

dX

dt
�

�
X�

X�AT �� 
X�AT �T

	

�
X��� � ������

Problem E can be reformulated as 
����

Minimize G�U�D� ��
�

	
kA� UDU�k�

Subject to U � U�n�
D � D�n�����

where U�n� is the group of all unitary matrices in Cn�n and D�n� is the subspace of all diagonal
matrices in Cn�n� Obviously� for any given U � U�n�� the best D � D�n� that minimizes G�U�D� is
D � diag�U�AU�� Therefore� at a global minimum� problem ���� is equivalent to

Minimize H�U� ��
�

	
kU�AU � diag�U�AU�k�

Subject to U � U�n������

The closest normal matrix is thus characterized by the following theorem 
����

��



Theorem ���� Let A � Cn�n and let Z � UDU� with U � U�n� and D � D�n�� Then Z is

the closest normal matrix to A in the Frobenius norm if and only if the unitary matrix U is a global

minimizer of problem �
�� and the diagonal matrix D � diag�U�AU��

Problem ���� is very similar to Problem C� By identifying any complex matrix Z as a pair of

real matrices ��Z��Z� where �Z and �Z are the real and the imaginary part of Z� we introduce an
inner product on Cn�n by

� A�B �C ��� �A��B � � � �A��B � ����

Then resembling the techniques used in the preceding section� we can show that 
���

dU

dt
� Uk�U�

U��� � I����

with

k�U� ��

U�AU� diag�U�AU��� 
U�AU� diag�U�AU���

	
����

de�ned a steepest descent vector �eld on U�n� for problem ����� It is now easy to see that the matrix
W �t� �� U�t��AU�t� satis�es the di�erential equation

dW

dt
� 
W�k�U�������

The closest normal matrix can then be constructed from the ��limit point of ���� according to Theo�

rem ���

�



�� Inverse Eigenvalue Problem�

Given A�� � � � � An � S�n�� let A denote the a�ne subspace consisting of all A�c� � S�n� where

A�c� �� A� �

nX
i��

ciAi����

and c �� �c�� � � � � cn� � Rn� The following is called an inverse eigenvalue problem 
����

�Problem F� Given a set of real numbers f��� � � � � �ng� �nd coe�cients c�� � � � � cn such that
A�c� � A has the prescribed set as its spectrum�

We shall assume� without loss of generality� that A�� � � � � An are mutually orthonormal with

respect to the Frobenius inner product �Obviously� we may apply the Gram�Schmidt orthogonalization

process to achieve this if necessary� and then the two bases are related by an upper triangular matrix��

We may also assume that A� is perpendicular to all Ai for i � �� � � � � n� Given any X � S�n�� it is
easy to see that the distance between X and A is given by

dist�X�A� � kX � �A� � P �X�� k����

where P �X� is the projection of X onto the subspace spanned by A�� � � � � An� and� therefore� is given

by

P �X� �

nX
i��

� X�Ai � Ai���	�

One approach of solving Problem F is to consider the following minimization problem�

Minimize F �Q� ��
�

	
kQT�Q�A� � P �QT�Q�k�

Subject to Q � O�n������

where � �� diagf��� � � � � �ng� It can be shown that

rF �Q� � 	�QfQT�Q�A� � P �QT�Q�g�����

Therefore� the di�erential equation

dQ

dt
� Qk�Q�����

with

k�Q� �� 
QT�Q�A� � P �Q
T�Q�����

de�nes a steepest descent vector �eld on O�n� for problem ����� Correspondingly� the matrix X�t� ��
Q�t�T�Q�t� satis�es the equation

dX

dt
� 
X� 
X�A� � P �X��������

stays on the manifold M���� and moves in the direction to minimize the distance between the two
setsM��� and A� Suppose X�t� �� �X as t ��� and suppose �X is also in A� Then the coe�cients
needed in Problem F are determined from ci �� �X�Ai ��

Problem B� the inverse Toeplitz eigenvalue problem� is just a special case of Problem F in which

A is the linear subspace T and Ak � Ek as de�ned in ����� By experimenting with ���� for the

��



inverse Toeplitz eigenvalue problem numerically� we have found that sometimesM��� unfortunately
contains stable equilibrium points that are not Toeplitz 
��� 	��� This fact does not cause any serious

computational di�culty since we can easily change to another initial value and restart the integration�

In the following� nevertheless� we wish to re�design the di�erential equation so that equilibrium points

must be in A�
To make sure X�t� stay on the isospectral surface M���� we shall consider an initial value

problem of the form

dX

dt
� 
X� k�X��

X��� � �����

where k is a mapping from S�n� into S�n��� Furthermore� we shall require k to be an annihilator of
the a�ne subspace A� That is� we want k to be such that

k�X� � � if and only if X � A�����

In view of the dimensions of the three spaces� the construction of a mapping k � S�n� �� S�n�� with
property ���� is possible�

We have observed earlier that kX�t�k � k�k for all t � R� Suppose all elements in � are distinct�

Then 
X� k�X�� � � if and only if k�X� is a polynomial of X 
���� But then k�X� � S�n��S�n�� � f�g�
If condition ���� holds� then we �nd that all equilibria of ���� are necessarily in A� A bounded �ow
necessarily has a non�empty invariant ��limit set 
��� If X�t� �� �X as t ���� then �X is a solution
of Problem F�

As an example� we now apply the above idea to the inverse Toeplitz eigenvalue problem� Since

A � T is a linear subspace� we may require k � S�n� �� S�n�� to be linear as well� One simple way
of de�ning k is by

kij ��

	
�

�

xi���j � xi�j�� if � � i � j � n

� if � � i � j � n

xi�j�� � xi���j if � � j � i � n

����

where kij denotes the �i� j��component of k�X�� It is obvious that kernel�k� � T �
Let C � S�n� denote the matrix

C ��

�
�����������

� � � � � � �

� � �
���

� �
� � �

��� � �

� � � � � �

�
�����������
�����

Let

S�n� � T 
 T C��	�

denote any direct sum splitting of S�n� with T C denoting the complementary subspace of T in S�n��
Another way of de�ning k is by

k�X� �� 
L�X�� C�����

��



where L�X� is the projection of X onto T C along T � Note k is still a linear map from S�n� into
S�n��� If k�X� � �� then

L�X� �

n��X
k��

�kC
k����

since C has distinct eigenvalues 
���� Observe that if any diagonal of X is constant� then the cor�

responding diagonal of L�X� is zero� Observe also that for each �xed j � �� � � � � n� the only matrix

among the powers C�C�� � � � � Cn�j such that the �n� j � ���th diagonal is not entirely zero is Cn�j �

Indeed� the elements there are all �� By induction� therefore� �n�j � � for all j � �� � � � � n� Thus�

k�X� � � if and only if X � T �
We have experimented both ���� and ���� extensively with di�erent spectral data for the inverse

Toeplitz eigenvalue problem� We have found that the orbit always converges to an equilibrium point�

Thus� we conjecture that the inverse Toeplitz eigenvalue problem is always solvable� What remains

to be proved� however� is that the solution of ���� does converge to a single point in theory� No

other invariant set such as limit cycles or strange attractors should occur 
��� In this way� we would

have settled the existence question� Unfortunately� this convergence proof is not an easy problem

either� Despite this theoretical di�culty� we suggest that following the solution �ow of ���� is a

feasible numerical method for solving the inverse eigenvalue problem� By shifting � by � � �I with

a su�ciently large � � R if necessary� we may assume � is positive de�nite� We have observed

numerically that the total kinetic energy T �t� of rotation ���� is monotonically decreasing to zero�

Therefore� it appears that T �t� could be used as a Lyapunov function� The proof� again� is not

available at the present time�

The matrix di�erential equations ���� and ���� o�er a new avenue of attacking the inverse

eigenvalue problems� They are interesting because of their generality and versatility� There are still�

however� many open areas that deserve further investigation� We hope this paper will stimulate some

useful discussion either in the theoretical or in the numerical aspect�

��



�� Inverse Non�negative Eigenvalue Problem�

In this section we shall construct a matrix di�erential equation for another type of inverse eigen�

value problem that is di�erent from Problem F�

�Problem E� Given a set of real values f��� � � � � �ng that� by some means� is known a prior to be
the spectrum of some non�negative matrices� �nd a symmetric non�negative matrix whose spectrum

is precisely f��� � � � � �ng�

Our approach is similar to the projected gradient �ow discussed earlier  we want to minimize the

Frobenius distance between the cone s�R
n
�� of symmetric non�negative matrices and the isospectral

surfaceM��� of the given spectrum� The optimization problem is formed as follows�

Minimize F �Q�R� ��
�

	
kQT�Q�R � Rk�

Subject to Q � O�n�
R � S�n�����

where � �� diagf��� � � � � �ng and � denotes the Hadamard product� In the space Rn�n � Rn�n we

shall use the induced Frobenius inner product de�ned in ����� Then the gradient of F in ���� is given

by 
	��

rF �Q�R� �
�
	�Q�QT�Q�R � R���	�QT�Q�R �R� �R�

�
����

It is obvious that the tangent space of O�n�� S�n� at �Q�R� is given by

T�Q�R�O�n�� S�n� � QS�n�� �S�n������

So the projection of rF �Q�R� onto the manifold O�n� � S�n� can be calculated� The initial value
problem�

dQ

dt
� QfQT�Q�R �R� � �R �R�QT�Qg

dR

dt
� 	�QT�Q�R �R� �R�

Q��� � �

R��� � an arbitrary positive matrix�����

therefore� de�nes a steepest descent �ow on O�n��S�n� for problem �����
De�ne

X�t� �� Q�t�T�Q�t�����

and

Y �t� �� R�t� �R�t�������

Then it is easy to see that �X�t�� Y �t�� satis�es the system of equations

dX

dt
� 
X� 
X�Y ��

dY

dt
� �Y � �X � Y �������

	�



Note that X�t� and Y �t� moves� respectively� in the isospectral surface M��� and the cone s�Rn
��

so as to reduce the distance G�t� �� kX�t� � Y �t�k�� Therefore� G�t� serves as a natural Lyapunov
function� Recently� we are able to use center manifold theory 
��� to study the structure of ��limit

sets of ����� 
	���

Theorem ���� If � �X� �X� � M����s�Rn
�� ever becomes an ��limit point of an orbit �X�t�� Y �t��

of ����� then limt���X�t�� Y �t�� � � �X� �X��

So far as we know� most of the discussions in the literature are centered around establishing

a su�cient or a necessary condition so that a given set of values is the spectrum of a non�negative

matrix 
�� ���� Very few of these theoretical results are ready to be implemented to �nd the actual

matrix 
	��� By following the integral curve of ������ however� we have a numerical algorithm that

systematically reducing the distance betweenM��� and s�Rn
��� If these two sets do intersect� then

of course the distance is zero� Otherwise� our approach still �nds a matrix fromM��� and a matrix
from s�R

n
�� such that their distance is a local minimum� In the latter case� because s�R

n
�� is a

convex set� the matrix from s�R
n
�� must lie on a facet of the cone� i�e�� some of the components of

the non�negative matrix is zero�

	�



� Quadratic Assignment Problem�

The quadratic assignment problem consists of 
�	� ����

Minimize � C �ASB� S �

Subject to S � ����	�

where A�B�C � Rn�n are given matrices and � is the set of all permutation matrices� Problem ���	�

is know to be an NP�hard problem�

In view of the success of the above discussions� we suggest the following continuous realization

process for problem ���	�� First we relax ���	� to the problem

Minimize F �Q� ��� C �AQB�Q �

Subject to Q � O�n������

so that the idea of projected gradient can be applied� It can be shown that

rF �Q� � C �ATQB �AQBT ������

Therefore� the di�erential equation

dQ

dt
� Qk�Q������

with

k�Q� ��
�CTQ�QTC� � �BTQTAQ�QTATQB� � �BQTATQ�QTAQBT �

	
����

de�nes a steepest descent �ow on O�n� for problem ������ By tracing the integral curve of ������ a
limit point �Q of ����� �and� hence a local optimizer of problem ������ should be found� Because of

the continuity of the objective function� we think the permutation matrix that is nearest to �Q should

be a putative solution to problem ���	�� Thus� we solve the problem

Minimize kS � �Qk�

Subject to S � �������

But problem ����� is equivalent to

Maximize

nX
i��

�qi��i�

Subject to � � ������

where �qij are the components of �Q� Problem ����� is a classical linear assignment problem and� hence�

can be solved by many well developed techniques 
����

		



��� Conclusion�

Matrix di�erential equations by nature are complicated� since the components are coupled into

nonlinear terms� Nonetheless� as we have demonstrated� there have been substantial advances in

understanding some of the dynamics� For the time being� the numerical implementation is still very

primitive� But most important of all� we think there are many opportunities where new algorithms

may be developed from the realization process� It is hoped that this paper has conveyed some values

of this idea�

	�
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