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Abstract.

Many mathematical problems, such as existence questions, are studied by using an appropriate
realization process, either iteratively or continuously. In this article differential equation techniques
are used as a special continuous realization process for linear algebra problems. The matrix differential
equations are cast in fairly general frameworks of which special cases have been found to be closely
related to important numerical algorithms. The main thrust is to study the dynamics of various
isospectral flows. This approach has potential applications ranging from new development of numerical
algorithms to theoretical solution of open problems. Various aspects of the recent development and
application in this direction are reviewed in this article.

1. Introduction.

Continuous realization methods are based on the idea of connecting two abstract problems
through a mathematical bridge. Usually one of the abstract problems is a make-up whose solu-
tion is trivial while the other is the real problem whose solution is difficult to find. The bridge, if it
exists, is regarded as a continuous path in the problem space. Following the path means deforming
the underlying abstract problem mathematically. It is hoped that by following the path, the obvious
solution will systematically be deformed into the solution that we are seeking for.

In applying a continuous realization method, two basic tasks should be carried out first since
they are most accountable for the success:

1. One needs to establish a mathematical theory that can ensure the existence of bridge con-
necting the two abstract problems.
2. One needs to develop a numerical algorithm that can effectively follow the path.
The bridge usually takes the form as an integral curve of an ordinary differential equation describing
how the problem data are transformed from the simple system to the more complicated system. The
numerical algorithm thus should be an efficient ODE solver.

Depending upon how the bridge is constructed, continuous realization methods appear in different
forms. One of the best known continuous realization methods in the literature perhaps is the so
called homotopy method [1, 2, 34, 44, 60]. The philosophy behind the homotopy method is quite
straightforward. We use the homotopy method to demonstrate the idea of continuation as follows:

Suppose the original problem is to solve a nonlinear equation

(1) flx)=0

where f : R" — R"™ is a continuously differentiable function. We consider the homotopy function
H: R""!' — R™ defined by

2) H(z,t) = f(x) — tf(zo)

where zo is an arbitrarily fixed point in R™. Clearly, the solution to the equation H(z,1) = 0
is o and the solution to the equation H(z,0) = 0 is the same as that to (1). By tracing the
solution of the equation H(z,t) = 0 while the value of ¢ is gradually changed from 1 to 0, we

hope we will be led to a solution of (1). The idea is mathematically appealing because the zero set
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H™(0) = {(x,t)|H(x,t) = 0} is indeed a smooth curve in R"*', provided 0 € R" is a regular value
for H [41, 56]. This smooth curve is what we refer to “the bridge”. Upon differentiation, we see that
the homotopy curve is characterized by the initial value problem:

F@E - i = 0

z(0) = =m0

o) = 1

3) CRNCIEE

where s represents the arc length. The system (3) can be solved numerically by many available
software packages.

What is not clear in (3) (and is crucial in all continuous realization methods) is whether the curve
will ever reach the level ¢ = 0. Properties of f and the selection of zo must be taken into account in
order that the bridge really makes the desired connection. Numerous applications together with their
very own special homotopy functions have been studied in the literature. Far from being complete, we
simply mention, for example, [13] for eigenvalue problems, [34] for nonlinear programming problem,
[60] for physics applications and boundary value problems, [49, 50] for polynomial systems. Some
special purpose curve tracing techniques can be found in [59] for HOMPACK, [48] for eigenvalue
problems, [44] for pseudo-arc length technique, [53] for parameterized nonlinear systems and [50] for
polynomial systems.

The idea of continuation can also be motivated through iterative methods. It is a well known
fact that iterative methods have played very significant roles in a variety of ways for solving important
mathematical problems. In our context, iterative methods may as well be regarded as discrete real-
ization processes. It has been observed that many of the iterative methods used in numerical analysis
may be regarded as the discrete realization of certain continuous dynamical systems. Suppose, for
example, that the Jacobian matrix f'(z) in (3) is invertible. Then the differential equation may be

written as

dx dt 1

4 T = @) (@)

With the appropriate step size chosen, it is clear that one Euler step applied to the differential equation
(4) is equivalent to one regular iteration of the classical Newton method applied to the equation (1)
[44]. In a recent paper [12], we have already reviewed the development in the continuous realization
of some of the basic iterative methods, including the Newton method, the QR algorithm, the RQI
method, the SVD algorithm, the QZ algorithm and so on.

In this article, we want to address another facet of continuous realization methods. We shall
examine how the continuation idea can be used to study linear algebra problems, including some of
those where no numerical algorithm is available and some of those where the existence theory is yet
to be settled. Our approaches described below are entirely different from those discussed in [12],
yet the spirit of continuous realization is manifested clearly throughout the settings. In other words,
unlike those discussed in [12], the dynamical systems to be considered are not constructed artificially
from attempts to model existing iterative methods. Rather, the construction of bridges are monitored
by the values of certain specified functions through which we hope certain desired properties will
eventually be realized.

Most of the matrix differential equations discussed in this article are in the same basic form of

) O =X k()]



where X = X(t) € R"*™, t € R, k stands for a certain matrix-valued operator acting on the matrix X,
and [A, B] := AB — BA denotes the Lie bracket. Of particular importance is the case when k is skew-
symmetric. Under appropriately formulated k, the equation (5) has found applications in eigenvalue
or singular value problems, spectrally or singular-value constrained least squares approximation prob-
lems, inverse Toeplitz or non-negative eigenvalue problems, nearest normal matrix problem, quadratic
programming problems, and simultaneous reduction problems. This paper summarizes some of the
recent contributions in these aspects.

In addition, we think the approach by continuous realization methods might have the following
advantages:

e There are many well-developed classical results for continuous dynamical systems. The study
of continuous system might shed critical insights into the understanding of the dynamics of
the corresponding discrete methods.

e In contrast to the local properties for some discrete methods, the continuous approach
usually offers a global method for solving the underlying problem.

e Some existence problems, seemingly impossible to be tackled by any conventional discrete
methods, may be solved by formulating a special differential equation that ensure a specific
task is taking place.

e Continuous realization sometimes unifies different discrete methods as special cases of its
discretization and often gives rise to the design of new numerical algorithms.

e In a sense a continuation process means a spontaneous evolution of a problem. Thus it
has potential applications in numerical analysis, control theory, signal processing, matrix
theory, and mathematical programming. This opens up a new direction of applying numer-
ical ODE techniques, although the differential systems resulted from continuous realization
present immediate challenge to most current ODE methods. In particular, we would like to
have an ODE solver that can effectively approximate the asymptotically stable attractors
of a dynamical system [45]. Also, matrix differential equations are especially suitable for
integration on a massively data-parallel computing system, such as the Connection Ma-
chine. Thus matrix differential equations may be used as large-scale benchmark problems
for testing parallel ODE techniques [20]. Conversely, parallel ODE techniques may benefit
the numerical solution of matrix differential equations.

We shall see that the solution X (t) of (5) represents, in a sense, the evolution of X (0) under a
smooth change of coordinate systems [3]. From this viewpoint, we think the ideas conveyed in this

paper should be of interest to readers from different research fields.



2. Isospectral Flows.
In this section we consider some general properties of the differential equation (5).
Let G(n) denote the Lie group [23, 41, 56] of all nonsingular matrices in R"*". Associated with

any given matrix Xo € R"*", we define an isospectral surface
(6) M(Xo) :={Z 'XZ|Z € G(n)}.

We note that every element in M (Xo) is similar to Xo . Suppose Z(t), with Z(0) = 1, represents a
differentiable curve on the manifold G(n). Then

(7) X(t):=Z(t) ' XoZ(t)

defines a differentiable curve, with X(0) = X, on the surface M(Xo). Upon differentiation, it is easy
to see the curve X (¢) is the solution of the initial value problem

O~ 1xw, k)
(8) X(0) = Xo
with k(t) defined by
. _1dZ(t)
9) k) = 2()7 20,

Conversely, given any 1-parameter family of matrices k(t) in R™*", it can be proved that the solution
of (8) can be written in the form (7) where Z(t) satisfies

dZ(t)
=2 = 2k
(10) z(0) = 1.

Henceforth, we shall call the system (10) the dual problem of (8).

With different choices of k(t), the differential equation in (8) defines different isospectral curves,
all emanating from the same initial value X, . Obviously, the asymptotic behavior of X (t), if there
is any, on the surface M(Xo) will be determined by that of the corresponding Z(¢) on the manifold
G(n), and vise versa.

A special case of the above discussion is particularly important. We may replace the group G(n)
by the subgroup O(n) of all orthogonal matrices and repeat the above argument. Without causing
ambiguity, we shall use the same notation M(Xj) to represent

(11) M(Xo) ={Q" XoQI|Q € O(n)}.

We note that in the equation (10), Q(t) € O(n) if and only if k(t) is skew-symmetric. We note also
that || X (t)||]2 = || Xo||2 so long as k(t) is defined and remains to be skew-symmetric. It is important
to recognize that the tangent space of the manifold O(n) at any orthogonal matrix @ is given by
[23, 41, 56]

(12) ToO(n) = QS(n)*

where S(n) is the subspace of all symmetric matrices in R"*™ and S§(n)™" is the orthogonal complement

of §(n) under the Frobenius inner product

(13) < A, B >:=trace(AB") = Zai]‘bi]‘.
2]
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Since S(n)t is the subspace of all skew-symmetric matrices, the dual problem (10) indeed defines a
flow on the manifold O(n).

The differential equation (5) is another important special case of (8) in which k(t) = k(X (¢)).
That is, (5) is an autonomous system. If, in addition, k(t) is also skew-symmetric, then X (¢) exists
and is bounded for all ¢t € (—o00,00). Also, because of the relationship (7), the curve Q(t) on the

manifold O(n) is self-determined by the dual initial value problem

%Et) = QKQ®) T XoQ(t))
(14) Q(O) =1

which is independent of X(t).
When k is skew-symmetric, the dual system (10) has an interesting physical interpretation in
terms of rigid body motions [37]. We demonstrate the simple case when n = 3. Suppose we write the

operator k(t) as

(15) k@)= | —ws(t) 0 w1 (t)

and define
(16) w(t) = [wi(t), wa(t), ws(t)]"
Also we write the transpose of Q(t) in columns

(17) Q)" = [p1(t), p2(t), p3(1)].

Then the dual system (10) implies, for ¢ = 1,2, 3,

CZ)ti w X p;
(18) pi(0) = e

where e; is the i-th standard unit basis vector in R® and x denotes the usual cross-product in R®. The
differential equation in (18) describes the linear velocity of the vector p;(t) and the vector w(t) may
be interpreted as the angular velocity of the motion. As a whole, the dual system then describes the
rotation of an orthogonal coordinate system about the origin. If the initial matrix Xo is symmetric
and positive definite, then X (¢) stays to be symmetric and positive definite. We may thus interpret
X (t) as the moment of inertia tensor of a rigid body motion. In this case, the total kinetic energy of

motion is given by [37]
(19) T(t) = %w(t)TX(t)w(t).

If the kinetic energy is dissipated to zero, then the motion eventually stops.
The idea of rigid body motion can be generalized to higher n. The differential system (10) with
skew-symmetric k, therefore, represents a smooth change of coordinate systems and the solution X (¢)

of (8) is simply the same transformation as X (0) expressed in different coordinate systems.



3. QR-type Algorithms.

It is a well known fact that every matrix in R"*™ can be factored as the product of an orthogonal
matrix and an upper triangular matrix [38, 43]. Such a decomposition is called the QR decomposition.
Based on the QR decomposition, the unshifted QR algorithm generates a sequence of matrices {Ay}
according to the scheme:

(20) Ar = QrRr = Ak41:= RiQx

where Qr Ry is the QR decomposition of Aj . This algorithm is very important in the computation

of eigenvalues for Ay [61]. We also consider the matrix equation (known as the Toda lattice):

dX
v (X, o (X)]
(21) X(0) = Xo

where IIo(X) := (X7) — (X7)7, X~ is the strictly lower triangular part of X. Recently it has been
shown [55] that the sequence {exp(X(k))} obtained by sampling X (t) at integer times corresponds
exactly to the sequence { A} generated by (20) if A9 = exp(Xo). Therefore, the convergence properties
of the QR algorithm may be understood by studying the dynamics of (21) [16, 24, 57].

In this section we shall show that the system (21) is a special case of a more general setting from
which more iterative processes may arise.

Suppose the space R™*™ is split as the direct sum of two subspaces V; and V. Let P; and
P, represent the natural projection mappings from R™*™ into V1 and Vs, respectively. Consider the

initial value problem:

dx
o = X R
(22) X(0) = Xo.

Since [X (¢), X (¢)] = 0, the solution of (21) also satisfies the initial value problem:

dX
o = (X)) X]
(23) X(0) = Xo.

Correspondingly, from the discussion in the preceding section, there exist dual problems

dz,
i Z1P1(X)
(24) Z0) = I
and
dZ,
— = P(X)Z
pr 2(X) 2,
(25) Z2(0) = I
whose solutions satisfy
(26) X(t) = Zi(t) " XoZi(t) = Zo(t)XoZa(t) .

Furthermore, the matrices Z(t) and Z»(t) are related in a special way [14]:
THEOREM 3.1. Suppose X (t), Z1(t) and Z>(t) ezist on the interval [0,T] . Then

(27) exp(tXo)
(28) exp(tX(t))

Z1(t) Z2(t)
Z>(t)Z1(t)



for allt €10,T1].
If we set t =1 in Theorem 3.1, then it follows that

(29) exp(X(0)) = Zi(1)Z2(1)
(30) exp(X(1)) = Z2(1)Z:i(1).

Since the differential equation (22) is autonomous, it follows that the “swapping multiplication”
relationship observed in (29) and (30) will hold at every feasible integer time. In this sense, the dual
systems (24) and (25) give rise to an abstract matrix factorization (of the matrix exp(X(¢))) and the
isospectral flow (22) gives rise to a specific QR-like iterative process.

The Toda lattice corresponds to the special splitting of R"*"™ where V; is the subspace of all
skew-symmetric matrices and Vs is the subspace of all upper triangular matrices. Such a splitting is
a Lie algebra decomposition of R™*™ and therefore there corresponds a Lie group decomposition of
G(n) which is the QR decomposition. Other kinds of Lie algebra decompositions and the associated
isospectral flows are discussed in [25, 51, 52, 57, 58].

Our approach has the advantage that only subspace decomposition of R"*" is involved, which
should be much easier to manipulate than Lie algebra decomposition [58]. Nonetheless, we have
proved that the time-1 mapping of the solution X (¢) of (22) still enjoys a QR-type algorithm. With
special choices of the subspaces (and, hence, the projections), We are able to unify several matrix
decomposition algorithms and give rise to a number of new decompositions.

As an example, the following theorem generalizes the well-known Schur theorem [43] in the sense
that one can zero out any pattern of off-diagonal elements of a symmetric matrix by orthogonal
similarity transformation [14]:

THEOREM 3.2. Suppose Xy is symmetric. Let A be an arbitrary subset of the index set {(i,7)|1 <
j <i<mn}. For each X € R"*", define X so that

(31) b= T FGI)EA
Y 0 otherwise

and define

(32) Pi(X):=X-X".

Then the solution X(t) to the system (22) with Py defined by (32) is defined for all t, stays to be
symmetric, and converges to a limit point as t — co. Furthermore, z;j(t) — 0 if (i,7) € A.

As another example, the following theorem suggests how to change a non-symmetric matrix into
a stair-case matrix by using orthogonal similarity transformations [14].

THEOREM 3.3. Suppose Xo has only simple eigenvalues. Let A be the collection of indices
corresponding to any block strictly lower triangular matriz. For any X € R™*", define X and P (X)
as in (81) and (32). Then the same conclusion as in Theorem 8.2 holds.

A special application of Theorem 3.3 is worth mentioning. We conjecture that the Hamiltonian
eigenvalue problem should enjoy a QR-type algorithm that preserves the Hamiltonian structure [8, 10].

A matrix X € R**?" is Hamiltonian if and only if it is of the form

A N
(33) X = [ K AT

where K, N € R"*™ are symmetric. Suppose we define

(34) P (X) = l 0 -K ]



Then it is easy to see that [X,P;(X)] is also Hamiltonian. With this in mind, starting with a
Hamiltonian matrix Xo , we define the dynamical system (22) with P; given by (34). Then the
solution Z(t) to the corresponding dual problem (24) is both orthogonal and sympletic, and the
solution X (t) = Z1 ()T X0Z1(t) to (22) remains Hamiltonian for all ¢. Furthermore, by Theorem 3.3,
we know that Pi(X) — 0 as t — oo. Unfortunately, the associated iterative algorithm is not
explicitly known due to lacking knowledge of the structure of the corresponding Z>(t). As a matter
of fact, to find an efficient numerically stable iterative process that also preserves the Hamiltonian
structure is still an open problem. See Bunse-Gerstner et al. [9] and the many references contained
therein.

A similar approach that considers the linkage between QR-type algorithms and solutions to
the Yang-Baxter equation can be found in [47, 30], In particular, the relationship between an explicit
iterative scheme associated with a group decomposition of the simpletic group and a dynamical system
of the form (22) that preserves the Hamiltonian structure is established. Although the iterative scheme
is explicit and is proved to be convergent, it does not involve any orthogonal transformation and, hence,

is possibly unstable.



4. Projected Gradient Flows.

In this section we shall restrict our attention to the subspace S(n). Let V be either a single
matrix V or a subspace in S(n). For any X € §(n), the projection of X into V is denoted as P(X). If
V is a single matrix, then P(X) = V; otherwise, the projection is taken with respect to the Frobenius

inner product. We shall consider another special case of (5), i.e., we shall consider equation of the

form:
= WX P
(35) X0) = Xo

with Xo € §(n).
We first note that the system (35) evolves in the space S(n) since X € S(n) implies

(36) k(X) = [X, P(X)]

is skew-symmetric and 4 € S(n), and vise versa. It is also clear that X (t) is orthogonally similar to
Xo.

The system (35) is derived from the following minimization problem:

Minimize  F(X):= %HX - PX)|?
(37) Subject to X € M(Xp)
where || - || stands for the Frobenius matrix norm. Literally, problem (37) is minimizing the distance

[36] between the two sets M(Xo) and V. From this prospect, we may thus use (35) to continuously

realize the solution to, for example, the following linear algebra problems:

(Problem A) Given a real symmetric matrix N, find a least squares approximation of N that is
still symmetric but has a prescribed set of eigenvalues {\1,...,A,}. In this setting, we choose V = N
and Xo = diag{\i,...,\n}.

(Problem B) Given a set of real numbers {\1,..., Ay}, construct a symmetric Toeplitz matrix
that has the prescribed set as its spectrum. In this setting, we choose V to the the subspace 7 of all

symmetric Toeplitz matrices and Xo to be any matrix orthogonally similar to diag{A1,..., A»}.

(Problem C) Given a matrix A € §(n), find its eigenvalues. In this setting, we choose V to be

the subspace of all diagonal matrices and Xo = A.

Problem (37) is equivalent to

Minimize — G(Q) = % < QT X0Q — P(QTX0Q), Q" X0Q — P(QT X0Q) >
(38) Subject to Q € O(n).

It is easy to see that with respect to the Frobenius inner product, the gradient of G at Q € O(n) is

the matrix
(39) VG(Q) =2X0Q(Q" X0Q — P(Q" XoQ)).
We observe that

(40) R™™ =To0(n) & TeO(n)* = QS(n)* ® QS(n).
9



Therefore, the projection g(Q) of VG(Q) onto the manifold O(n) can be calculated explicitly [15]:

1@ = Q{5@'ve@-ve@ )}
QIP(Q"X0Q), Q" XoQ].

(41)

It is now obvious that the dual problem of (35):

G
(42) QU) = T

with k defined by (36) signifies a steepest descent flow on O(n) for problem (38). Equivalently, (35)
defined a descent flow on M (Xy) for problem (37).

Because (35) (or (42)) is a gradient flow, the function F (X (¢)) (or G(Q(t)) is a natural Lyapunov
function. The Lyapunov function can be used to characterize the dynamics of the flow. By using a
Lyapunov function, it is possible to derive an effective, strictly stable multistep method for approx-
imating the w-limit set. See, for example, [29], and [45]. This direction certainly is worth further
investigation.

The system (35) applied to Problem A becomes

dX
W = [Xa [Xv N]]
(43) X(0) = Xo.

The dynamics of (43) has been studied independently by Chu [15, 22] and Brockett [6, 7]. The main
results are as follows:

THEOREM 4.1. Suppose both N and Xo have distinct eigenvalues. Let the eigenvalues of N and
Xo be ordered as p1 < ... < pn and A1 < ... < An, respectively. Then as t — oo, the solution X (t)

of (43) converges to the unique limit point
(44) X =Mqgl + ...+ Agngl

where qi,...,qn are the normalized eigenvectors of N corresponding respectively to pi, ..., fin .-

THEOREM 4.2. Suppose N is a diagonal matriz with distinct eigenvalues (but Xo may have
repeated eigenvalues). Then as t —> oo, the solution X (t) of (48) converges to a diagonal matriz
whose elements are similarly ordered as those in N.

At the first glance, it is quite amazing that the w-limit point of (43) (and, hence, the solution to
Problem A) can be expressed explicitly. After further consideration, we find that Theorem 4.1 may be
regarded as a reproof of the well known Wielandt-Hoffman Theorem [43, 15]. In fact, we have proved
that the bound in Wielandt-Hoffman Theorem is sharp.

Recently it is also observed [6] and [7] that, due to the special “sorting property” of (43), the
continuous realization idea can even be applied to solve data matching problem and a variety of generic
combinatorial optimizations. We demonstrate one application to the linear programming problem.
Consider the LP problem:

Maximize T

(45) Subject to Az <b

where ¢,z € R™ and we shall assume the feasible set P := {z|z € R", Az < b} is a convex polytope
with vertices at a1,...,ap € R™. It is a well known fact that one of the values p; := cTa;, i =1...,p

will be the optimum for problem (45). To sort out this particular vertex, we define T € R™*P as

10



T := [a1,...,ap]. Obviously T maps the standard simplex S := {d|d € R?, d; >0, > " d; =1}
onto the given polytope P. Let Xo := diag{1,0,...,0} € RP*? and let N := diag{u1,...,up}. Then,
by Theorem 4.2, the corresponding isospectral flow X (t) converges to a diagonal matrix X. The
elements of X must be a permutation of those of Xy and must be arranged in an order similar to that
of N. By identifying the index corresponding to the value 1 in X, we locate the optimal vertex.

In applying the system (35) to Problem B, the projection P can easily be calculated from

(46) P(X)=)_ <X,E > E,
k=1
where {E1,...,E,} is an orthogonal basis of 7. Denoting Ej by (eg-c)), then one natural basis is
1/4/2(n—k+1) ifl<k<nand|i—jl=k-1
(47) el =4 1/yn ifk=1andi=j
0 otherwise.

To our knowledge, the existence question of a solution to the inverse Toeplitz eigenvalue problem
when n > 5 is still an open problem [46, 26]. Yet our descent flow formulation offers a numerical
method for computing the solution. We should point out, however, that the differential system (35)
applied to Problem B may have asymptotically stable w-limit points other than those that are in 7. If
this happens, we should change to a different course of integration by starting with a different initial
value. Another approach to circumvent this difficult will be discussed in a later section.

The system (35) applied to Problem C becomes

B = XX diag()]
(48) X(0) = A

where diag(X) denotes the diagonal matrix whose elements are those along the diagonal of X. Recall
that the system (48) is derived by minimizing the sum of squares of the off-diagonal elements of X.
Thus the system (48) may be regarded as a continuous analog of the classical Jacobi method for the
eigenvalue problem [38]. Although the differential equation itself has many equilibrium points, most
of them are not stable. If fact, it can be proved [27] that

THEOREM 4.3. As t —» oo, the solution X (t) of (48) converges to a diagonal matriz. Thus,
if A has distinct eigenvalues, then on the manifold M(A) there are exactly n! asymptotically stable
equilibrium points.

We have just discussed three possible applications of (35). Indeed, the liberty of choosing the
projected space V suggests that the system (35) might have broader applications in other areas. It
is interesting to see that for different choices of V, the system (35) generates different descent flows
evolving on the manifold M(Xj). In the next section, we shall apply the same idea to consider the

simultaneous reduction problems.
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5. Simultaneous Reduction Problems.

Undoubtedly, orthogonal similarity transformations QT AQ and orthogonal equivalence transfor-
mations QT AZ with Q, Z € O(n) play important roles in the computation of eigenvalues and singular
values, respectively, for a general matrix A € R**" [38, 61]. These transformations reduce A to some
simpler forms. Simultaneous reduction of more than one matrix, on the other hand, finds applica-
tions in areas like control theory or mechanics for the identification of multivariable systems or for
the study of small oscillations about a stable equilibrium [43]. A few theoretical results concerning
the simultaneous diagonalization of two symmetric (or hermitian) matrices can be found in [43]. The
reduction problem for more than two or for more general matrices are considerably more difficult both
in theory and in computation. In this section we shall discuss another special case of (5) that induces
an easy but versatile reduction procedure.

Suppose A; € R™*™, i =1,...,p are the matrices under consideration to be reduced by orthogo-
nal similar transformations. For each i, let V; denote the subspace of all matrices having the specified
form to which A; is supposed to be reduced. These subspaces need not to be the same. Given any
A € R" ", let P;(A) denote the projection of A into the subspace V; with respect to the Frobenius
inner product. For convenience, we also define the residual operator

(49) ai(Q) = Q"A:Q — P,(Q" A:Q).

We shall use the same idea as in problem (38) to solve the problem:

Minimize  F(Q) i= % S llas@I?
i=1
(50) Subject to Q € O(n).

That is, while moving along the orthogonal similarity orbit of the given matrices Ay, ..., Ap, we want
to minimize the total distance between the point QT A;Q and the subspace V; for all .
The gradient of F' is given by [19]

P

(51) VF@Q) =Y (Af'Qui(Q) + AiQal (Q)).

i=1

By using (40), the projection of VF(Q) onto the manifold O(n) is calculated to be

y@ =@y 1400l @)= Q7 4Q. ol @)

(52)

i=1

Therefore, the differential equation

53) L~ ar@
with
(54) k(Q) = _Z (@ AiQ, ai (Q)] _Z[Q A4iQ,ai QI

i=1
defines a steepest descent vector field on the manifold O(n) for problem (50). Note that (53) is again
in the form of (10). Together with the initial value Q(0) = I, the equation (53) is the dual problem
of the system
X,

. )
_ 2 [Xjal)jT(X')]_[XJ':P]T(X‘)]T
= |Xx;, 2:; 5
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where X;(t) := Q)T A;Q(t), and i =1,...,p.

The solution {Xi(¢),...,X,(t)} of (55) represents a continuous evolution from {A;,...,4,} in
realizing the prescribed reduction forms while members are influenced by each others in such a way
that the total distance F(Q) is monotonically decreased. We note that such a continuous realization
process has the advantages that the desired form to which matrices are reduced can be almost arbitrary,
and that if a desired form is not attainable then the limit point of the differential equation gives a
way of measuring the distance from the best reduced matrices to the nearest matrices that have the
desired form.

Similarly, suppose 4; € R™*", i = 1,...,p are the matrices being considered by using orthogonal

equivalence transformations. Define
(56) Bi(Q,2) = Q" AiZ - Pi(Q" AiZ)
and consider the problem

Minimize  G(Q,2) = 3 D I18:@ 2)I°
i=1

Subject to Q € O(m)

(57) Z € O(n).

By introducing the product topology on R™*™ x R™*™ where the induced inner product is
defined by
(58) < (AI:BI); (AZ,BZ) >:=< A1,A2 > + < B1,B>2 >,

we know that [19]

(59) VG(Q,Z) = (i A:285(Q, 2), zp:AiTQgi(Q,z)> )
Define _ .

(60) 0@ 7) = -3 LA QD) = @42 @2
(61) k2(Q, 2) = _%: ZTATQBi(Q, Z) —Q(ZTAZ-TQ&(Q,Z))T.
(62) -

Note k1 € R™*™ and ks € R™*" are both skew-symmetric. Since
(63) Tio.2)0(m) x O(n) = QS(m)"* x ZS(n)™",

using the same principle as in (40), we find the projection of VG(Q, Z) onto the manifold O(m) x O(n)
is given by

Thus the system

12D~ (@hi(Q,2) 7k2(Q, 7))
(69) @QO).Z0) = (In,1)

13



defines a steepest descent flow on O(m) x O(n) and is the dual problem of the system

dj:i = XikQ(Q,Z) — kl(QaZ)Xi
_ zp: {X_XjTPf(Xj) - P/ (X)X, + Py (X;)X] _XfPfT(Xf)X}
i 5 2 '
j=1
(66) Xi(0) = A

where X;(t) := Q(t)T A;Z(t), and i = 1,...,p. We note that (66) is not quite in the same form as (5).
In contrast to the approach of deriving (66), it is worthwhile to mention two other matrix

differential systems:

% = XIh(XXT) - Th(X"X)X
(67) X(0) = A
and
dx _ _
dtl = X Io(X5 ' Xy) — Ho( X1 X5 1) X
dx _ _
d; = XoIlo(X5 ' X1) — Ho( X1 X5 1) X,
X1 = A1
(68) Xo = A».

We have proved earlier that, just as the Toda lattice (21) models the QR algorithm, the system
(67) models the SVD algorithm [18] for the A € R™*™, and (68) models the QZ algorithm [17] for
the matrix pencil (41, 42) € R™™™ x R™™™. Although (67) and (68) are quite similar to (66), the
way they are derived has nothing to do with optimization of any objective function. On the other
hand, suppose we take p = 1 and V to be the subspace of all diagonal matrices in R™*™. Then the

differential equation in (66) becomes

dx _XXTdiag(X)—(XTdiag(X))T N diag(X)XT —(diag(X)XT)T x
dt 2 2 ’

(69)

which, in spirit, is a continuous analog of the Jacobi method for the singular value decomposition.
The asymptotic stability property of (69) is similar to that of Theorem 4.3 [15].
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6. Nearest Normal Matrix Problems.
Thus far, we have kept the discussion in the real context. But such a restriction is solely for the
reason of facilitating the notion. With appropriate modifications, all the discussion can be generalized

to the complex-valued case. Applications of such a generalization include, for example, the following

problems:
(Problem D) Given a general matrix A € R"*™ and a set of eigenvalues {\1 £ iv1,...,\; £
g, A2g+1, - - -, An} where A, v, are real numbers and vi, # 0, find a real normal matrix that has the

prescribed set as its spectrum and best approximate A in the Frobenius norm.

(Problem E) Given an arbitrary matrix A € C™*", find its closest normal matrix in the
Frobenius norm [42, 54].

Problem D can be reformulated as [35]:

Minimize — F(Q) := %HQTAQ — A

(70) Subject to Q € O(n)

A A
(71) A::{[ ! ”1],..., a ”q],xml,...,)\n}
—UV1 )\1 —Vq )\q

Note Problem D is not equivalent to the Wielandt-Hoffman Theorem in that the normal matrix QTAQ
is only real-valued [43]. Using the same idea as before, we find that [22]

dQ [QTAQ,AT] - [QTAQ,A™]"
w - @ 2
(72) Q) = I

defines a steepest descent flow for problem (70) and is the dual problem of

dx [X,AT] - [X,AT]T
@ - 2
(73) X(0) = A.

Problem E can be reformulated as [35]:

Minimize G(U,D) := %HA —UDU"|)?
Subject to Uel(n)
(74) D € D(n)

where U(n) is the group of all unitary matrices in C™*™ and D(n) is the subspace of all diagonal
matrices in C™*". Obviously, for any given U € U(n), the best D € D(n) that minimizes G(U, D) is
D = diag(U" AU). Therefore, at a global minimum, problem (74) is equivalent to

Minimize — H(U):= %HU*AU — diag(U*AU)|?
(75) Subject to U € U(n).

The closest normal matrix is thus characterized by the following theorem [54]:
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THEOREM 6.1. Let A € C™*™ and let Z = UDU* with U € U(n) and D € D(n). Then Z is
the closest normal matriz to A in the Frobenius norm if and only if the unitary matriz U is a global
minimizer of problem (75) and the diagonal matriz D = diag(U* AU).

Problem (75) is very similar to Problem C. By identifying any complex matrix Z as a pair of
real matrices (RZ, SZ) where RZ and SZ are the real and the imaginary part of Z, we introduce an

inner product on C™*™ by
(76) <A B>c:=<RA,RB >+ < SA,3B > .

Then resembling the techniques used in the preceding section, we can show that [19]

du
ar Uk(U)
(77) U0 = I
with
(78) k(U) == [U* AU, diag(U* AU)| — [U* AU, diag(U* AU)]*

2

defined a steepest descent vector field on U(n) for problem (75). It is now easy to see that the matrix
W (t) :== U(t)* AU (t) satisfies the differential equation

(79) L =W kw)]

The closest normal matrix can then be constructed from the w-limit point of (77) according to Theo-

rem 6.1.
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7. Inverse Eigenvalue Problem.
Given Ay,...,An € §(n), let A denote the affine subspace consisting of all A(c) € §(n) where

(80) A(C) = Ay + Z ciA;
i=1
and ¢ := (c1,...,cn) € R™. The following is called an inverse eigenvalue problem [33]:
(Problem F) Given a set of real numbers {\1,...,A,}, find coefficients ci,...,c, such that

A(c) € A has the prescribed set as its spectrum.

We shall assume, without loss of generality, that Ai,..., A, are mutually orthonormal with
respect to the Frobenius inner product (Obviously, we may apply the Gram-Schmidt orthogonalization
process to achieve this if necessary, and then the two bases are related by an upper triangular matrix).
We may also assume that Ao is perpendicular to all A; for 1 = 1,...,n. Given any X € S(n), it is

easy to see that the distance between X and A is given by
(81) dist(X,A) = || X — (Ao + P(X)) ||

where P(X) is the projection of X onto the subspace spanned by A, ..., A,, and, therefore, is given
by

(82) P(X):zn:<X,A1>AZ

i=1

One approach of solving Problem F is to consider the following minimization problem:

Minimize — F(Q) i= %HQTAQ — Ao — P(QTAQ)|?
(83) Subject to Q € O(n).

where A := diag{)\1,...,Ax}. It can be shown that
(84) VF(Q) =20Q{Q"AQ — Ao — P(QTAQ)}.

Therefore, the differential equation

(85) L)
with
(86) k(@) :=[QTAQ, Ao + P(QTAQ)]

defines a steepest descent vector field on O(n) for problem (83). Correspondingly, the matrix X (t) :=
Q(t)T AQ(t) satisfies the equation

X

(57) = = [X,[X, 4o+ P(Y)])

stays on the manifold M(A), and moves in the direction to minimize the distance between the two
sets M(A) and A. Suppose X (t) — X as t —» 0o and suppose X is also in .A. Then the coefficients
needed in Problem F are determined from ¢; =< X, 4; >.

Problem B, the inverse Toeplitz eigenvalue problem, is just a special case of Problem F in which
A is the linear subspace 7 and Ar = Ej, as defined in (47). By experimenting with (87) for the
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inverse Toeplitz eigenvalue problem numerically, we have found that sometimes M (A) unfortunately
contains stable equilibrium points that are not Toeplitz [15, 27]. This fact does not cause any serious
computational difficulty since we can easily change to another initial value and restart the integration.
In the following, nevertheless, we wish to re-design the differential equation so that equilibrium points
must be in A.

To make sure X (t) stay on the isospectral surface M(A), we shall consider an initial value

problem of the form

dx
W = [Xa k(X)]
(88) X(0) = A

where k is a mapping from S(n) into S(n)*. Furthermore, we shall require k to be an annihilator of
the affine subspace A. That is, we want k to be such that

(89) k(X) =0 if and only if X € A.

In view of the dimensions of the three spaces, the construction of a mapping k : S(n) — S(n)" with
property (89) is possible.

We have observed earlier that || X (¢)|| = ||A|| for all £ € R. Suppose all elements in A are distinct.
Then [X, k(X)] = 0 if and only if k(X) is a polynomial of X [35]. But then k(X) € S(n)NS(n)* = {0}.
If condition (89) holds, then we find that all equilibria of (88) are necessarily in \A. A bounded flow
necessarily has a non-empty invariant w-limit set [5]. If X (#) — X as ¢t — oo, then X is a solution
of Problem F.

As an example, we now apply the above idea to the inverse Toeplitz eigenvalue problem. Since
A = T is a linear subspace, we may require k : S(n) — S(n)* to be linear as well. One simple way

of defining k is by

Tiv1,; —Tij—1 f1<i<j<n
(90) kij = 0 ifl<i=j<n
Tij-1—Tiy1,; f1<j<i<n

where k;; denotes the (i, j)-component of k(X). It is obvious that kernel(k) = T.
Let C € S(n) denote the matrix

01 0 0
10 1

(91) c=|01
: 0 1
L0 10 |

Let

(92) Sn)=ToT"

denote any direct sum splitting of S(n) with 7¢ denoting the complementary subspace of 7 in S(n).
Another way of defining k is by

(93) k(X) := [L(X),C]



where L(X) is the projection of X onto 7¢ along 7. Note k is still a linear map from S(n) into
S(n)*. If k(X) = 0, then

(94) L(X) = iykck
k=1

since C' has distinct eigenvalues [35]. Observe that if any diagonal of X is constant, then the cor-
responding diagonal of L(X) is zero. Observe also that for each fixed j = 1,...,n, the only matrix
among the powers C,C?,...,C™ 7 such that the (n — j 4+ 1)-th diagonal is not entirely zero is C" 7.
Indeed, the elements there are all 1. By induction, therefore, v,—; = 0 for all j = 1,...,n. Thus,
E(X)=0if and only if X € T.

We have experimented both (90) and (93) extensively with different spectral data for the inverse
Toeplitz eigenvalue problem. We have found that the orbit always converges to an equilibrium point.
Thus, we conjecture that the inverse Toeplitz eigenvalue problem is always solvable. What remains
to be proved, however, is that the solution of (88) does converge to a single point in theory. No
other invariant set such as limit cycles or strange attractors should occur [5]. In this way, we would
have settled the existence question. Unfortunately, this convergence proof is not an easy problem
either. Despite this theoretical difficulty, we suggest that following the solution flow of (88) is a
feasible numerical method for solving the inverse eigenvalue problem. By shifting A by A 4+ oI with
a sufficiently large o € R if necessary, we may assume A is positive definite. We have observed
numerically that the total kinetic energy T'(t) of rotation (19) is monotonically decreasing to zero.
Therefore, it appears that T'(¢) could be used as a Lyapunov function. The proof, again, is not
available at the present time.

The matrix differential equations (87) and (88) offer a new avenue of attacking the inverse
eigenvalue problems. They are interesting because of their generality and versatility. There are still,
however, many open areas that deserve further investigation. We hope this paper will stimulate some

useful discussion either in the theoretical or in the numerical aspect.
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8. Inverse Non-negative Eigenvalue Problem.
In this section we shall construct a matrix differential equation for another type of inverse eigen-

value problem that is different from Problem F:

(Problem E) Given a set of real values {\1,..., A, } that, by some means, is known a prior to be
the spectrum of some non-negative matrices, find a symmetric non-negative matrix whose spectrum

is precisely {A1,...,An}.

Our approach is similar to the projected gradient flow discussed earlier — we want to minimize the
Frobenius distance between the cone m; (R} ) of symmetric non-negative matrices and the isospectral

surface M(A) of the given spectrum. The optimization problem is formed as follows:

Minimize ~ F(Q,R) := %HQTAQ —R«R|?
Subject to Q € O(n)
(95) R e S(n)

where A := diag{\1,...,\n} and * denotes the Hadamard product. In the space R™*™ x R"*" we
shall use the induced Frobenius inner product defined in (58). Then the gradient of F' in (95) is given
by [21]

(96) VF(Q,R) = (2AQ(Q"AQ — R+ R), —2(Q"AQ — R+ R) = R)) .
It is obvious that the tangent space of O(n) x S(n) at (@, R) is given by
(97) Tio.mO(n) x §(n) = QS(n)" x S(n).

So the projection of VF(Q, R) onto the manifold O(n) x §(n) can be calculated. The initial value
problem,

L= QAR R) +(R+ HIQTAQ)
‘;—f = 2(Q"AQ —R=R)*R)
Q) = A
(98) R(0) = an arbitrary positive matrix,

therefore, defines a steepest descent flow on O(n) x §(n) for problem (95).

Define
(99) X(t) = Q)" AQ(t)
and
(100) Y (t) := R(t) * R(t).

Then it is easy to see that (X(t),Y (¢)) satisfies the system of equations

dXx

W = [X’[X7Y]]
(101) ‘% = 4V x(X-Y).
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Note that X (¢) and Y (¢) moves, respectively, in the isospectral surface M(A) and the cone 7s(RY})
so as to reduce the distance G(t) := || X(t) — Y (¢)||>. Therefore, G(t) serves as a natural Lyapunov
function. Recently, we are able to use center manifold theory [11] to study the structure of w-limit
sets of (101) [21]:

THEOREM 8.1. If (X, X) € M(A)xms(RY) ever becomes an w-limit point of an orbit (X (t),Y (t))
of (101), then lim;— 0o (X (), Y (£)) = (X, X).

So far as we know, most of the discussions in the literature are centered around establishing
a sufficient or a necessary condition so that a given set of values is the spectrum of a non-negative
matrix [4, 31]. Very few of these theoretical results are ready to be implemented to find the actual
matrix [21]. By following the integral curve of (101), however, we have a numerical algorithm that
systematically reducing the distance between M(A) and ms(R7). If these two sets do intersect, then
of course the distance is zero. Otherwise, our approach still finds a matrix from M(A) and a matrix
from ms(R’) such that their distance is a local minimum. In the latter case, because ms(R}) is a
convex set, the matrix from 7,(R’) must lie on a facet of the cone, i.e., some of the components of

the non-negative matrix is zero.
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9. Quadratic Assignment Problem.

The quadratic assignment problem consists of [32, 39]:

Minimize < C+ ASB,S >
(102) Subject to Sell

where A, B,C € R™™" are given matrices and II is the set of all permutation matrices. Problem (102)
is know to be an NP-hard problem.
In view of the success of the above discussions, we suggest the following continuous realization

process for problem (102). First we relax (102) to the problem

Minimize F(Q):=<C+ AQB,Q >
(103) Subject to Q € O(n)

so that the idea of projected gradient can be applied. It can be shown that
(104) VF(Q)=C+ A"QB + AQB".

Therefore, the differential equation

aQ
(105) 2 = QK@)
with
(105) k(@ = C1Q=QT0) + (BTQ"4Q - Q"ATQB) + (BQ"ATQ - Q"AQB")
- 2

defines a steepest descent flow on O(n) for problem (103). By tracing the integral curve of (105), a
limit point Q of (105) (and, hence a local optimizer of problem (103)) should be found. Because of
the continuity of the objective function, we think the permutation matrix that is nearest to Q should

be a putative solution to problem (102). Thus, we solve the problem

Minimize  ||S — Q|
(107) Subject to S ell

But problem (107) is equivalent to

Maximize Y dio(i)
i=1
(108) Subject to oc€ell

where §;; are the components of Q. Problem (108) is a classical linear assignment problem and, hence,

can be solved by many well developed techniques [40].
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10. Conclusion.

Matrix differential equations by nature are complicated, since the components are coupled into
nonlinear terms. Nonetheless, as we have demonstrated, there have been substantial advances in
understanding some of the dynamics. For the time being, the numerical implementation is still very
primitive. But most important of all, we think there are many opportunities where new algorithms
may be developed from the realization process. It is hoped that this paper has conveyed some values
of this idea.
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