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Abstract

In attempting to minimize the distance between the hand of a manipulator
and the position of a goal, a numerical method that alternately adjusts the
configuration of one joint at a time is proposed. The adjustment for either a
revolute joint or a prismatic joint can be made effectively without derivative
evaluation. This method can be applied to any manipulator of any number
of joints with arbitrary geometry. Global convergence is expected in general.
Empirical results seem to suggest that the rate of convergence is linear and
that for redundant manipulators the error constants are fairly small.



1 Introduction

A manipulator usually is considered to consist of a series of links con-
nected together by joints. The study of kinematic analysis is concerned with
the relationship between the end-effector, the hand, and the joint displace-
ments. One well-established technique in this field is to use the so called
homogeneous transformations [3] [12] [4] to effectively describe these relation-
ships. More precisely, by embedding a coordinate frame in each mechanical
linkage of the manipulator, we can use homogeneous transformations to de-
scribe the relative position and orientation between these coordinate frames.
Indeed, each homogeneous transformation is a 4 x 4 real matrix. Thus, the
position and orientation of the hand in terms of base coordinates are given
by the matrix product of the homogeneous transformations representing the
relative joint displacements. This relationship is called the kinematic equa-
tiomn.

One utmost important problem in robot manipulation is to control the
relative motion associated with each joint so that the the hand can be po-
sitioned in a desired manner. This is because in practice we normally know
where we want to move the manipulator and we need to know how to make
the move. The problem of determining the joint coordinates, given the po-
sition and orientation of the hand, is commonly referred to as the inverse
kinematics problem. Enormous amount of efforts have been devoted to solv-
ing the inverse kinematics problem. Without attempting to be complete, we
mention [1], [2], [5], [7], [10], [12], [13], [14], [16] and the references cited
therein. It is always desired to obtain a close-form solution for the inverse
kinematics problem. However, the ability developed thus far seems to be
limited only to manipulators having special geometry [14] [8]. For manipula-
tors with completely general geometry, the analysis of the equation becomes
very complicated and can only be solved numerically. Most of the numeri-
cal methods adopt the well-known Newton-Raphson iterative technique [14]
[17]. Therefore, the success of these methods seems to depend upon the initial
guesses. Recently, the homotopy method [16] has been applied successfully
to computing all possible solutions of a general 6-R inverse kinematic equa-
tion. This involves, however, a nontrivial process of reducing the kinematic
equation to a system of polynomials.

In order to manage the hand of a manipulator freely within the range of



motion, it is necessary that a manipulator has six degrees of freedom. Three
degrees of freedom are required to specify position and three more to specify
orientation. In this paper we shall not concern ourselves with the orientation
problem. In part this is because, from a theoretical point of view, locating the
position of the hand is more interesting than aligning the orientation of the
hand. In part this is because, from a practical point of view, the orientation
of the hand can be effectively adjusted by attaching an appropriate wrist
to the end-effector after the hand position has been located. We present an
iterative method for locating the position of the hand only. The method
has the advantages of being derivative-free, globally convergent, and easy to
program. Qur idea is based on the so called alternating variables methods
[6]. That is, we adjust one joint at a time in an attempt to minimize the
distance between the desired position of the object and the current position
of the hand while all other joints are kept rigid. When every joint has been
adjusted, the whole cycle is repeated until convergence occurs. We note that
an algorithm using similar ideas has been developed in [11]. We shall see,
however, the calculation in our approach is much simpler. The technique
discussed here can be applied to any manipulator of any number of joints
with arbitrary geometry. In fact, a general purpose code to which the only
input will be the the initial configuration of the manipulator and the data of
the goal can easily be developed.

We begin in the next section with a brief introduction of the homogeneous
transformations just so that we can conveniently describe our algorithm. In
section 3, we show how the adjustment for either a revolute joint or a pris-
matic joint can be handled effectively. In section 4, we report our numerical
experiment with a general 6-R manipulator. We finally point out several
problems that deserve further research.

2 Preliminaries

The main purpose of this section is to introduce the notations of the
homogeneous transformations so that we can conveniently describe our al-
gorithm. We shall state enough facts without giving too much reasoning.
Readers are referred to [3],[9] and [12] for more detailed descriptions.



The homogeneous coordinate representation of a point vector

vzai’—l—bj’—l—clg (1)
in R? is given by a 4 X 1 column vector
z
v=|" (2)
w
where
a = z/w
b = y/w (3)
c = z/w

and z,y,z,w can be arbitrary real numbers. Vectors of the form [a, b, ¢, 0]T
are understood to represent directions only. The vector [0,0,0,0]% is unde-
fined.

With the homogeneous representations, it is easy to see that the transfor-
mation H corresponding to a translation by a vector ar+ b7+ ck is represented
as

1 00 a
01 009
T = Trans(a,b,c) = 00 1 ¢ (4)
0 001
That is, given a vector u = [z,y, z, w]T, the translated vector v is given by
1 00 a x
_ |0 1 0 b Y
v="Tu= 00 1 ¢ ” (5)
0 001 w

Similarly, transformations corresponding to rotations about coordinate axes
can easily be formulated. For example, the transformation R corresponding
to a rotation about the z-axis by an angle 8 is represented by

1 0 0 0
0 cosf§ —sinf O

R = Rot(z,0) = 0 sinf cosf O (6)
0 0 0 1



The combination of a sequence of translations and rotations amounts to
the product of the corresponding 4 X 4 matrix representations. In this way we
obtain a general homogeneous transformation H represented by the matrix

Ng Oz Gz Pz

H=|™ % 9% Py (7)
ny 0; G Ps |
0 0 0 1

For convenience, we define 77 = [ng,n,,n.|7 and similar notations for p and
d. We remark that the three vectors 77, p and @ are mutually orthonormal.
It is not difficult to show that the inverse of H is given by

Ng Ny M, —p-7

H_l _ [ Oy 0, —Zi g
@y Gy a, —P-Q (8)
0 0 0 1

The elements of a homogeneous transformation (7) may be interpreted as
four vectors representing a second coordinate frame. That is, the first three
column vectors describe the three new axis-directions, and the fourth col-
umn vector describes the position of the new origin in terms of the reference
coordinate frame. This important fact can be realized simply by applying
the homogeneous transformation to the origin [0,0,0,1]7 and the three vec-
tors [1,0,0,1]%,[0,1,0,1]%,[0,0,1,1]%. From this viewpoint, when a vector is
transformed, the original vector can be considered as a vector in the new co-
ordinate frame whereas the transformed vector is the same vector described
with respect to the reference coordinate frame.

The order of matrix multiplication has special physical meanings in ho-
mogeneous transformations. Let H; and H, be two homogeneous transfor-
mations. Then the new frame H; H, is obtained by making the translation
or rotations represented by H, with respect to the frame axes described by
H;. The same coordinate frame H; H; may also be obtained by translating or
rotating the frame axes described by Hj according to the translation or rota-
tions represented by H; with respect to the base reference coordinate frame.
We shall see in the sequel that this understanding facilitates the derivation
of the kinematic equation.

According to [12], we now define linkage parameters for joints as shown
in Figure 1. Joint n i1s connected to joint n + 1 by link n. Joint 0 is fixed
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Figure 1: The basic notation

to the ground. Link 0 is designated as the base. Depending upon whether
joint n is a revolute or a prismatic joint, we define the z,_; axis to be either
the axis of rotation or the direction in which the joint moves. The following
notations are relevant to the formation of two consecutive joints:

a, = The distance of the common normal H, O, between joint n and

joint n + 1.

o, = The angle to rotate the axis z,_; about the common normal
H, 0, so that z,_; is parallel to z,.

d, = The distance between the two common normals H,_10,_1 and
H, O, measure along the axis z,_;.

0, = The angle to rotate the extended line of H,,_10,_; about the axis
2n_1 so that the extended line of H,,_ 10, _; is parallel to H,O,,.

The configuration of a manipulator with mixed prismatic and revolute
joints is completely determined by values of these linkage parameters. In
robot manipulation, usually only parameters 6,, and parameters d,, are the
variables for revolute joints and prismatic joints, respectively, while all other



Figure 2: A general 6-link manipulator

parameters should be kept constant.
In order to describe the relationship between links, we now assign coor-
dinate frames to each link according to the following rules:

1.

The coordinate system for link 0 is fixed to the ground and is considered
as the base coordinate system.

The origin of the coordinate frame of link n is set to be at the point On.
In the case of intersecting axes, the origin is at the point of intersection
fo the joint axes.

. The z-axis for link n is the axis of rotation z, of joint n + 1.

The origin of the coordinate frame for the last link is set to be at
the hand of the manipulator. The z-axis for the last link is chosen to
lie in the direction from which the hand would approach an object.
The coordinate systems for a general 6-link manipulator is shown in
Figure 2.

The z-axis for link n is aligned with the direction from H,, to O,. In
the case of intersecting axes, the direction of z-axis is parallel to the



cross product z,_ 1 X z,.
6. The y-axis is determined according to the right-hand screw rule.

It is obvious that frame n — 1 can be transformed to frame n through the
following four steps:

e Rotate an angle 8, about the axis z,_;.

o Translate a distance d,, along the axis z,_;.
o Translate a distance a, along the axis z,.
e Rotate an angle «,, about the axis z,.

This sequence of operations may be expressed as

[ cosl, —sind, 0 0 1 0 0 a, 1 0 00
A = sin b, cosf, 0 O 010 O 0 cosa, —sina, 0
T 0 010 0 01 d, 0 sina, cosa, 0
i 0 0 01 000 1 0 0 01
cosf, —sind, cosa, sind,sina,, a,cosb,
B sin b, cosf,cosca,, —cosb,sina, a,sinb, (9)
0 sin oy, cos a, d, |’
L 0 0 0 1
According to (8), the inverse of A, is given by
cos @, sin 0, 0 —an,
VI sin d,, cos a,, cosf,cosa,, sina, —d,sina, (10)
n sind,sina,, —cosf,sinc, cosa, —d,cosa,
0 0 0 1

Now that A; describes the position and orientation of the first link with
respect to the base coordinate frame and that A, describes the position and
orientation of the second link with respect to the first, the position and
orientation of the second link in base coordinates are given by the matrix
product

Ty = A1 As. (11)



Continuing in this way, we obtain the kinematic equation

representing the position and orientation of the hand of a general k-link
manipulator. It is worth noting that the description of link coordinate framez
with respect to link coordinate frame 7, 7 < 1z, is given by

ITy = Ajyqr -+ A (13)

The inverse kinematics problem is, given T, determine the variables in
Ay, -+, Ay, so that the equation (12) is satisfied.

3 Algorithm

The basic idea of our algorithm is to adjust one joint at a time in an
attempt to minimize the distance between the goal and the the hand while
all other joints are kept rigid. In this section we explain how this idea can
be carried out effectively.

Suppose the joint to be adjusted is a revolute joint. Since all other joints
are kept rigid, the current situation may be simply represented as shown in
Figure 3. The origin O stands for the current revolute joint position at which
a coordinate frame has been assigned. The unit vector 7 is aligned with the
axis of rotation. The three-dimensional vectors @ and gmeasure, respectively,
the positions of the hand and the goal with respect to the current coordinate
frame. It is not difficult to see from the geometry that in order to minimize
the distance between the hand and the goal subject to the rotation about 7

we should align the projections of @ and b in the plane perpendicular to 7.
These projections can easily be calculated to be 7 x @ X 7 and 7 X b X 7,
respectively. Therefore, the joint should be revolved about 7 by an angle

Hzarccos(ﬁX&)Xﬁ)'(ﬁx_{:Xﬁ).
|7 x @ x 7t]|||7% x b x 7|

(14)

If all the vectors are written in terms of the current coordinate frame, say,
@ = [a1,as,a3]T and b = [by, by, b3]T. Since 7 = [0,0,1]7, the angle can easily



Figure 3: Adjustment of a revolute joint

be calculated to be

a1by + azb;
Va3 + a3\/b + b3

Suppose the joint to be adjusted is a prismatic joint. The situation is
represented as shown in Figure 4. The origin O stands for the current pris-
matic joint position at which a coordinate frame has been assigned. The unit
vector 77 points to the direction in which the joint moves. The vectors a and
gmeasure, respectively, the positions of the hand and the goal with respect
to the current coordinate frame. When the joint is being adjusted, the vector
d stays rigid and is shifted up or down along the 7 axis. It is not difficult
to see that in order to minimize the distance between the hand and the goal
subject to the movement along 7, the vector GH' should be perpendicular
to the vector HH'. Therefore, if the goal has coordinates (91, 92, 93]T and the

hand has coordinates [hi, kg, hs]T, then the joint should be moved in the 7
direction by a distance

6 = arccos

(15)

Give a general k-link manipulator, we shall refer to each set of k& opera-
tions mentioned above as a sweep. Depending upon the type of joints, in a



Figure 4: Adjustment of a prismatic joint

given sweep there is one rotation (15) or one translation (16) for each joint.
We emphasize that there are different ways to order the operations within a
sweep.

Is is evident now that we need an effective way to obtain the coordinates of
a given point relative to different coordinate systems. For a robot manipula-
tor, the homogeneous transformation (9) introduced in the preceding section
can facilitate this computation. In particular, we know forn =0,...,k — 1,
the vector O, H (refer to Figure 2) from joint n 4+ 1 to the hand in the
coordinate frame n is given by

OpH = App1 - Ag , (17)

— o o O

while forn = 1,...,k—1, the vector 0,G from joint n + 1 to the goal in the
coordinate frame n is given by

0nG = (A1 A,)"'0,G (18)
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where OyG is the position of the goal in the base coordinate frame. We note
that the inverse involved in (refeq:goal) can be obtained easily from (10).

For illustration purpose, we now consider a sweep with the monotone in-
creasing ordering. For convenience, we introduce notations €, = [0, 0,0, 1],
and the homogeneous coordinate § = [g1, g2, 93, 1]T of the goal with respect
to the base coordinate frame. When it is not ambiguous, we shall not distin-
guish a three-dimensional vector from its own homogeneous representations.
Let A,,n =1,...,k be the matrix representing the current configuration of
link n. Let B, =™ 'Ty, = A, --- Ag,n = 1,..., k be the matrix representing
the coordinate frame k with respect to coordinate frame n — 1. Then the
following summarizes one typical sweep of our algorithm:

For n=1,...,k, do:

a:= B,es
If n=1
then
b= g
else
bi=Cp1j
If revolute
then
compute angle 6, by (15)
If prismatic
then
compute displacement d,, by (16)
Update A,
If n =
then
C, = A7t
else
C,:=A'C,

11



link | 6,(degree) d, G ay,(degree)
1 20 0.1875 | 0.5000 80
2 20 0.3750 | 1.0000 15
3 20 0.2500 | 0.1250 120
4 30 0.8750 | 0.6250 75
5 10 0.5000 | 0.3125 100
6 16 0.1250 | 0.2500 60

Table 1: Linkage parameters for a 6-R manipulator

We expect our method to be globally convergent in general because at
each step of a sweep the distance between the hand and the goal is reduced
monotonously. Although in the literature pathological examples [15] have
been constructed to show that the alternating variables method may converge
to a closed loop, we have not observed any occurrence of cycling in our
numerical experiment with robot manipulators. In the case that the proposed
goal position lies outside the workspace of a robot manipulator, the iterates
of our method converge to a point that is nearest to the goal.

4 Numerical Experience

Our algorithm can be implemented easily. Since most computations are
matrix operations, the coding is particularly easier if a matrix-oriented lan-
guage, such as MATLAB, is used. In this section we report some typical
results from our numerical experience.

12



sweep z Y z €s

0 2.9366 | 1.0122 | 0.8039 | 2.7284e+00
-0.0370 | 0.6772 | 0.7877 | 2.6435e-01
0.2356 | 0.7149 | 0.7949 | 1.1187e-02
0.2237 | 0.7156 | 0.7955 | 7.3127e-04
0.2245 | 0.7155 | 0.7955 | 3.8316e-05
0.2244 | 0.7155 | 0.7955 | 2.0515e-06

CU kR W N~

Table 2: Iterates of the hand position

The linkage parameters given in Table 1 represents the initial configura-
tion of a 6-R manipulator with general geometry. By using our algorithm,
we obtain the iterates of the hand position as listed in Table 2. The last
column e, in Table 2 measures the distance from the goal to the hand after
the s —th sweep. As is seen, the convergence is quite fast. To further analyze
the convergence, we assume the relationship

|lestall = clles| [P (19)

for some constants ¢ and p. The graph of loge,,; versus log e, is shown in
Figure 5. It appears from Figure 5 that our method converges linearly. By
fitting the data in Table 2, it is interesting to find that p &~ 1.0319 whereas
c~ e 287 ~ 0.0687. We note it is the small value of ¢ that makes the linear
convergence fast.

By keeping the values of a,,d, and «, fixed, we investigate numerically
the values of error parameters ¢ and p corresponding to different initial values
of 8,. A partial result is listed in Talbe 3. These empirical results seem
unanimously in support that our method converges linearly with a fairly
small error constant. We have tested many other 6-link manipulators with
completely different linkage configurations. We obtain similar fast linear
convergence results.
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Figure 5:

The plot of log e,11 versus log e,

6, | -81.0406 | 20.0000 | 10.0000 | 81.4389 | -90.0000
6, | 137.0435 | 20.0000 | 20.0000 | 145.3491 0
05 55.3546 | 20.0000 | 30.0000 | 86.9705 | 90.0000
04 -3.6365 | 30.0000 | 40.0000 | 110.4291 | 83.0000
05 98.6737 | 10.0000 | 50.0000 | 49.4797 | -90.0000
B¢ | 166.5527 | 15.0000 | 60.0000 | 158.5217 0
P 1.1106 | 1.0319 | 0.9740 1.0245 1.0350
loge | -1.5759 | -2.6784 | -3.5219 | -1.9879 | -2.0944
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Table 3: Relations between error parameters and initial configurations




| goal | [0.2500,0.8000,1.0000]7 | [0.2622,0.8390,1.1235]7 |

links P log c P log c
4 10.9968 -0.6802 0.9981 -0.6443
5 1.0085 -0.2852 0.9960 -0.6752
6 1.0329 -1.9346 0.9990 -1.2614

Table 4: Relations between error parameters and numbers of links

In general we only need three degrees of freedom to locate a position.
Thus we suspect that the small error constants ¢ shown above for a 6-link
manipulator would be mainly due to the redundancy of the links needed to
locate the hand position. Numerical experience, however, seems to indicate
that there may be other factors involved. For example, by experimenting
with manipulators consisting of the first 4, 5 and 6 links configured in Ta-
ble 1 to reach the points [0.2500, 0.8000,1.0000]T or [0.2622,0.8390,1.1235]7T,
respectively, we obtain error parameters as listed in Table 4. It is quite a
surprise to see that a 5-link manipulator may not always converge faster than
a 4-link manipulator.

5 Conclusion Remarks

In the above we have discussed an alternating variables method to locate
the hand position of a robot manipulator. The method can be applied to any
manipulator of any number of joints with arbitrary geometry. The amount of
adjustment for each joint can be easily calculated. Thus far the orientation
of the hand has not been considered in the computation. Therefore, a 6-link
manipulator would be regarded as redundant. However, our method applied
to this kind of redundant manipulators seems to converge fairly fast because
of small error constants.
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We conclude this paper by pointing out more questions that remain to
be further investigated:

1. The study of generalizing the idea of this paper to include the orien-
tation of the hand should be an interesting research. The problem is
harder because the simple geometry as that in Figure 3 or Figure 4 no
longer exists.

2. The effect of orderings of a sweep on the convergence and the final con-
figuration of the manipulator should be another interesting study. We
think the interplay of the initial configuration and the ordering deter-
mines the final configuration. The theory is not completely understood
yet.

3. In practice, joints may have physical constraints. A prismatic joint,
for example, cannot be arbitrarily extendable. When joint constraints
exist, what can be said about the performance of our method?

4. It would be desirable that based on the information provided by a
sweep, a more substantial adjustment might be made at the next sweep.
The acceleration process, of course, would make our algorithm more
complicated.
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