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Abstract

Matrix completion with prescribed eigenvalues is a special kind of inverse eigenvalue
problems. Thus far, only a handful of specific cases concerning its existence and
construction have been studied in the literature. The general problem where the
prescribed entries are at arbitrary locations with arbitrary cardinalities proves to be
challenging both theoretically and computationally. This paper investigates some
continuation techniques by recasting the completion problem as an optimization
of the distance between the isospectral matrices with the prescribed eigenvalues
and the affine matrices with the prescribed entries. The approach not only offers
an avenue for solving the completion problem in its most general setting but also
makes it possible to seek a robust solution that is least sensitive to perturbation.
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1 Introduction

Let σ(X) denote the spectrum of a given matrix X. A general setting of an inverse
eigenvalue problem with prescribed entries (PEIEP) can be delineated as follows:
Given a certain subset L = {(iν , jν)}�

ν=1 of pairs of subscripts, 1 ≤ iν , jν ≤ n, a certain
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set of values {a1, . . . , a�} over a field F, and a set of n values {λ1, . . . , λn} over the
algebraically closed extension of F, find a matrix X = [xij] ∈ F

n×n such that

⎧⎨
⎩σ(X) = {λ1, . . . , λn},

xiνjν = aν , for ν = 1, . . . , �.
(1)

The prescribed entries and locations that X must comply with imposes a structural
constraint on the construction. Likewise, the prescribed eigenvalues imposes a spectral
constraint on X. Let |L| denote the cardinality � of the index set L in general. The
PEIEP is to determine (complete) the values of the remaining n2 − |L| positions that
do not belong to L so that X satisfies the spectral constraint.

Many classical results in matrix theory, including the well-known Schur-Horn theorem
[8], the Mirsky theorem [12], and the Sing-Thompson theorem [14,15], can be cast as
PEIEPs with specially selected index sets L [4]. The sufficient conditions comprehended
in these results are the harder part of the proof. Indeed, they constitute interesting yet
challenging inverse eigenvalue problems with prescribed diagonal elements or diagonal
blocks. PEIEPs also arise in practical applications. The design of a mass-spring system
or an IC circuit, for instance, gives rise to either an additive inverse eigenvalue problem
or a Jacobi inverse eigenvalue problem [6] that is a special PEIEP. Another example
is the derivation of higher order Gauss-Kronrod quadrature rules [2,6] based on given
lower order Gaussian quadratures. Except a few special cases, little is known about the
PEIEP either theoretically or computationally in its general setting.

By comparing the coefficients in the characteristic polynomial det(λI − X) with the
symmetric functions of the prescribed eigenvalues {λ1, . . . , λn}, we may consider that
solving a PEIEP is equivalent to solving a polynomial system. However, it is known, at
least in many of the classical cases [4], that the prescribed data often has to satisfy a
certain intrinsic inequalities without which the resulting polynomial system simply is
not solvable. Even if we assume that the polynomial is consistent, such a system would
be under-determined if |L| < n2 − n and should always have multiple solutions. We
are interested in numerical methods that not only can track down a solution but also
is able to approximate a solution that is least sensitive to perturbations.

The notion of robustness was first introduced by Kautsky et al in the context of pole
assignment problem [11], followed by many other studies including a recent article
[13] on the quadratic eigenstructure assignment problem. However, unlike the robust
eigenstructure assignment problems where entries in either the gain matrix or the
output matrix are totally free, the robust PEIEP imposes additional challenges in that
the solution matrix has a fixed structure specified by the prescribed entries. Finding a
solution for the PEIEP is already a hard problem by itself [4], not to mention finding
a robust solution.

We need to quantify more carefully the meaning of robustness. Because there are mul-
tiple solutions which could be in continuum form, it does not seem feasible to compare
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how one solution is close to another solution. Rather, the robustness of an approxi-
mate solution usually is measured by the sensitivity of its eigenvalues to perturbations.
Toward that end, we recall the well-known Bauer-Fike theorem that characterizes the
sensitivity of eigenvalues to perturbations.

Theorem 1 If µ is an eigenvalue of X + E ∈ C
n×n and V −1XV = diag{λ1, . . . , λn},

then
min
λ∈σX

|λ − µ| ≤ κp(V )‖E‖p, (2)

where ‖ · ‖p denotes any of the p-norms and κp(V ) denotes the condition number of V
with respect to the p-norm.

It is therefore intuitively true that a solution X1 to the PEIEP is relatively more robust
than another solution X2 if the corresponding matrices V1 and V2 of eigenvectors satisfy
the inequality κp(V1) < κp(V2). The quantity κp(V ) sometime serves only as a bulk
estimate that does not necessarily reflect the texture of the underlying eigenstructure.
A more refined way to assess the robustness is the notion of condition number with
respect to each individual eigenvalue introduced by Wilkinson [16]. Assuming that uT

and v are the left and right eigenvectors, respectively, corresponding to the eigenvalue
λ of a matrix X, then the condition number c(λ) of λ which measures the rate of
change of λ relative to change of X is given by the formula [16]

c(λ) =
‖uT‖2‖v‖2

|uTv| . (3)

Let V = [v1, . . . ,vn] denote the matrix of eigenvectors. If we assume that U = V −T

and UT XV = diag{λ1, . . . , λn}, then the sum

ν2(V ) =
n∑

i=1

‖uT
i ‖2

2‖vi‖2
2, (4)

can be considered as a total measure of robustness of X (and hence of V ). It is clear
that ν(V ) ≤ κF (V ). As an illustration, consider the PEIEP with n = 2, L = {(1, 2)},
a1 = 4, and σ(X) = {1, 2}. It is easy to check that the solution must appear like

X [a] =

⎡
⎢⎣ a 4

a(3−a)−2
4

3 − a

⎤
⎥⎦ ,

forming a one-parameter family with arbitrary a in R. The condition numbers of X [a]

as well as the corresponding matrix V [a] of eigenvectors are plotted in Figure 1. Each
X [a] is a solution to the PEIEP, but our ultimate goal should be to minimize this
condition number among all possible solutions. Such a quest in general would be too
expensive to be practical. Thus, strictly speaking, in what follows we seek only to lower
this condition number while constructing a solution to the PEIEP.

The best constructive result concerning the PEIEP is due to Hershkowitz [7], asserting
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Fig. 1. Condition numbers of PEIEP solutions when n = 2, L = {(1, 2)}, a1 = 4, and
σ(X [a]) = {1, 2}.

that, under some mild conditions, the PEIEP is solvable over the algebraically closed
extension of F if |L| ≤ 2n − 3. Thus far, however, rational algorithms using only
arithmetical operations have been developed only for |L| ≤ n [9]. In [4], we have
proposed a differential equation approach to tackle the PEIEP in its most general
setting. None of these techniques addresses the issue of robustness. Our contribution
in this paper is to modify the dynamical system to improve the robustness.

2 Solving the PEIEP

In this section we briefly review the differential equation approach proposed in [4].
We shall limit our discussion to solving the PEIEP over the field R of real numbers.
Assuming that the prescribed eigenvalues {λ1, . . . , λn} are closed under complex con-
jugation, let Λ ∈ R

n×n denote a matrix with eigenvalues {λ1, . . . , λn}. Note that Λ is
real-valued and is not limited to any specific structure. Let Gl(n) denote the general
group of n × n nonsingular matrices in R

n×n. The set

M(Λ) = {V ΛV −1|V ∈ Gl(n)} (5)

consists of an orbit of all matrices that are isospectral to Λ under the group action
of Gl(n). We mention in passing that real-valued matrices isospectral to eigenvalues
{λ1, . . . , λn} may consist of several disjoint orbits. It is entirely possible that a different
choice of Λ might end up with a distinct orbit. Given an index subset of locations
L = {(iν , jν)}�

ν=1 and the prescribed values a = {a1, . . . , a�}, the set

S(L, a) = {X = [xij] ∈ R
n×n|xiνjν = aν , ν = 1, . . . , �} (6)
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contains all matrices with the prescribed entries at the desired locations. One idea of
solving the PEIEP is to find the intersection of the two geometric entities M(Λ) and
S(L, a).

There are several ways to find the intersection of geometric entities. Alternating pro-
jection or Newton-like iterative methods, for example, have been used successfully in
other types of inverse eigenvalue problems [3]. We believe that a similar scheme can be
devised for PEIEPs. However, we are interested in more than just finding a solution.
For the sake of finding a robust solution, we find the differential equation approach
proposed in [4] is particularly appealing.

The original idea in [4] was to minimize, for each given X ∈ M(Λ), the distance
between X and S(L, a). That is, we want to minimize the function defined by

f(X) =
1

2
〈X − P (X), X − P (X)〉, (7)

where P (X) denotes the orthogonal projection of matrix X onto the affine subspace
S(L, a) with respect to the Frobenius inner product

〈A,B〉 = trace(ABT ) =
∑
i,j

aijbij

for A = [aij], B = [bij] ∈ R
n×n. It is more convenient to rewrite this minimization as

an unconstrained optimization problem in terms of the parameter V in the open set
Gl(n). Suppose that X = V ΛV −1. The objective function f(X) is equivalent to

g(V ) =
1

2
〈V ΛV −1 − P (V ΛV −1), V ΛV −1 − P (V ΛV −1)〉. (8)

It can be shown, upon computing the Fréchet derivative of g and applying the Rietz
representation theorem, that the gradient ∇g of the objective function g is given by
the expression

∇g(V ) =
(
V ΛV −1−P (V ΛV −1)

)
V −T Λ−(V ΛV −1)T

(
V ΛV −1−P (V ΛV −1)

)
V −T . (9)

More concisely, the equation

∇g(V )V T =
[
X − P (X), XT

]
, (10)

where [M,N ] = MN −NM denotes the Lie bracket commutator, holds. It follows that
the vector field

dV

dt
= k(V ΛV −1)V −T , (11)

where

k(X) = [XT , X − P (X)], (12)
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defines a flow in the open set Gl(n) that moves in the steepest descent direction to
reduce the value of g(V ). In the meantime, the vector field

dX

dt
= [hV (X), X] (13)

with

hV (X) = k(X)V −T V −1 (14)

defines the steepest descent flow on the manifold M(Λ) for f(X). The system (13) is
not particularly important in practice. All it matters is that the relationship X(t) =
V (t)ΛV (t)−1 translates (11) and (13) back and forth.

The gradient flow framework outlined above is general enough that it can be used
to explore all types of PEIEPs regardless how the locations or cardinalities of the
prescribed entries are given. For different S(L, a), only the projection P (X) needs
modification. In the event that the PEIEP is not solvable, the approach will find a
matrix on M(Λ) that is nearest to S(L, a) in the sense of least squares.

A special case of the PEIEP is worth additional attention. If in the delineation of a
PEIEP the matrix X is also required to be symmetric, then it suffices to consider the
orbit defined by the group O(n) of orthogonal matrices instead of by Gl(n). In such
case, the differential equations can be much simplified. For example, (11) becomes

dQ

dt
= k(QΛQT )Q (15)

with

k(X) = [P (X), X],

whereas (13) is reduced to

dX

dt
= [X, [X,P (X)]]. (16)

The system (16) is known as the Brockett double bracket equation which, because of its
many interesting properties, has attracted considerable attention in recent years [1,5].
All matrices from O(n) are equally (and perfectly) conditioned. Thus, for symmetric
PEIEP, there is no issue of robustness involved.

Recall that Λ is a constant real matrix with prescribed eigenvalues {λ1, . . . , λn}. Thus
both dynamical systems (11) and (15) are autonomous. To maintain that the flow
Q(t) defined by (15) stays on the manifold O(n), special numerical schemes known
as geometric integrators or Lie group methods [10] should be used for integration. In
contrast, since the parameter V (t) defined by (11) generally has no additional structure,
the system (11) can be integrated by any available ODE solver starting with initial
value V (0) = I. This naturally constitutes a reasonable numerical method for solving
the general PEIEP.

6



3 Controlling the Robustness

We would like to not only integrate (11) to its equilibrium, but also to somehow control
the condition number of V (t). Obviously, as it stands now, κp(V (t)) is inherited once
V (t) is determined by (11) and there is not much we can do. To control the robustness,
we must provide a mechanism to redirect the course of integration.

One possible approach is to build in the condition number of V in the objective function
to be minimized. That is, instead of (8), we can consider one of the new objective
functions,

ξ(V ) = g(V ) +
α

2
〈V, V 〉〈V −1, V −1〉, (17)

or

ζ(V ) = g(V ) +
β

2
ν2(V ). (18)

The new terms added to g(V ) stand for a penalty on either κ2
F (V ) or ν2(V ). The

multipliers α and β are positive numbers selected to reflect how much weight we want
to emphasize the penalty. It remains to calculate the gradient of ξ(V ) or ζ(V ), and
everything described above about gradient flows should follow through. Toward that,
we make claim of the following two dynamical systems after some manipulation of
calculus.

Theorem 2 If ξ(V ) is used as the objective function, then the steepest descent flow in
the same spirit of the system (11) is defined by the modified equation

dV

dt
=

(
k(V ΛV −1) − α

(
〈V −1, V −1〉V V T − 〈V, V 〉V −T V −1

))
V −T . (19)

Similarly, if ζ(V ) is used, then the steepest descent flow becomes

dV

dt
=

(
k(V ΛV −1) − β

(
V Θ(V −T )V T − V −T Θ(V )V −1

))
V −T , (20)

where
Θ(V ) = diag{‖v1‖2

2, . . . ,vn‖2
2}, (21)

if V = [v1, . . . ,vn].

We find from numerical experiments that the weights α and β are fairly difficult to
manage. Too little penalty does not improve the condition number significantly, while
too much penalty compromises the real purpose of finding an exact or nearly exact
solution to the PEIEP and a least squares solution is found instead. It seems from
our numerical experience that only a small fraction of the condition number in the
dynamical system will suffice to tame the behavior. In some cases, we see that α or β
should be in the range of 10−10 to avoid an inadvertent least squares solution. We think
that a more sophisticated scheme in selecting α and β adaptively, such as those used in
the interior point methods, might help to improve the situation, but that investigation
will have to be reported in a separate paper.
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On the other hand, observe that the initial value V (0) = I is perfectly conditioned.
By continuity, the conditioning of V (t) will remains reasonable well for at least small
values of t. As the integration continues, it is possible that κF (V (t)) (or ν(V (t))) will
grow as V (t) converges to singularity or becomes ill-conditioned. Is it possible, when
this occurs, to restart the integration? We exploit this idea more carefully in the sequel.

First of all, it is important to note that all three vector fields (11), (19) and (20) are
in the same format that

dV

dt
= ϕ(V ; Λ)V −T , (22)

but with different definitions of ϕ(V ; Λ). Let t0, t1, . . . be a sequence of positive numbers
whose values will be defined later. Let V (t) denote the solution to any one of the three
differential equations with initial value V (0) = I. For each i = 0, 1, . . ., let Vi(τ) denote
the solution to the initial value problem

dVi

dτ
= ϕ(Vi; Xi)V

−T
i , Vi(0) = I, τ ∈ [0, ti], (23)

where, starting with X0 = Λ, we recursively define

Xi+1 = Vi(ti)XiV
−1
i (ti). (24)

The following theorem concerning the factorization of V (t) is a consequence of the fact
that (22) is an autonomous differential system. A proof for the case that ϕ(V ; Λ) =
k((V ΛV −1) can be found in [4], but the generalization to other types of ϕ(V ; Λ) is not
difficult.

Theorem 3 At each point t = s +
∑i−1

j=0 tj in the interval of existence for the initial
value problem (22) with V (0) = I, the solution V (t) can be factorized as

V (t) = Vi(s)Vi−1(ti−1) · · ·V0(t0), (25)

where each Vj(τ) is the solution of (23).

Other than the obvious fact that the value of ti for each i = 0, 1 . . . must be within
the maximal interval of existence for each system (23), the choice of ti can be quite
flexible. One strategy is to continue integrating (23) within that interval until κF (Vi(τ))
reaches some predesignated threshold. The value of τ in reaching that threshold is the
maximal ti we can define. We then update Xi+1 according to (24) and switch to solve
a new initial value problem (23). We call this process a restart. Restart is expensive
because we have to update Xi+1. In the extreme (and not recommended) case, we can
restart at every single integration step. By restarting, however, we effectively improve
the computational stability because the condition number of Vi(τ) is well kept under
some upper bound.

Thus far, we have not seen any hope of improving κp(V (t)). The theory implies that
the solution V (t) from the continuation scheme (22) and the product (25) from the
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restart scheme (23) are identical. However, we now make an interesting and somewhat
surprising remark. We have observed time and time again in our numerical experiments
that the computed results by these two schemes behave very differently. More candidly,
they converge to two entirely different limit points. The reason for this happening is not
completely understood, perhaps partially due to the “curse” that the PEIEP is ill-posed
in two regards: that the problem has multiple (and often continuum) solutions and
that a small perturbation of the vector field in (23) by the restart changes the course of
integration which moves the flow to a dramatically different limit point. Computations
for ill-posed problems such as this generally would have been disastrous, but notice
that in our flow approach we have built in the descent property by which the objective
functions are allowed only to go downhill. For instance, if (11) is used, then the distance
between M(Xi) and S(L, a) can only be reduced. That is, it is always true that

‖Xi+1 − P (Xi+1)‖F ≤ ‖Vi(t)XiVi(t)
−1 − P (Vi(t)XiVi(t)

−1)‖F ≤ ‖Xi − P (Xi)‖F

for all t ∈ [0, ti). Changing course of integration does not affect this descent property.
Rather, it offers an opportunity to turn the curse of ill-posedness into a possibly blessing
by helping to improve the stability and conditioning. We shall use numerical examples
to demonstrate our points.

By now we have several ways to tackle the robust PEIEPs numerically. We categorize
them into two classes of methods.

Algorithm 1 Simply integrate any of the three differential equations (11), (19), or
(20) by any available ODE integrator, starting with V (0) = I and X0 = Λ, until
convergence.

We make two comments on the application of Method 1. First, assuming that flow
defined by the system (11) does converge to a true solution of the PEIEP, we find
that such a solution usually enjoys some degree of robustness already. Nonetheless,
modifying the initial value X0 by choosing different Λ can make a big difference. Not
only that different equilibrium points may emerge, but also that they may vary greatly
in robustness. For instance, if the given spectrum {λ1, . . . , λn} is all real, then we find
that starting with Λ = Λ0 = diag{λ1, . . . , λn} generally is less desirable than starting
with Λ = Λ0 + T0 where T0 is an arbitrary strictly upper triangular matrix. The
triangular starting value usually converges faster to more robust equilibrium point for
the system (11) than the diagonal starting value. Again, we do not have a complete
comprehension of the mathematical reason that leads to this observation. One possible
explanation is that the Schur triangular form (or the real-valued Schur block triangular
form with 2 × 2 diagonal blocks for complex conjugate eigenvalues) is reachable via
orthogonal similarity transformations. Recall that the isospectral orbits by O(n) group
action are closed and bounded. It seems intuitively true that such a point should be
easier and more “stable” to locate than, say, the Jordan canonical form (which under
the above assumption is precisely the diagonal matrix.) Since our integration process
is in a sense a reversal of the reduction procedure used to find canonical forms, that
is, we want to start with some points in the “reduced form” and travel to some other

9



points in the “full form” while in the meantime satisfying the structural constraints,
starting with isospectral triangular matrices does seem to work better than starting
with the diagonal matrix of eigenvalues.

Secondly, in the event that we want to further improve the robustness, we may employ
the dynamical systems (19) or (20). In these cases, we have to choose the weight α or
β appropriately. Too much emphasis on the penalty term translates into too much re-
striction on the condition number which, in turn, may jeopardize the original intention
of finding an approximate solution to PEIEP and result in a least squares solution in-
stead. Employing (19) or (20) will improve the condition number in general, but might
slow down the convergence.

Algorithm 2 Integrate the system (23) using any of the three aforementioned dynam-
ical systems until the condition number of V (t) violates a given threshold. By then,
automatically applies a restart.

This hybrid method has the ability to cap the condition number of the factors of V (t)
under a given threshold. The product of the condition numbers of these factors provides
an upper bound on the condition number of V (t), so this method does not control
the robustness directly. However, we shall demonstrate by examples that this restart
scheme has quite an impressive impact on the condition number after all. Additionally,
the solution flow Vi(t) in each segment [0, ti) being well conditioned (otherwise, a restart
will be activated), it also improves the computational stability. Again, we realize that if
the threshold for restart is set too low, then there will be frequent (expensive) restarts
and more factors. The overall performance may be degraded due to this frequent restart.

4 Numerical Examples

In this section we use some numerical examples to demonstrate how our proposed meth-
ods perform. At the moment, our primary concern is not so much on the efficiency of
these methods, though such a task could be greatly improved with careful program-
ming. Rather, we focus on the behavior of the resulting flows from these differential
systems. In what follows, we report the dynamics of the residual

R(t) = ||X(t) − P (X(t))||F

that we would like to minimize as well as the corresponding condition numbers. For
convenience, all numerical results are rounded to the fourth decimal number.

Example 1. We begin with the 2 × 2 example introduced earlier since we know all
the solutions in closed form. Note that no solution can be symmetric in this case. By
direct calculation, the best conditioned PEIEP solution is obtained when am = 1.5 at
which κF (X [am]) = 10.2520. It turns out that both κF (V [am]) = 8.1250 and ν2(V [am]) =
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33.0078 attain their minimum value also at the same point am. Let Λ0 = diag{1, 2}.
Note that X [am] = V [am]Λ0

(
V [am]

)−1
.

Starting with X0 = Λ0, we integrate all three flows using ODE integrators available
from MATLAB. Note that when α = β = 0, both flows (19) and (20) are identical to
(11). Numerical results are depicted in the top row of Figure 2. The flow associated
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Fig. 2. Example 1: n = 2, |L| = 1, α = β = 0, 1 for X0 = Λ and X0 = Λ + T0

with (11) converges a true solution X [−0.3125] with reasonable condition numbers. The
choices of either α = 1 or β = 1 clearly improve the respective condition numbers as we
have expected. However, the penalty apparently are too severe that the corresponding
flows converge to least squares solutions.

With the same parameters α and β, but with X0 = Λ0 + T0, say,

X0 =

[
1 1.2533

0 2

]
,

the solution of (11) converges to a more robust solution X [0.8994]. The condition number
for the case α = β = 0 in the bottom row of Figure 2 is smaller than that in the top
row when a diagonal starting point is used. While the solution of (19) still converges
to a least squares solution, it is nice to see that the solution of (20) now finds a PEIEP
solution X [1.1321] whereas |κF (X [1.1321]) − κF (X [am ])| ≈ 0.1338.

Generally we do not have the luxury of knowing the set of completed matrices with
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prescribed eigenvalues as in this example. Completing one single matrix with prescribed
eigenvalues is indeed a hard problem by itself, let alone finding the most robust solution.
Thus it should not be misunderstood that our methods can search among all values of a
to locate X [am]. Let V [50] be the matrix of eigenvectors of X [50] which is ill-conditioned.
Suppose we start with a slightly perturbed isospectral matrix of X [50], say, X0 =
(V [50] + 10−3R)Λ0(V

[50] + 10−3R)−1 where

R =

[
−1.1465 1.1892

1.1909 −0.0376

]

is a random matrix. The three flows (11), (19) and (20) converge to X [48.1327], X [48.1284]

and X [48.1202], respectively. Though condition numbers are improved by about 15%,
neither is anywhere near the optimal X [am].

Example 2. The problem where the prescribed entries are

AL =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 5.7980

0 0 2.2594 4.3290 0

0 5.2982 7.6036 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and the prescribed eigenvalues are {1, 2, 3, 4, 5} has been considered in [4]. With the
diagonal starting value X0 = Λ0 = diag{1, . . . , 5}, it was demonstrated that the
flow associated with (11) converges to an ill-conditioned limit point X∗(Λ0) at which
κF (X∗(Λ0)) ≈ 1.0165 × 106. It was also demonstrated that using the restart strategy
(Method 2) where the threshold of allowable condition number was set at, say, 40, only
one restart was needed to reach a better limit point X∗

R(Λ0) at which κF (X∗
R(Λ0)) ≈

528, representing a significant improvement over κF (X∗(Λ0)).

Suppose we now apply Method 1 by using (19) and (20), respectively, and “continually”
vary the weights α and β in the range [0, 1]. We notice, as are depicted in Figure 3, that
both condition numbers κF (V ) and ν2(V ) are depressed as the values of the weights
are increased. The payoff, however, is that the residuals R(t) drops at a much slower
rate. In fact, it seems that a true solution is attained only if puny penalties, that is
α, β ∈ [10−14, 10−12], are used, but then the resulting condition numbers remain high.
Furthermore, it appears that if the penalty weights are greater than 10−4, we can only
retain a least squares solution.

Let X0 be an arbitrary isospectral upper triangular matrix, say,

X0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2.3406 −11.8589 −0.4123 1.2864

0 2 −10.5590 −11.2834 6.5647

0 0 3 −13.4828 −11.6782

0 0 0 4 −4.6061

0 0 0 0 5

⎤
⎥⎥⎥⎥⎥⎥⎦
.

12



0 5 10
10

−8

10
−6

10
−4

10
−2

10
0

10
2

R(
t)

Flow (19)

t
0 5 10

10
0

10
1

10
2

10
3

10
4

10
5

κ
F
(V)

t
0 5 10

10
0

10
2

10
4

10
6

10
8

ν2(V)

t

α=1

α=1

α=1e−2 

α=1e−4 

α=1e−8 

α=0

α=1e−12 

α=1e−14 

α=0
α=1e−14 

α=1e−14 
α=0

α=1e−12 

α=1e−12 

α=1e−8 
α=1e−8 

α=1e−4 
α=1e−4 

α=1e−2 α=1e−2 

α=1

0 5 10
10

−8

10
−6

10
−4

10
−2

10
0

10
2

R(
t)

Flow (20)

t
0 5 10

10
0

10
1

10
2

10
3

10
4

10
5

κ
F
(V)

t
0 5 10

10
0

10
2

10
4

10
6

10
8

ν2(V)

t

 β=1

 β=1e−2

 β=1e−4

 β=1e−8

 β=1e−12

 β=1e−14

 β=0

 β=1e−8

 β=1e−4

 β=1e−2

 β=1

 β=1e−8

 β=1e−4

 β=1e−2

 β=1

 β=0

 β=0  β=1e−14

 β=1e−14  β=1e−12

 β=1e−12

Fig. 3. n = 5, |L| = n, X0 = Λ, α = β = 0, 10−14, 10−12, 10−8, 10−4, 10−2, 1.

We observe that the flow (11) starting with Λ0 + T0 usually converges faster to a more
robust equilibrium than starting with Λ0. For diminutive weights, say, α, β ∈ [0, 10−8],
the flows associated with (19) and (20) behaves almost the same as that associated
with(11). Again, the rule seems true that increasing penalty weights decreases both
κF (V ) and ν2(v), slows down the convergence, and eventually leads to a least squares
solution, as is observed in Figure 4.

However, something remarkably different happens. We notice that with much larger
penalty weights, say, α, β ≥ 1, an optimal robust solution is tracked down quickly by
both flows (19) and (20). We also notice that the flow (20) usually converges slower
than (19). A comparison of convergence’s histories for α = β = 10 is given in Figure 4.

The fact that the flows converge to an optimal robust solution deserves further atten-
tion. Recall that κF (V ) ≥ ν(V ) ≥ n in general and equality is obtained only when V
is orthogonal. We check the limit point V ∗ of (19) with α = 1 and find that

V ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.6182 0.7519 −0.0585 −0.2161 0.0484

−0.5927 0.2765 −0.4564 −0.5585 0.2279

−0.2980 0.2312 0.8816 −0.2833 0.0155

−0.3321 0.4599 −0.0034 0.7347 0.3720

0.2597 −0.3052 −0.1051 −0.1469 0.8984

⎤
⎥⎥⎥⎥⎥⎥⎦

at nearly t∗ ≈ 6.8 (as shown in Figure 4) is indeed nearly orthogonal. It is interesting
to note from extensive numerical experiments that with a generic choice of T0 and
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Fig. 4. n = 5, |L| = n, X0 = Λ + T0, α = β = 0, 10−8, 10−6, 10−4, 10−2, 1, 10.

large enough penalty weights, we almost always have κF (V ) converging to n = 5.
The rate of convergence depends on T0. If V ∗ is orthogonal, then X∗ = V ∗X0V

∗T is
the Schur decomposition of X∗. This observation justifies numerically what we have
claimed earlier that our continuation approach, starting from X0 to X∗, is kind of the
reversal of the usual QR algorithm. Starting from an upper triangular X0 is a less
stringent requirement than starting from the diagonal Λ0 while we are looking for a
transformation matrix V with nearly optimal condition numbers. The latter, if can be
done, means that an additional structural constraint has been inadvertently imposed,
that is, we are looking for a nearly “normal” PEIEP solution whose existence is not a
priori guaranteed.

We summarize the observations above for this example in Table 1.

Table 1
Summary of Numerical Experiment with Example 2.

Flow X0 = Λ0, diagonal Figure X0 = Λ0 + T0, upper triangular Figure

(11) ill-cond. w/o restart 3 κF (V ) → c0, ν2(V ) → m > 5 4

(19), α ∈ [0, 10−8) conv., high cond. 3top similar to (11) 4top

(20), β ∈ [0, 10−8) conv., high cond. 3bottom similar to (11) 4bottom

(19), α ∈ [10−8, 1) LS solution 3top slow conv., κF (V ) → c1 ≈ 5, ν2(V ) → 5 4top

(20), β ∈ [10−8, 1) LS solution 3bottom slow conv., κF (V ) → c2 < c0, ν2(V ) → 5 4bottom

(19), α ≥ 1 LS solution 3top κF (V ) → c1 ≈ 5, ν2(V ) → 5 4top

(20), β ≥ 1 LS solution 3bottom κF (V ) → c2 < c0, ν2(V ) → 5 4bottom
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Fig. 5. Example 3: n = 6, |L| = 2n, X0 = Λ+T0, α = β = 0, 10−8, 10−6, 10−4, 10−2, 10−1, 1, 10.

Example 3. In this example, we examine the convergence behavior when |L| = 2n.
This is a situation that goes beyond existing theory, so it is particularly interesting to
see that our gradient flows can still find a solution. To fix the idea, we consider the
case n = 6, with prescribed eigenvalues {1, . . . , 6}, and want to complete the matrix:

AL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 −2.3400 0 −2.9589

0.4031 7.3096 0 0 6.7709 0

0 0 0 −14.7513 −3.7747 5.7786

0 0 0 0 0 5.6890

0 0 −2.5565 8.9564 0 1.1844

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We experiment with both the diagonal starting value Λ0 = diag{1, . . . , 6} and a (ran-
domly generated) triangular starting matrix, say,

X0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2.3127 −10.2326 −6.8039 −8.5953 2.1713

0 2 9.3754 −17.2577 −7.5225 −3.7346

0 0 3 8.1320 12.2962 −8.3203

0 0 0 4 11.5075 2.8687

0 0 0 0 5 −18.1889

0 0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The numerical results are summarized in Table 2. We note in particular that even if
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Table 2
Summary of Numerical Experiment with Example 3.

Flow X0 = Λ0, diagonal X0 = Λ0 + T0, upper triangular Figure

(11) mildly ill-cond. w/o restart κF (V ) → c0, ν2(V ) → m > 6 5

(19), α ∈ [0, 10−8) conv., high cond. similar to (11) 5top

(20), β ∈ [0, 10−8) conv., high cond. similar to (11) 5bottom

(19), α ∈ [10−8, 10−2) LS solution slow conv., κF (V ) → c1 ≈ 6, ν2(V ) → p ≤ m 5top

(20), β ∈ [10−8, 10−2) LS solution slow conv., κF (V ) → c2 < c0, ν2(V ) → p ≤ m 5bottom

(19), α ≥ 10−2 LS solution LS solution, κF (V ) → c1 ≈ 6, ν2(V ) → 6 5top

(20), β ≥ 10−2 LS solution κF (V ) → c2 < c0, ν2(V ) → 6 5bottom

a larger weight is used, the flow (19) tends to a least squares solution while the flow
(20) always attain a solution with minimum ν2(V ∗). We observe that the second flow
(20) seems to converge more consistently with respect to different choices of triangular
initial values. The convergence histories are shown in Figure 5.

5 Conclusion

Matrix completion with prescribed spectrum has presented a classical challenge in the
literature. Most of the attention has been centering around cases where the prescribed
entries at special locations. Beyond the Hershkowitz theorem that, with |L| = 2n − 3,
appears to be the most general result at present, little is known about the PEIEP ei-
ther theoretically or numerically. In this paper, we propose using dynamical systems to
track trajectories leading to a completed matrix numerically. The framework is appli-
cable even under the situation when no existence theory is available at all. Extensive
numerical experiments seem to suggest that our idea of gradient flow approach can
serve as a reasonable means to tackle the most general PEIEPs where the prescribed
entries are at arbitrary locations with arbitrary cardinalities. Work to be done includes
more efficient integration schemes to track down the asymptotically stable equilibrium
points of the dynamical systems and further mathematical analysis of these equilibrium
points to see whether an existence theory of the underlying PEIEP can be established.
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