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1. Introduction. The notion of saddle point and the demand for its computationarise from a wide range
of disciplines. To demonstrate its importance, we mention two critical applications in practice, namely, the
method of Lagrange multipliers for constrained optimization and the dynamical reaction problem.

First, consider the constrained convex programming problem

P :





minimize θ(x)
subject to gi(x) ≤ 0; i = 1, 2, . . . , s

gi(x) = 0; i = s+ 1, . . . ,m,

where the functionsθ, g1, . . . , gs are convex functions mapping fromRn to R, andgs+1, . . . , gm are affine
mappings fromRn toR. Assume that all functions are sufficiently smooth. The LagrangianL for this problem
is the function

L(x,y) = θ(x) + 〈y,g(x)〉, (1.1)

where entries ofy ∈ R
m are the Lagrange multipliers and it is always the case thaty1, . . . , ys are nonnegative.

DenoteK = Rs
+ × Rm−s. A pair (x,y) ∈ Rn ×K is said to be a saddle point forL if the inequalities

L(x,y) ≤ L(x,y) ≤ L(x,y) (1.2)

hold for all (x,y) in a neighborhood of(x,y) in Rn ×K. In other words,x minimizes the functionL(x,y)
amongx andy maximizesL(x,y) amongy. The following theorem serves as the basic principle that relates
the saddle point of the LagrangianL to the solution of the primal problemP [7, 26].

THEOREM 1.1. (Saddle Point Theorem). Letx ∈ Rn. If there existsy ∈ K such that(x,y) is a saddle
point for the LagrangianL, thenx solvesP . Conversely, ifx is a solution toP at which the Slater’s constraint
qualification is satisfied, then there is ay ∈ K such that(x,y) is a saddle point forL.

We further know of the following maximin theorem which allows us to interchange the order whereinf
andsup are taken and serves as a basis for the convex duality theory.

THEOREM 1.2. (Maximin Theorem) If a saddle point forL does exist overRn ×K, then

sup
y∈K

inf
x∈Rn

L(x,y) = inf
x∈Rn

sup
y∈K

L(x,y) (1.3)

Many optimization tactics have been developed in the literature for solving the optimization problemP ,
which will not be elaborated in this paper. We simply want to point out the mathematical connection between
a solution to the primal problemP and a saddle point to the LagrangianL.

Second, in the reaction dynamics of complex systems, rare but perceptible transition events between long
lived states are of fundamental importance. The presence oftransition events, the knowledge of their location
in the configuration space, and frequency of these incidentsprovide critical information for important systems
such as phase transitions in nucleation, conformational changes in macromolecules, and transition states in
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chemical reactions [19]. We illustrate this point by considering the potential energy surface as an example.
Suppose thatU(x) denotes a potential function in a chemical system, wherex ∈ R3n represents the positions
of n atoms in the space. A specific configuration of the atoms corresponds uniquely to a specific energy level.
In this way, the potential is parameterized in terms of the positions of the nuclei. Stable arrangements of the
atoms, observable in the forms of reactants, products, or intermediates in the system, are those configurations
which minimize the potentialU(x). These metastable states usually can hold for an extended period of time.
However, sudden jumps from one state to another state do happen. Suppose that the potential function forms a
smooth landscape. Then its minima usually are surrounded byenergy barriers. Transition states correspond to
saddle points on this surface. Knowing when, where, how these transitions happen is critically important.

For dynamical reaction problems, it is generally assumed that the transition states are ofindex one, that is,
the corresponding Hessian at such a stationary point ofU(x) has one and only one negative eigenvalue. Most
sophisticated numerical techniques developed for finding the transition pathways crossing these transition states
are based on this assumption [8, 11, 13, 27, 30, 31]. In contrast, our dynamical system presented in this paper
can handle higher-index problems. Finding saddle points having high but unknown index is a much harder
problem.

Although the two scenarios described above are all about finding the saddle point, there is one fundamen-
tal difference. In the Lagrangian formulation, it is clear that the space variablex is to be minimized while
the Lagrange multipliersy are to be maximized at the saddle point. The variables(x,y) are unequivocally
separated into two groups each of which has a definitive dimensionality (indexn). This kind of specifically
oriented, high-indexed problems is the ideal target of our maximin flow approach. In the dynamical reaction
setting, however, we generally do not know which variable orcollection of variables attributes to the direction
of the corresponding eigenvector, even under the assumption that there is one and only one negative eigenvalue
of the Hessian at the saddle point. The Müller-Brown potential energy surface, for instance, has two saddle
points of index one, but they are of different orientations.Still, our flow can manifest some useful information.

2. Maximin flows. To fix our idea, we shall concentrate on the problem

max
y∈Rm

min
x∈Rn

f(x,y), (2.1)

wheref : Rn × Rm → R is sufficiently smooth. Starting from any initial point, we define a flow(x(t),y(t))
via the autonomous differential system, referred to as a maximin flow or a saddle-point flow [2, 5],

{
dx
dt

= −∂f
∂x

,

dy
dt

= ∂f
∂y

,
(2.2)

where ∂
∂x

and ∂
∂y

represent the parts of the gradient with respect to the variable x andy, respectively. We
mention in passing that if the variables are limited to some feasible set, such as that in Problem (1.1), then a
modification by projecting the vector field (2.2) onto the corresponding tangent subspace should be applied.

We quickly point out that the maximin flow (2.2) is function dependent. It is possible that a different
description of the very same saddle point will end up with a very different dynamics. For instance, the surfaces
in R3 corresponding to the objective functionsf1(x, y) = x2− y2 andf2(x, y) = 2xy are essentially the same
hyperbolic parabolas by a rotation ofπ

4 . However, the integral curves associated withf1 andf2 are semi-arrays
pointing to the origin and concentric circles around the origin, respectively. For the later, it should be quite
clear that neither ordermaxy minx minx maxy makes any difference at all.

Our motivation for proposing the dynamical system (2.2) is quite straightforward. Since the objective in
(2.1) is a maximin problem, we wish to movex in such a way to decrease the value off , wheny is held con-
stant; and movey to increase the value off , whenx is kept invariant. In a sense, the differential equation is an
infinitesimal version of the classical alternative direction iteration, except that the pair(x,y) changes simulta-
neously and continuously. The combined effect, however, does not always result in the desirable monotonicity
in either variable. Because

df(x(t),y(t))

dt
=

∥∥∥∥
∂f

∂y

∥∥∥∥
2

−
∥∥∥∥
∂f

∂x

∥∥∥∥
2

2



along a trajectory of (2.2), the objective values off can either increase or decrease, depending on the sign of the
difference between magnitudes of partial gradients along the trajectory which, in turn, depends on the starting
point. Though the flow (2.2) may not conclusively vary the objective values in the way we prefer to see, it is
still valid to say that the movement ofx does not causef to increase andy does not causef to decrease.

One possible modification of (2.2) is to weight the vector fields ofx andy differently, i.e.,
{

dx
dt

= −α(t)∂f
∂x

,

dy
dt

= β(t) ∂f
∂y

,
(2.3)

whereα(t) andβ(t) are positive scalars varying in time to provide a sense of controlled simulated annealing.
For instance, by injecting a sufficiently large excitement fromβ(t), we may be able to pull the flow(x(t),y(t))
out of a basin surrounding a local minimizer off and let it go to somewhere else. Indeed, we may even allow
β(t) to be negative temporarily to introduce a descent flow and so on. In this way, the weight functionsα(t)
andβ(t) can be used as time-varying handles to steel the variation off(x(t),y(t)). The real challenge is to
derive an effective control strategy so that the weighted flow moves in the way we want it to be. We shall focus
on the basic flow in this paper.

3. Relation to other flows. Before we further study properties of the maximin flow, it might be instructive
to compare (2.2) with a few other dynamical systems of similar form.

3.1. Gradient flows. Gradient adaption is ubiquitous in nature and has been employed over a wide range
of applications. Simply put, a dynamical system in the form

dξ

dt
= −∇f(ξ), ξ(0) = ξ0, (3.1)

wheref is a second-order differentiable functional of the variable ξ over an appropriately defined Hilbert
space, is referred to as a (negative) gradient flow. Thermal conduction along the negative temperature gradient
of the isothermal surfaces and osmosis down the concentration gradient across the cell membrane typify the
gradient adaption in nature. A surprisingly large number ofwell-known diffusive partial differential equations
have the intrinsic structure of a gradient flow with respect to some properly chosen energies and dissipative
mechanisms [28]. Mathematical models for the phase separation of materials in iron alloys, the segmentation
or edge detection in image processing or computer vision, the surface evolution in differential geometry, the
flow of an ideal gas in porous medium, and the ground state in quantum systems all employ this notion of
gradient flow [16]. Numerous other systems that evolve in time can also be interpreted as gradient dynamics,
including applications in the game theory, financial markets, and mechanism design [4, 18, 22].

Assuming that the gradient flow takes place in a Euclidian space, we rewriteξ = (x,y) ∈ R
n × R

m and
split the gradient flow (3.1) as the system

{
dx
dt

= −∂f
∂x

,

dy
dt

= − ∂f
∂y

.
(3.2)

for comparison with the maximin flow (2.2). The one sign difference makes a significant difference in several
ways. The objective value off along a maximin trajectory generally does not exhibit any monotonicity, but
along a gradient trajectory the objective functionf(ξ(t)) is guaranteed to decrease to a (local) minimum. The
maximin flow(x(t),y(t)) may wander off, if the index is incorrectly assumed or if the orientation is wrongly
assigned. For gradient flow, the set of accumulation points

ω(ξ(0)) := {ξ∗ ∈ R
n × R

m | ξ(tν) → ξ∗ for some sequencetν → ∞} (3.3)

is a non-empty, compact, and connected subset of stationarypoints

C := {ξ ∈ R
n × R

m | ∇f(ξ) = 0} . (3.4)

If f is analytic, thenω(ξ(0)) is necessarily a singleton, implying the global convergence ofξ(t) [1, Theorem 1].
THEOREM 3.1. Suppose thatf : U → R is real analytic in an open setU ⊂ Rn × Rm. Then for any

bounded semi-orbit of (3.2), there exists a pointξ∗ such thatξ(t) → ξ∗ ast → ∞.
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3.2. Hamiltonian flows. In Hamiltonian mechanics, a classical physical system is described by a set
of canonical coordinatesr = (q,p) ∈ Rn × Rn, whereas the time evolution of the system is governed by
Hamilton’s equations





dp
dt

= −∂H
∂q

dq
dt

= +∂H
∂p

(3.5)

with H = H(q,p, t) denoting the Hamiltonian which often corresponds to the total energy of the system.
Typically, we can think ofq as the space coordinate andp as the momentum. Then the first Hamilton equation
can be interpreted as that the Newtonian force is equal to thenegative gradient of the energy and the second
equation as the velocity vector.

Renaming the functionH ↔ f and the variablesp ↔ x andq ↔ y, we see a considerable similarity of
the Hamiltonian flow (3.5) to the maximin flow (2.2) and the gradient flow (3.2). The main difference is at the
symplectic structure of the Hamiltonian system, that is, bydefining

Ω =

[
0 In

−In 0

]
∈ R

2n×2n, (3.6)

the Hamiltonian equations can be expressed as
[

dx
dt

dy
dt

]
= −Ω

[ ∂f
∂x

∂f
∂y

]
. (3.7)

It follows easily that, if the HamiltonianH ↔ f is not explicitly dependent on time, thenf(x(t),y(t)) main-
tains constant along any integral curve of the Hamiltonian flow. Furthermore, ifH is not constant itself over an
open domainU ∈ Rn × Rn, then the system (3.5) cannot have asymptotically stable equilibrium point inU .

3.3. Complex differential equations. Maximin flows do arise naturally in systems of complex-valued
differential equations [3, 23]. This is mainly because a complex differentiable function at every point in a
region is necessarily analytic on the region. Though these two types of flows are not equivalent, their interplay
might help understand the classical ODE theory as well as themaximin flows.

Consider first the scalar case

dz

dt
= −g′(z), (3.8)

whereg(z) is a complex differentiable function inz ∈ C. Write z = x+ ıy andg(z) = u(x, y)+ ıv(x, y) with
ı =

√
−1. Theng′(z) must satisfy the Cauchy-Riemann equations

{ ∂u
∂x

= ∂v
∂y

,

∂u
∂y

= − ∂v
∂x

.

In this case, it is known that

g′(z) =
∂u

∂x
− ı

∂u

∂y
=

∂v

∂y
+ ı

∂v

∂x
.

Upon comparison of the real and the imaginary parts, we see that (3.8) is equivalent to
{

dx
dt

= −∂u
∂x

,

dy
dt

= ∂u
∂y

,
(3.9)

which is precisely amaxy minx flow for the real-valued functionu(x, y). The well known monkey saddle
u(x, y) = x3 − 3xy2, for example, is the real part ofg(z) = z3.
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Conversely, suppose that a given functionu(x, y) is harmonic over a simply connected domain1. Then it
is known that there exists a harmonic conjugatev(x, y) such that the functiong(z) = u(x, y) + ıv(x, y) is
analytic [15]. The maximin flow (3.9) then is equivalent to the complex differential equation (3.8).

The forward argument above can be generalized to higher dimensions. The dynamical system

dz

dt
= −g′(z), (3.10)

whereg : Cn → C is analytic, necessarily implies amaxy minx flow for the real part ofg if we identify
z = x + ıy with x,y ∈ Rn. Any property that is inherent to a maximin flow, therefore, holds for the complex
flow z(t) solving (3.10). However, these two flows are not equivalent in high-dimensional domains. To check
whether a given functionu : Rn×Rm → R has a harmonic conjugate requires much more involvements. Being
harmonic in each pair(xi, yi) of variables, where the derivative with respect to any extraneous variable is taken
as zero ifm 6= n, is not sufficient. We mention only in passing that for a multi-variable real-valued function
u(x,y) to be the real part of a multi-variable complex-valued analytic function, it must be pluriharmonic, that
is, u needs to satisfy the system of equations





∂u
∂xµ∂xν

+ ∂u
∂yµ∂yν

= 0

∂u
∂xµ∂yν

− ∂u
∂yµ∂xν

= 0
(3.11)

simultaneously for allµ andν. While any complex ODE inCn with analytic vector field automatically implies
a maximin flow, only some special real-valued functionsu can be pluriharmonic.

3.4. Minimum energy path. Rare but important transition events between long lived metastable states
are a key feature of many systems arising in physics, chemistry, biology, and other fields. Finding the most
probably transition pathway connecting local minima has been a long sought-after task. A suitable definition of
a continuous line connecting reactants and products is still a subject of extensive investigation [21, 25, 29]. The
idea of minimum energy path (MEP) is to construct a differential equation whose integral curve characterizes
such a path. Suppose that a potential energy functionV : Rn → R is given. One possible concept is that the
MEP should be the pathΓ such that each fixed pointw0 ∈ Γ assumes the minimum energyV (w0) among
all points on the hyperplane perpendicular to the pathΓ atw0. Upholding this principle, the so called string
method and its variants have already been proposed for computing this path [13, 30, 31]. We now argue that
any path respecting this principle is actually a gradient flow.

To determine the MEP, we need to know its tangent vectors. To determine the tangent vectorτ (w0) of Γ
atw0, we note that every pointw on the hyperplane perpendicular toΓ atw0 can be uniquely expressed as

w = w0 +Bv,

where columns ofB = [b1, ...,bn−1] form a basis of the null space ofτ (w0) andv is arbitrary inRn−1.
Define

G(v;w0, τ ) := V (w0 +Bv)

Trivially, we see that

∇G(v) = ∇V (w0 +Bv)B.

To attain minimum energy, necessarily we want∇G = 0 for some suitablev. It follows that the gradient vector
∇V (w0 +Bv) must be parallel toτ (w0). In particular, atw0 wherev = 0, we see that the tangent vectorτ

of Γ must be

τ (w0) = ±∇V (w0). (3.12)

1Recall the maximum principle that a harmonic function cannot have a local extreme within the domain of its definition. Thus any
functionu that exhibits a local maximum or minimum cannot be harmonic.Saddle points, if exist, is the only other option.
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Note that the above argument makes no reference to whatw0 should be. Starting from any givenw0, we de-
termine the directionτ (w0) as is specified in (3.12). In other words, the so called stringmethod for computing
the minimum energy path between two local minima is in reality a gradient flow in itself. The choice of sign in
(3.12) depends on whether we want to move up or down the hill.

3.5. Gradient flows in Kreǐn space. Given a complex linear spaceK, a Hermitian sesquilinear form
J·, ·K : K × K → C satisfying the linearityJα1s1 + α2s2, tK = α1Js1, tK + α2Js2, tK and the conjugate
symmetryJs1, tK = Jt, s1K for all s1, s2, t ∈ K andα1, α2 ∈ C is called an indefinite inner product overK. If
K is the direct sum of two subspaces

K = K+ ⊕K− (3.13)

such thatK+ andK− are Hilbert subspaces with respect to the inner productJ·, ·K and−J·, ·K, respectively,
thenK is called a Krěin space [6, 12, 14]. Any givens, t ∈ K can be uniquely expressed ass = s+ + s− and
t = t+ + t− with s±, t± ∈ K±. The bilinear form

〈s, t〉 := Js+, t+K − Js−, t−K (3.14)

defines a positive-definite inner product onK. With respect to this inner product, the splitting (3.13) can be
regarded as an orthogonal decomposition ofK. LetP+ andP− denote the orthogonal projection ontoK+ and
K−, respectively. Then the operatorJ defined by

J := P+ − P− (3.15)

has the properties thatJ 3 = J , J ∗ = J , andJs, tK = 〈J s, t〉. The Minkowski space, for example, is a Kreǐv
space with

J =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

More generally, the spaceRn × Rm equipped with the (indefinite) inner product

J(x1,y1), (x2,y2)K := x⊤
1 x2 − y⊤

1 y2 (3.16)

for xi ∈ Rn andyi ∈ Rm, i = 1, 2, is a Krěin space.
It can be argued that the Riesz representation theorem continues to hold in a Krěiv space [12, Page 147].

Therefore, the Fréchet derivative of a differentiable functional f over a Krěiv spaceRn × Rm has a vector
representation with respect to the indefinite inner product(3.16). Specifically, there exists a pair of vectors
(x̂, ŷ) such that

f ′(x,y).(h,k) = J(x̂, ŷ), (h,k)K (3.17)

for all (h,k) ∈ Rn × Rm. In other words, with respect to the indefinite inner product, the “gradient" off
should be interpreted as the vector

Hf :=

(
∂f

∂x
,−∂f

∂y

)
= J∇f

in the spaceRn × Rm. Therefore, the dynamical system (2.2), written as

d

dt

[
x

y

]
= −Hf(x,y), (3.18)

can be regarded as a negative gradient flow in the Kreǐn spaceRn × Rm.
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4. Properties of minimax flow. In contrast to the standard gradient flow and the Hamiltonianflow, we
cannot draw any general conclusion about the global behavior of a maximin flow from (2.2). Still, under some
mild assumptions, we can argue properties of local convergence and contractivity.

4.1. Local convergence.Consider the generic case that the maximin problem (2.1) hasan isolate solution.
Without of generality, assume thatf has a saddle point at(0,0) with ∇f(0,0) = 0 and an indefinite Hessian
H(0,0). We see that(0,0) is also an equilibrium point for the differential system (2.2). In the way it is set
up, we know a priori the orientation and the index of this saddle point — for a fixedy near the origin,x = 0
is a local minimizer and, for a fixed fixedx, y = 0 is a local maximizer. Assume that the HessianH(0,0)
is non-degenerate2 in the sense that the maximin feature can be translated into the case that the two diagonal
blocks

fxx :=
∂2f

∂x2
=

[
∂2f

∂xi∂xj

]
∈ R

n×n,

fyy :=
∂2f

∂y2
=

[
∂2f

∂ys∂yt

]
∈ R

m×m

of H(0,0) are positive and negative definite, respectively.
To understand the behavior of the differential system (2.2)near the equilibrium(0,0), it suffices to con-

sider the stability of its linearized system

[
dx
dt

dy
dt

]
=




− ∂2f
∂x∂x

− ∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y∂y




︸ ︷︷ ︸
J

[
x

y

]
(4.1)

at the origin. For arbitrary[u⊤,v⊤]⊤ ∈ R
n × R

m, observe that

[u⊤,v⊤]J

[
u

v

]
= −u⊤fxxu+ v⊤fyyv < 0, (4.2)

implying that the Jacobian matrixJ is negative definite. Note thatJ is not symmetric in general. Still, all
eigenvalues ofJ have negative real part3.

LEMMA 4.1. Suppose that(x∗,y∗) is an isolate solution to the maximin problem (2.1) at whichfxx is
positive definite andfyy is positive definite. Then(x∗,y∗) is an asymptotically stable equilibrium point for the
maximin flow (2.2).

We stress again that the dynamical system (2.2) is for the specific orientationmaxy minx and for the
specific index that the variablex ∈ R

n represents. If a saddle point off happens to have a different orientation
or a different distribution of the index among the variablesx andy, and if we insist on using (2.2), then an
argument similar to the above can prove that such a saddle point is a repeller. Using a similar argument, all
other equilibria which are extreme points off are necessarily repellers with respect to (2.2). If a saddlepoint is
known to be of index one, its orientation, i.e., the negativeeigenvector direction, can sometimes be estimated
by sufficient sampling [27]. Determining the correct index and the associated orientation at a saddle point for
a high-dimension problem in general is itself a challengingtask.

4.2. Contractivity. The local convergence only explains how each individual trajectory is attracted to an
asymptotically stable equilibrium point. We know argue that between two maximin flows a phenomenon of
contraction is also taking place.

2For a degenerate case, see Examples 4 and 5 in Section 5. Sometimes local convergence can still be achieved using more sophisticated
tools such as the central manifold theorem [9].

3Indeed, in many of the examples below, we see that the trajectories exhibit a spiral behavior, indicating the presence ofimaginary
part of eigenvalues.
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4.2.1. Standard contraction.To avoid confusion, also for comparison, we first briefly review the notion
of standard contraction [24, Chapter 7]. A vector field

ξ′ = f(t, ξ) (4.3)

with f : D ⊂ [a, b] × Rn → Rn is said to satisfy a one-sided Lipschitz condition4 if there exists a scalar
functionν(t) such that the inequality

〈f(t, ξ1)− f(t, ξ2), ξ1 − ξ2〉 ≤ ν(t)‖ξ1 − ξ2‖22 (4.4)

holds for allξ1, ξ2 in the set{ξ ∈ R
n|(t, ξ) ∈ D}. The one-sided Lipschitz functionν(t) in (4.4) can be

negative. Suppose thatξ(t) andζ(t) are two solutions of (4.3). Then it can be argued that [24, Section 7.3]
(see also [17, Lemma 12.1])

‖ξ(t2)− ζ(t2)‖2 ≤ e
∫ t2
t1

ν(ξ)dξ‖ξ(t1)− ζ(t1)‖2, a ≤ t1 ≤ t2 ≤ b. (4.5)

A contraction happens (segmentally) over the interval[a, b] whene
∫ t2
t1

ν(ξ)dξ < 1 for a ≤ t1 ≤ t2 ≤ b. This
has been used as an effective tool for studying the nonlinearstability. For gradient dynamics (3.1), we take the
autonomous system

f(t, ξ) = f(ξ) := −∇f(ξ). (4.6)

The following lemma shows that at regions wheref displays a local convexity the flows enjoy contractivity
[10, Lemma 2.1].

LEMMA 4.2. Suppose that the objection functionf is second-order continuously differentiable over a
neighborhood of̂ξ and that∇2f(ξ̂) is positive definite. Then there is a closed ballB = B(ξ̂) centered at̂ξ and
a positive numberλB such that

〈−∇f(ξ1) +∇f(ξ2), ξ1 − ξ2〉 = −λB‖ξ1 − ξ2‖22 (4.7)

for anyξ1, ξ2 ∈ B. The gradient flow is contractive in the sense

‖ξ(t2)− ζ(t2)‖2 ≤ e−(t2−t1)λB‖ξ(t1)− ζ(t1)‖2, a ≤ t1 ≤ t2 ≤ b (4.8)

between any two gradient flowsξ(t) andζ(t) with starting points inB.
We stress that the phenomenon of contractivity is region dependent. In particular, the exponential rateλB

of contraction varies from region to region.

4.2.2. Contraction in Kreǐn space. For our application, we work in the Kreǐn spaceRn × Rm equipped
with the indefinite inner product (3.16). Mimicking the Minkowski metric, we introduce the notation

�ξ�2 = Jξ, ξK = 〈x,x〉 − 〈y,y〉 (4.9)

for ξ = (x,y) ∈ Rn × Rm. Note that� · � is not a norm and that the quantity�ξ�2 may be negative. For
maximin flows (2.2), we have

f(t, ξ) = f(ξ) = −Hf(ξ) :=

[
−∇xf(x,y)
∇yf(x,y)

]
. (4.10)

Under the same conditions as in Lemma 4.2, forξ1, ξ2 nearby a point̂ξ where∇2f(ξ̂) is positive definite,
observe that

J−Hf(ξ1) + Hf(ξ2), ξ1 − ξ2K = 〈−∇xf(ξ1) +∇xf(ξ2),x1 − x2〉 − 〈∇xf(ξ1)−∇xf(ξ2),y1 − y2〉
= 〈−∇f(ξ1) +∇f(ξ2), ξ1 − ξ2〉 ≤ −λB�ξ1 − ξ2�

2, (4.11)

4A conventional Lipschitz condition necessarily implies a one-sided Lipschitz condition, but not the converse.
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where the last inequality is due to the fact that

‖ξ‖22 ≥ �ξ�2 (4.12)

for anyξ ∈ Rn × Rm.
Suppose thatξ(t) andζ(t) are two saddle point flows with starting points inB. Define the scalar function

Ω(t) := �ξ(t)− ζ(t)�2. (4.13)

Then by the linearity and conjugate symmetry of the inner product over real numbers, we have

dΩ

dt
= 2

s
dξ

dt
− dζ

dt
, ξ(t)− ζ(t)

{
= 2J−Hf(ξ1) + Hf(ξ2), ξ1 − ξ2K ≤ −2λBΩ(t), (4.14)

where the inequality follows from (4.11). Define the integrating factorω(t) = e2λBt which is always positive,
we find that

d(ω(t)Ω(t))

dt
≤ 0 (4.15)

wheneverΩ(t) is defined. In particular, we see the contraction of the maximin flows in the following sense.
LEMMA 4.3. Suppose that the objection functionf is second-order continuously differentiable over a

neighborhood of̂ξ and that∇2f(ξ̂) is positive definite. Then there is a closed ballB = B(ξ̂) centered at̂ξ and
a positive numberλB such that

�ξ(t2)− ζ(t2)�
2 ≤ e−2λB(t2−t1)�ξ(t1)− ζ(t1)�

2, (4.16)

between any two gradient flowsξ(t) andζ(t) with starting points inB andt1 < t2.
The above result is interesting in its formality, but it measures only�ξ(t) − ζ(t)�2 which does not tell

whether the two flowsξ(t) andζ(t) actually get closer or not. The proof also relies on the localconvexity
which certainly does not hold near a saddle point. Nevertheless, in the neighborhood of a saddle point we have
already shown the asymptotic stability in Lemma 4.1.

4.3. Isolation. Want to prove that the accumulating points, if exist, are isolated whenf is analytic ...
something similar to the Łojasiewicz gradient inequality.

5. Examples. The followings examples are simple enough that we can precisely locate their saddle points
and the associated orientations, but they might help to illuminate the interesting dynamics of (2.2). In particular,
we want to demonstrate that following the flow often can lead to a saddle point without any a priori knowledge.

5.1. 3-D landscape and flow dynamics.We first consider a few nontrivial surfaces inR3 and demonstrate
the corresponding dynamics by drawing sufficiently many of their trajectories. Of particular interest in these
examples is the basin of attraction for each of the saddle points.

Example 1.The Müller-Brown potential energy surface

f(x, y) = −200e−(x−1)2−10y2 − 100e−x2
−10(y−0.5)2

−170e−6.5(x+0.5)2+11(x+0.5)(y−1.5)−6.5(y−1.5)2 + 15e0.7(x+1)2+0.6(x+1)(y−1)+0.7(y−1)2 . (5.1)

is a well studied surface which has three local minima and twosaddle points, as can be seen from the drawings
in Figure 5.1. From the plot, it is seen that the saddle pointA is more in themaxx miny orientation, whereas
the maximin property ofB is less clear. Applying (2.2) to this potential function, weillustrate the dynamics by
some trajectories in Figure 5.2, where from any given point the forward time integration produces a red curve
and the backward time integration produces a black curve.

It is then observed that, since the orientation of the saddlepointA is the opposite to that of problem (2.1), it
is backward asymptotically stable for the differential system (2.2). The orientation of the pointB is ambiguous.
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FIGURE 5.1.Müller-Brown potential energy surface and level curves.
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FIGURE 5.2.Dynamics of (2.2) applied to the Müller-Brown potential energy surface (5.1). (red = forward time; black = backward time)

It is proven numerically to be forward asymptotically stable, but its basin of attraction is considerably smaller
than that of the pointA. We note that all three local minima are repelling the flow away from them.

Example 2.The peak function used in MATLAB

f(x, y) = 3(1− x)2e−x2
−(y+1)2 − 10(

x

5
− x3 − y5)e−x2

−y2 − 1

3
e−(x+1)2−y2

(5.2)

has three maxima, two minima, and three saddle points. The surface and the corresponding dynamics of (2.2)
are plotted in Figure 5.3. The orientations of the saddle points are quite clear — only the gorge between the two
south (negativey-axis) hills has the orientationmaxy minx, so it is forward asymptotically stable; the other
two saddle points are backward asymptotically stable.

5.2. Singularity. We then demonstrate that near a singular point of a surface, the dynamics of the corre-
sponding (2.2) could make abrupt changes due to discontinuity.

Example 3.The function

f(x, y) = (1− x2 − y2)2 +
y2

x2 + y2
(5.3)
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FIGURE 5.3.Landscape and dynamics of (2.2) applied to the peak function(5.2). (red = forward time; black = backward time)

is not defined at(0, 0). The discontinuity at this point creates a topography that repels nearby forward flows
(except those moving exactly along the ridge ofx = 0) away from this crevasse. Note that this point is not
backward asymptotically stable either, since flows on the ridge ofx = 0 moves toward it. See Figure 5.4. The
two real saddle points off have orientationmaxx miny, so they are backward asymptotically stable.

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 5.4. Landscape and sample flows of (2.2) applied to the function (5.3) with a pole at(0, 0). (red = forward time; black =
backward time)

5.3. Degenerate Hessian.The following two examples demonstrate two distinct scenarios when the Hes-
sian off is degenerate.

Example 4.Consider the linear programming problem

PL :

{
minimize c⊤x,

subject to Ax = b,
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FIGURE 5.5.Landscape and dynamics of (2.2) applied to the monkey saddlefunction (5.4). (red = forward time; black = backward time)

where, for simplicity, we assume that all inactive constraints have been ruled out5. Then the Hessian of the
Lagrangian has the form

H =

[
0 A⊤

A 0

]

at every(x,y), which is degenerate in the sense thatfxx = 0 and fyy = 0. So the argument for local
convergence in the preceding section cannot be applied. Indeed, though the saddle point theorem still holds in
this case, the differential equations (2.2) becomes

d

dt

[
x

y

]
=

[
0 −A⊤

A 0

] [
x

y

]
−
[

c

b

]

which is a linear system with constant coefficients. We can easily write down its solution(x(t),y(t)) in
closed form via the variation of constants formula. In particular, the solution to the problemPL is not an
asymptotically stable equilibrium for the dynamical system. Rather, it is a center. This is an example where
the maximin flow fails. Fortunately, the saddle point is easyto find in this case.

Example 5. In contrast to Example 4, the Hessian at the monkey saddle point corresponding to the function

f(x, y) = x3 − 3xy2 (5.4)

is also degenerated. Indeed, it is identically zero. However, it can easily be checked that the maximin flow is
equivalent to the complex differential equationdz

dt
= −z2 which has a closed-form solution6. In this case, we

can continue to argue the asymptotical stability which is inaccordance with the one demonstrated in the right
drawing of Figure 5.5

5.4. High-indexed saddle point.Saddle points at which the associated Hessian has more than one eigen-
values with negative real part are generally more challenging. Most of the discussions in the literature are for
saddle points with index one [20, 30].

Example 6.Consider the higher dimensional function

w = f(x, y1, y2) = x2 − y21 − y22 + x3 − 3xy21 − 3xy22 − 3y1y
2
2 (5.5)

5Obviously, finding the active constraints is one of the main tasks in linear programming. Here we only want to demonstratethe
degeneracy of the Hessian.

6We could also apply the central manifold theorem to the nonlinear portion of the corresponding dynamical system as well.
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which has an index-2 saddle point at(0, 0, 0) and an index-1 saddle point at(− 2
3 , 0, 0) with functional values0

and 4
27 , respectively. Analogous to the three dimensional hyperbolic paraboloid, the “w-level surfaces" of the

function (5.5) changes its phrase when passing through these saddle points. See Figure 5.6. To help see the

FIGURE 5.6.Phase change of level surfaces of (5.5) atw = 10 (left) andw = −10 (right).

anatomy of the surface better, we also dissect the level surface by the coronal planey1 = 0 and show the two
different phases in the middle drawing of Figure 5.6.

What is most significant in this example is that, since there are two saddle points, there is a window of
transition betweenw = 0 andw = 4

27 . We plot the cross sections of the two critical states in the left drawing
of Figure 5.7. These critical states serve as the “asymptotes" of all level surfaces. Also plotted is one of the
transition states before the phase change shown in Figure 5.6 emerges.

Before the above analysis is possible, it is crucial to first determinate the number and locations of saddle
points. What is relevant to this paper is that we find the two saddle points by using our flow approach without
first analyzing the derivative information. Two solution trajectories, starting with randomly selected initial
points, are demonstrated in the right drawing of Figure 5.7,which shows that the saddle point(0, 0, 0) is
forward asymptotical stable, whereas the other saddle point (− 2

3 , 0, 0) is backward asymptotical stable.
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FIGURE 5.7.Left: (Cross sections of) critical states atw = 4

27
(blue) andw = 0 (red), and a transition state atw = 0.05 (green).

Right: A solution trajectory for the system (2.2) applied to(5.5).
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