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1. Introduction. The notion of saddle point and the demand for its computatitse from a wide range
of disciplines. To demonstrate its importance, we mention ¢ritical applications in practice, namely, the
method of Lagrange multipliers for constrained optimiaatand the dynamical reaction problem.

First, consider the constrained convex programming proble

minimize 0(x)
P subject to g;(x) <0; i=1,2,...,s
gi(x)=0; i=s+1,...,m,

where the function$g, g1, ..., gs are convex functions mapping frol" to R, andgs+1, ..., gn are affine
mappings fronR" to R. Assume that all functions are sufficiently smooth. The laagianL for this problem
is the function

L(x,y) = 0(x) + (y,8(x)), (1.1)

where entries of € R™ are the Lagrange multipliers and it is always the caseithat . , y; are nonnegative.
DenoteK = RS x R™~*. A pair (X,¥) € R" x K is said to be a saddle point férif the inequalities

L(xy) < Lx¥) < L(x,y) (1.2)

hold for all (x, y) in a neighborhood ofX,¥) in R x K. In other wordsx minimizes the functiorl(x,y)
amongx andy maximizesL(X,y) amongy. The following theorem serves as the basic principle tHates
the saddle point of the Lagrangidnto the solution of the primal problef [7, 26].

THEOREM 1.1. (Saddle Point Theorem). L& € R". If there exist§y € K such that(X,y) is a saddle
point for the Lagrangiarl., thenx solvesP. Conversely, ik is a solution toP at which the Slater’s constraint
qualification is satisfied, then there isjac K such that(X,¥) is a saddle point for..

We further know of the following maximin theorem which allsws to interchange the order whéné
andsup are taken and serves as a basis for the convex duality theory.

THEOREM 1.2. (Maximin Theorem) If a saddle point férdoes exist oveR™ x K, then

sup inf L(x,y) = inf sup L(x,y 1.3
sup inf L(x.y) = inf sup L(x.) (L.3)

Many optimization tactics have been developed in the litegafor solving the optimization problefR,
which will not be elaborated in this paper. We simply want ¢énp out the mathematical connection between
a solution to the primal problef® and a saddle point to the Lagrangian

Second, in the reaction dynamics of complex systems, rangdrsaeptible transition events between long
lived states are of fundamental importance. The presentcamdition events, the knowledge of their location
in the configuration space, and frequency of these incigaotgde critical information for important systems
such as phase transitions in nucleation, conformatiorehg@és in macromolecules, and transition states in
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chemical reactions [19]. We illustrate this point by comsidg the potential energy surface as an example.
Suppose that/ (x) denotes a potential function in a chemical system, wixegeR3" represents the positions
of n atoms in the space. A specific configuration of the atoms spoeds uniquely to a specific energy level.
In this way, the potential is parameterized in terms of thsitins of the nuclei. Stable arrangements of the
atoms, observable in the forms of reactants, productstemmediates in the system, are those configurations
which minimize the potentidl/ (x). These metastable states usually can hold for an extendied pé time.
However, sudden jumps from one state to another state deehafpippose that the potential function forms a
smooth landscape. Then its minima usually are surroundethbsgy barriers. Transition states correspond to
saddle points on this surface. Knowing when, where, howethresmsitions happen is critically important.

For dynamical reaction problems, it is generally assumatittie transition states areioflex onethat is,
the corresponding Hessian at such a stationary poibt(af) has one and only one negative eigenvalue. Most
sophisticated numerical techniques developed for findiegransition pathways crossing these transition states
are based on this assumption [8, 11, 13, 27, 30, 31]. In cemwar dynamical system presented in this paper
can handle higher-index problems. Finding saddle pointinlgahigh but unknown index is a much harder
problem.

Although the two scenarios described above are all abounfirtie saddle point, there is one fundamen-
tal difference. In the Lagrangian formulation, it is clehat the space variable is to be minimized while
the Lagrange multiplierg are to be maximized at the saddle point. The varialdes) are unequivocally
separated into two groups each of which has a definitive dsimeality (indexn). This kind of specifically
oriented, high-indexed problems is the ideal target of oakimin flow approach. In the dynamical reaction
setting, however, we generally do not know which variableadtection of variables attributes to the direction
of the corresponding eigenvector, even under the assumiptid there is one and only one negative eigenvalue
of the Hessian at the saddle point. The Mlller-Brown posgrghergy surface, for instance, has two saddle
points of index one, but they are of different orientatid®sll, our flow can manifest some useful information.

2. Maximin flows. To fix our idea, we shall concentrate on the problem

Iax min f(x,¥) (2.1)
wheref : R” x R™ — R is sufficiently smooth. Starting from any initial point, wefthe a flow(x(¢), y(t))
via the autonomous differential system, referred to as ammaxlow or a saddle-point flow [2, 5],
& o= %
x 7
{ &y of (2.2)
dt - 9y>
where% and % represent the parts of the gradient with respect to the blariaandy, respectively. We
mention in passing that if the variables are limited to sogasible set, such as that in Problem (1.1), then a
modification by projecting the vector field (2.2) onto theresponding tangent subspace should be applied.

We quickly point out that the maximin flow (2.2) is functionpindent. It is possible that a different
description of the very same saddle point will end up with iy eifferent dynamics. For instance, the surfaces
in R3 corresponding to the objective functiofigz, y) = 2? — y? andf2(z, y) = 2xy are essentially the same
hyperbolic parabolas by a rotation §f However, the integral curves associated vfitland f, are semi-arrays
pointing to the origin and concentric circles around th@iorirespectively. For the later, it should be quite
clear that neither ordenax, min, min, max, makes any difference at all.

Our motivation for proposing the dynamical system (2.2)ugestraightforward. Since the objective in
(2.1) is a maximin problem, we wish to moxein such a way to decrease the valuefpfvheny is held con-
stant; and movg to increase the value ¢f, whenx is kept invariant. In a sense, the differential equatiomis a
infinitesimal version of the classical alternative direntiteration, except that the pdix, y) changes simulta-
neously and continuously. The combined effect, howeversamt always result in the desirable monotonicity
in either variable. Because
2

dr(x(t). y(t) _

o |of
dt ox

of
Oy
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along a trajectory of (2.2), the objective valuegfafan either increase or decrease, depending on the sign of the
difference between magnitudes of partial gradients albadrajectory which, in turn, depends on the starting
point. Though the flow (2.2) may not conclusively vary theeative values in the way we prefer to see, it is
still valid to say that the movement afdoes not causg to increase angt does not causg to decrease.

One possible modification of (2.2) is to weight the vectodabfx andy differently, i.e.,

{ % = —ay,
& = BB
wherea(t) andS(t) are positive scalars varying in time to provide a sense ofrobled simulated annealing.
For instance, by injecting a sufficiently large excitemeatd 5(¢), we may be able to pull the flogk(¢), y(¢))

out of a basin surrounding a local minimizer pfind let it go to somewhere else. Indeed, we may even allow
B(t) to be negative temporarily to introduce a descent flow andhsdrothis way, the weight functions(¢)
andj(t) can be used as time-varying handles to steel the variatigiiaft), y(¢)). The real challenge is to

derive an effective control strategy so that the weighted fltoves in the way we want it to be. We shall focus
on the basic flow in this paper.

(2.3)

3. Relation to other flows. Before we further study properties of the maximin flow, it imige instructive
to compare (2.2) with a few other dynamical systems of sinfidem.

3.1. Gradient flows. Gradient adaption is ubiquitous in nature and has been gmglaver a wide range
of applications. Simply put, a dynamical system in the form

d§

o = V&), £0)=&, (3.1)
where f is a second-order differentiable functional of the vama$lover an appropriately defined Hilbert
space, is referred to as a (negative) gradient flow. Therorauction along the negative temperature gradient
of the isothermal surfaces and osmosis down the concemtrgtadient across the cell membrane typify the
gradient adaption in nature. A surprisingly large numbeweli-known diffusive partial differential equations
have the intrinsic structure of a gradient flow with respecs@ame properly chosen energies and dissipative
mechanisms [28]. Mathematical models for the phase séparmit materials in iron alloys, the segmentation
or edge detection in image processing or computer visiasthiface evolution in differential geometry, the
flow of an ideal gas in porous medium, and the ground state amtyum systems all employ this notion of
gradient flow [16]. Numerous other systems that evolve iretdan also be interpreted as gradient dynamics,
including applications in the game theory, financial maskahd mechanism design [4, 18, 22].

Assuming that the gradient flow takes place in a Euclidiamspae rewrite€ = (x,y) € R” x R™ and
split the gradient flow (3.1) as the system

T = %
dt - x 7
{ oy of (3.2)
dt oy "
for comparison with the maximin flow (2.2). The one sign diffiece makes a significant difference in several
ways. The objective value gf along a maximin trajectory generally does not exhibit anyhotonicity, but
along a gradient trajectory the objective functif((¢)) is guaranteed to decrease to a (local) minimum. The
maximin flow (x(¢), y(¢t)) may wander off, if the index is incorrectly assumed or if theotation is wrongly

assigned. For gradient flow, the set of accumulation points

w(&(0)) :={€" e R" x R™ | £(¢,) — £ for some sequendg — oo} (3.3)
is a non-empty, compact, and connected subset of statiqioants
C:={£eR"xR"|Vf(&) =0}. (3.4)

If fisanalytic, themu(£(0)) is necessarily a singleton, implying the global convergesfé(¢) [1, Theorem 1].
THEOREM 3.1. Suppose thaf : U — R is real analytic in an open séf c R™ x R™. Then for any
bounded semi-orbit of (3.2), there exists a pgihsuch that(t) — £* ast — oo.
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3.2. Hamiltonian flows. In Hamiltonian mechanics, a classical physical system &iieed by a set
of canonical coordinates = (q,p) € R" x R", whereas the time evolution of the system is governed by
Hamilton’s equations

dp _  _OH

dt oq (3 5)
dg  _ 4+ 9H .

dt op

with H = H(q, p, t) denoting the Hamiltonian which often corresponds to thaltehergy of the system.
Typically, we can think ofy as the space coordinate an@s the momentum. Then the first Hamilton equation
can be interpreted as that the Newtonian force is equal todgative gradient of the energy and the second
equation as the velocity vector.

Renaming the functiof/ <> f and the variablep +» x andq « y, we see a considerable similarity of
the Hamiltonian flow (3.5) to the maximin flow (2.2) and thedjemt flow (3.2). The main difference is at the
symplectic structure of the Hamiltonian system, that isgdbfining

0= [ L ] € R272n, (3.6)

the Hamiltonian equations can be expressed as

dx of
dt ox

dt oy

3.7)

It follows easily that, if the Hamiltoniaft{ <+ f is not explicitly dependent on time, théfitx(t), y(¢)) main-
tains constant along any integral curve of the Hamiltoniaw.fFurthermore, if{ is not constant itself over an
open domair/ € R™ x R"™, then the system (3.5) cannot have asymptotically stahl@ilegum pointinU.

3.3. Complex differential equations. Maximin flows do arise naturally in systems of complex-value
differential equations [3, 23]. This is mainly because a plax differentiable function at every point in a
region is necessarily analytic on the region. Though theseypes of flows are not equivalent, their interplay
might help understand the classical ODE theory as well am#ipdmin flows.

Consider first the scalar case

dz ,

E =g (2)7 (38)
whereg(z) is a complex differentiable function ine C. Write z = z + 1y andg(z) = u(x, y) +w(x, y) with
1 = +/—1. Theng’(z) must satisfy the Cauchy-Riemann equations

u  _ Qv
{am - oy

ou _ _0Ov

9y T Bz

In this case, it is known that
(oo O _0u_dv oo
IV = B oy Oy Ox

Upon comparison of the real and the imaginary parts, we sa€3t8) is equivalent to

de  _  _ou
dt ox’

{ dy _  du (39)
dat T 9y

which is precisely anax, min, flow for the real-valued functiom(z,y). The well known monkey saddle
u(x,y) = o3 — 3zy?, for example, is the real part gf ) = 2°.
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Conversely, suppose that a given functida, ) is harmonic over a simply connected dontaifihen it
is known that there exists a harmonic conjugafe, y) such that the functiog(z) = u(z,y) + w(z,y) is
analytic [15]. The maximin flow (3.9) then is equivalent te tomplex differential equation (3.8).

The forward argument above can be generalized to highendiimies. The dynamical system

% = —¢'(z), (3.10)
whereg : C* — C is analytic, necessarily impliesiaax, miny flow for the real part ofy if we identify
z = x + 1y with x, y € R™. Any property that is inherent to a maximin flow, thereforelds for the complex
flow z(t) solving (3.10). However, these two flows are not equivaleigh-dimensional domains. To check
whether a given function : R™ x R™ — R has a harmonic conjugate requires much more involvemertagB
harmonic in each palir;, y;) of variables, where the derivative with respect to any exdoms variable is taken
as zero ifm # n, is not sufficient. We mention only in passing that for a muétriable real-valued function
u(x,y) to be the real part of a multi-variable complex-valued ati@fanction, it must be pluriharmonic, that
is, u needs to satisfy the system of equations
ou ou 0
Oz, 0T, 0y, 0yu

(3.11)
ou ou 0

0z, 0y, - 0y, 0z,
simultaneously for all: andv. While any complex ODE if©™ with analytic vector field automatically implies
a maximin flow, only some special real-valued functiansan be pluriharmonic.

3.4. Minimum energy path. Rare but important transition events between long livedastable states
are a key feature of many systems arising in physics, chemisblogy, and other fields. Finding the most
probably transition pathway connecting local minima ha=sneelong sought-after task. A suitable definition of
a continuous line connecting reactants and productslisstilbject of extensive investigation [21, 25, 29]. The
idea of minimum energy path (MEP) is to construct a diffei@rgquation whose integral curve characterizes
such a path. Suppose that a potential energy fundtiorlR™ — R is given. One possible concept is that the
MEP should be the path such that each fixed poist, € T' assumes the minimum energ§y(w,) among
all points on the hyperplane perpendicular to the ga#t w,. Upholding this principle, the so called string
method and its variants have already been proposed for dimgpthis path [13, 30, 31]. We now argue that
any path respecting this principle is actually a gradient.flo

To determine the MEP, we need to know its tangent vectors.eTerthine the tangent vectefw,) of I'
atwg, we note that every poit on the hyperplane perpendicularmtat w, can be uniquely expressed as

w = wg + Bv,

where columns of = [by,...,b,,_1] form a basis of the null space efw,) andv is arbitrary inR”~*.
Define

G(v;wo, ) :=V(wg + Bv)
Trivially, we see that
VG(v) = VV(wy + Bv)B.

To attain minimum energy, necessarily we waftt = 0 for some suitable. It follows that the gradient vector
VV (wo + Bv) must be parallel ta-(wy). In particular, atw, wherev = 0, we see that the tangent vector
of I' must be

T(wo) = £VV(wy). (3.12)

1Recall the maximum principle that a harmonic function carirave a local extreme within the domain of its definition. $tany
function v that exhibits a local maximum or minimum cannot be harmo8axddle points, if exist, is the only other option.
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Note that the above argument makes no reference to whahould be. Starting from any givem,, we de-
termine the directionr(w) as is specified in (3.12). In other words, the so called stmiethod for computing
the minimum energy path between two local minima is in reaigradient flow in itself. The choice of signin
(3.12) depends on whether we want to move up or down the hill.

3.5. Gradient flows in Krein space. Given a complex linear spadé, a Hermitian sesquilinear form
[,-] : K x K — C satisfying the linearityfays1 + assa,t] = aqfs1,t] + az[s2,t] and the conjugate
symmetry[si,t] = [t,s1] forall s1,s2,t € K anday, s € Cis called an indefinite inner product ovier If
K is the direct sum of two subspaces

K=K.®k_ (3.13)

such thatC, andK__are Hilbert subspaces with respect to the inner proflugt and —[-, -], respectively,
thenC is called a Krén space [6, 12, 14]. Any gives t € K can be uniquely expressedsas- s + s_ and
t=t; +t_withsy,tL € Ki. The bilinear form

(s,t) :=[s4,t4] — [s—,t_] (3.14)

defines a positive-definite inner product &n With respect to this inner product, the splitting (3.13) dze
regarded as an orthogonal decompositiofCot.et P, andP_ denote the orthogonal projection oriq. and
K_, respectively. Then the operatgrdefined by

J =P, —P_ (3.15)

has the properties that® = 7, 7* = 7, and[s, t] = (Js, t). The Minkowski space, for example, is a Kre
space with

1 0 0 O
01 0 O
J = 001 O
0 0 0 -1

More generally, the spad®” x R™ equipped with the (indefinite) inner product

[(x1,¥1), (X2,¥2)] == %X{ X2 — y{ ¥2 (3.16)

forx; e R"andy; e R™,i=1,2,isa Kren space.

It can be argued that the Riesz representation theorenmemsto hold in a Krie space [12, Page 147].
Therefore, the Fréchet derivative of a differentiable fiowal f over a Krév spaceR” x R™ has a vector
representation with respect to the indefinite inner prod8dt6). Specifically, there exists a pair of vectors
(X,¥) such that

f'(xy).(h k) = [X,9), (h, k)] (3.17)

for all (h,k) € R™ x R™. In other words, with respect to the indefinite inner prodtie¢ “gradient” off
should be interpreted as the vector
0 0
vf:= (—f ——f> =JVf

ox’ Oy

in the spac®™ x R™. Therefore, the dynamical system (2.2), written as

% { ; } — vixy), (3.18)

can be regarded as a negative gradient flow in thenkgpaceR” x R™.
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4. Properties of minimax flow. In contrast to the standard gradient flow and the Hamiltofiam, we
cannot draw any general conclusion about the global behaf/mmaximin flow from (2.2). Still, under some
mild assumptions, we can argue properties of local convesand contractivity.

4.1. Local convergence Consider the generic case that the maximin problem (2. 1ah&wolate solution.
Without of generality, assume thathas a saddle point &, 0) with V f(0,0) = 0 and an indefinite Hessian
H(0,0). We see that0, 0) is also an equilibrium point for the differential system2R.In the way it is set
up, we know a priori the orientation and the index of this $agwint — for a fixedy near the originx = 0
is a local minimizer and, for a fixed fixed, y = 0 is a local maximizer. Assume that the Hessfd(0, 0)
is non-degeneratén the sense that the maximin feature can be translatedhistoase that the two diagonal
blocks

*f *f nxn
fxx T @ - {6:516:57] cR ’

O’f *f mxm
Mfﬁ‘@@FR

of H(0,0) are positive and negative definite, respectively.
To understand the behavior of the differential system (2e®y the equilibriun0, 0), it suffices to con-
sider the stability of its linearized system

dx _ofr  _0f x

dt Ox0x Oy Ox
= 4.1
[ £ 1 oy oy l y 1 D

dt ox0y Jydy

J
at the origin. For arbitrarju’™, v']" € R™ x R™, observe that
T T u T T
[u',v']J =-u fxxu+v fyyv <0, (4.2)
A%

implying that the Jacobian matriX is negative definite. Note that is not symmetric in general. Still, all
eigenvalues off have negative real pdrt

LEMMA 4.1. Suppose thafx*,y*) is an isolate solution to the maximin problem (2.1) at whfgh is
positive definite and,, is positive definite. Thefx*, y*) is an asymptotically stable equilibrium point for the
maximin flow (2.2).

We stress again that the dynamical system (2.2) is for theifiperientationmax, miny and for the
specific index that the variablee R” represents. If a saddle point fthappens to have a different orientation
or a different distribution of the index among the variabteandy, and if we insist on using (2.2), then an
argument similar to the above can prove that such a saddh igod repeller. Using a similar argument, all
other equilibria which are extreme pointspoéire necessarily repellers with respect to (2.2). If a sapldliet is
known to be of index one, its orientation, i.e., the negatiggnvector direction, can sometimes be estimated
by sufficient sampling [27]. Determining the correct indexiahe associated orientation at a saddle point for
a high-dimension problem in general is itself a challengask.

4.2. Contractivity. The local convergence only explains how each individugéttary is attracted to an
asymptotically stable equilibrium point. We know arguetthatween two maximin flows a phenomenon of
contraction is also taking place.

2For a degenerate case, see Examples 4 and 5 in Section 5.i®esletcal convergence can still be achieved using moreistigited
tools such as the central manifold theorem [9].

SIndeed, in many of the examples below, we see that the teaiestexhibit a spiral behavior, indicating the presencavafginary
part of eigenvalues.



4.2.1. Standard contraction. To avoid confusion, also for comparison, we first briefly esvithe notion
of standard contraction [24, Chapter 7]. A vector field

¢ =1£(t,¢) (4.3)

with f : D C [a,b] x R® — R is said to satisfy a one-sided Lipschitz condifiaghthere exists a scalar
functionv(t) such that the inequality

(£(1.61) —£(t,£,),& — &) <v(t)ll€ — &3 (4.4)

holds for all&,, &, in the set{€ € R"|(¢,€) € D}. The one-sided Lipschitz functian(t) in (4.4) can be
negative. Suppose thgft) and{(t) are two solutions of (4.3). Then it can be argued that [241i&@d.3]
(see also [17, Lemma 12.1])

1€(t2) — C(t2) 1o < e/ " OFg(tr) — C(t1) ]2, a <t <ta <b. (4.5)

A contraction happens (segmentally) over the intefwab)] whene/i! ¥(©ds < 1fora <ty <ty <b. This
has been used as an effective tool for studying the nonlstahility. For gradient dynamics (3.1), we take the
autonomous system

£(t,£) = £(§) := =V /(&) (4.6)

The following lemma shows that at regions whegréisplays a local convexity the flows enjoy contractivity
[10, Lemma 2.1].

LEMMA 4.2. Suppose that the objection functignis second-order contmuously differentiable over a
neighborhood oa‘;’ and thatvzf(S) is positive definite. Then there is a closed liaH-= B({) centered aE and
a positive numbeh such that

(=Vf(&) + V(&) & — &) = —Asl& — &3 (4.7)
forany&,, &, € B. The gradient flow is contractive in the sense
1€(t2) = C(ta)ll2 < e 2718 1€(ty) = C(ta)]l2s a <ty <tp <b (4.8)

between any two gradient flowgét) and ¢ (¢) with starting points in3.
We stress that the phenomenon of contractivity is regioredéent. In particular, the exponential rate
of contraction varies from region to region.

4.2.2. Contraction in Krein space. For our application, we work in the KirespaceR™ x R™ equipped
with the indefinite inner product (3.16). Mimicking the Miokski metric, we introduce the notation

IEN* = [€,€] = (x,x) — {y,¥) (4.9)
for ¢ = (x,y) € R" x R™. Note that]| - || is not a norm and that the quantif¢||> may be negative. For
maximin flows (2.2), we have

_ — e _vxf(xa y)
f(t.6) =16 = Vi) = | ") |, (4.10)

Under the same conditions as in Lemma 4.2,4pr¢, nearby a poinE WhereVQf(é) is positive definite,
observe that

[-vf(&) + VF(€2) &1 — & = (—Vxf(&1) + Vxf(&2), 1 — ®2) — (Vx f(&1) = Vx[(&2), Y1 — Ya)
= (=Vf(&) + V(&) & — &) < —XgllE; — &7, (4.11)

4A conventional Lipschitz condition necessarily impliesreeesided Lipschitz condition, but not the converse.
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where the last inequality is due to the fact that

€13 > e (4.12)

foranyg € R™ x R™.
Suppose th&g(¢) and((t) are two saddle point flows with starting pointsin Define the scalar function

Q(t) = NEE) — SO (4.13)
Then by the linearity and conjugate symmetry of the innedpob over real numbers, we have
dQ d d
LU ﬂd—f R NTE cwﬂ SO VHE) + V(€0 € — o] < —20s0(0),  (414)

where the inequality follows from (4.11). Define the integrg factorw(t) = ¢2*5* which is always positive,
we find that

d(w(t)Q(t))
—— <0 (4.15)

whenevef(t) is defined. In particular, we see the contraction of the maxftows in the following sense.
LEMMA 4.3. Suppose thatAthe objection functighnis second-order continuously differentiable over a

neighborhood OE and thatV2 £ (¢) is positive definite. Then there is a closed lia= B(E) centered af and

a positive numbeh such that

€ (t2) — C(ta)ll? < e~ PAula=tl ety — ¢(t)NI?, (4.16)

between any two gradient flo@st) and((t) with starting points in3 and¢; < ts.

The above result is interesting in its formality, but it meas only||&(t) — ¢(¢)lI> which does not tell
whether the two flowg(¢) and((t) actually get closer or not. The proof also relies on the lecaivexity
which certainly does not hold near a saddle point. Nevezti®lin the neighborhood of a saddle point we have
already shown the asymptotic stability in Lemma 4.1.

4.3. Isolation. Want to prove that the accumulating points, if exist, ardated whenf is analytic ...
something similar to the tojasiewicz gradient inequality.

5. Examples. The followings examples are simple enough that we can plgdiscate their saddle points
and the associated orientations, but they might help tamilhate the interesting dynamics of (2.2). In particular,
we want to demonstrate that following the flow often can |lesal $addle point without any a priori knowledge.

5.1. 3-Dlandscape and flow dynamicsWe first consider a few nontrivial surfacesid and demonstrate
the corresponding dynamics by drawing sufficiently manyheirttrajectories. Of particular interest in these
examples is the basin of attraction for each of the saddigtgoi

Example 1. The Miiller-Brown potential energy surface

F(z,y) = —200e~ (E=D*7108" _ jgpe—a?~10(y=0.5)*
—170e~6-5(@+0.5)*+11(2+0.5)(y—=1.5)=6.5(y—1.5)* | 15.0.7(x+1)*+0.6(+1)(y—1)+0.7(y—1)* (5.1)

is a well studied surface which has three local minima anddadtlle points, as can be seen from the drawings
in Figure 5.1. From the plot, it is seen that the saddle pdiig more in themaxy min,, orientation, whereas
the maximin property oB3 is less clear. Applying (2.2) to this potential function, ibestrate the dynamics by
some trajectories in Figure 5.2, where from any given pdiatforward time integration produces a red curve
and the backward time integration produces a black curve.

Itis then observed that, since the orientation of the sauluilet A is the opposite to that of problem (2.1), it
is backward asymptotically stable for the differentialteys (2.2). The orientation of the poiBtis ambiguous.

9
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FIGURE5.2.Dynamics of (2.2) applied to the Miiller-Brown potential ggyesurface (5.1). (red = forward time; black = backward tijne

It is proven numerically to be forward asymptotically selbut its basin of attraction is considerably smaller
than that of the poinl. We note that all three local minima are repelling the flow yafvam them.
Example 2. The peak function used in NrLAB
1
J(y) =3(1—a)?e 0T 10(2 — o = yP)em eV o Sl (5.2)
has three maxima, two minima, and three saddle points. Titi@cguand the corresponding dynamics of (2.2)
are plotted in Figure 5.3. The orientations of the saddlatsaire quite clear — only the gorge between the two
south (negative-axis) hills has the orientatiomax, miny, so it is forward asymptotically stable; the other
two saddle points are backward asymptotically stable.

5.2. Singularity. We then demonstrate that near a singular point of a surfaeelyinamics of the corre-
sponding (2.2) could make abrupt changes due to discotytinui
Example 3. The function

2

flay) =1 —a®—y*)? + xzyi_i_yQ (5.3)

10



FIGURE5.3.Landscape and dynamics of (2.2) applied to the peak fun¢iid®). (red = forward time; black = backward time)

is not defined at0,0). The discontinuity at this point creates a topography thpels nearby forward flows
(except those moving exactly along the ridgerof= 0) away from this crevasse. Note that this point is not
backward asymptotically stable either, since flows on tigeiofz = 0 moves toward it. See Figure 5.4. The
two real saddle points of have orientatiomnaxy miny, so they are backward asymptotically stable.

¥ -5 15

FIGURE 5.4. Landscape and sample flows of (2.2) applied to the functid) @ith a pole at(0, 0). (red = forward time; black =
backward time)

5.3. Degenerate HessianThe following two examples demonstrate two distinct sceisaxvhen the Hes-
sian of f is degenerate.

Example 4.Consider the linear programming problem

minimize c'x,
Pr :

subject to Ax = b,
11
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FIGURE5.5.Landscape and dynamics of (2.2) applied to the monkey séduiiéion (5.4). (red = forward time; black = backward time)

where, for simplicity, we assume that all inactive constisihave been ruled cut Then the Hessian of the
Lagrangian has the form
-
e [ 0 A }

A 0

at every(x,y), which is degenerate in the sense tligt = 0 and fy, = 0. So the argument for local
convergence in the preceding section cannot be appliedethdhough the saddle point theorem still holds in
this case, the differential equations (2.2) becomes

d[x]_[0 —AT x| |¢c

dly]|] |4 0 y b
which is a linear system with constant coefficients. We casilyeavrite down its solution(x(t),y(¢)) in
closed form via the variation of constants formula. In pauttr, the solution to the problef;, is not an
asymptotically stable equilibrium for the dynamical systeRather, it is a center. This is an example where

the maximin flow fails. Fortunately, the saddle pointis etsfind in this case.
Example 5.1n contrast to Example 4, the Hessian at the monkey saddie¢ pairesponding to the function

flz,y) = 3 — 3xy? (5.4)

is also degenerated. Indeed, it is identically zero. Howetvean easily be checked that the maximin flow is
equivalent to the complex differential equatié@ = —22 which has a closed-form soluti&inin this case, we
can continue to argue the asymptotical stability which iagoordance with the one demonstrated in the right
drawing of Figure 5.5

5.4. High-indexed saddle point.Saddle points at which the associated Hessian has moretlesgigen-
values with negative real part are generally more challengMost of the discussions in the literature are for
saddle points with index one [20, 30].

Example 6. Consider the higher dimensional function

w= f(z,y1,y2) = 2> —y; —y3 + 2° — 3zyi — 3zy3 — 3y1y3 (5.5)

50Obviously, finding the active constraints is one of the masks in linear programming. Here we only want to demonstiae
degeneracy of the Hessian.
6We could also apply the central manifold theorem to the mesli portion of the corresponding dynamical system as well.

12



which has an index-2 saddle point(@t 0, 0) and an index-1 saddle point(@t 2, 0, 0) with functional value$
and%, respectively. Analogous to the three dimensional hyperiparaboloid, the t-level surfaces" of the
function (5.5) changes its phrase when passing througle theeddle points. See Figure 5.6. To help see the

FIGURE 5.6.Phase change of level surfaces of (5.5at= 10 (left) andw = —10 (right).

anatomy of the surface better, we also dissect the levedsritiy the coronal plang = 0 and show the two
different phases in the middle drawing of Figure 5.6.

What is most significant in this example is that, since theeetao saddle points, there is a window of
transition betweemw = 0 andw = 2%. We plot the cross sections of the two critical states in #fiedrawing
of Figure 5.7. These critical states serve as the “asymgtaoteall level surfaces. Also plotted is one of the
transition states before the phase change shown in Figbienierges.

Before the above analysis is possible, it is crucial to fietedminate the number and locations of saddle
points. What is relevant to this paper is that we find the twanigapoints by using our flow approach without
first analyzing the derivative information. Two solutiomjerctories, starting with randomly selected initial
points, are demonstrated in the right drawing of Figure @ffich shows that the saddle poift, 0,0) is
forward asymptotical stable, whereas the other saddle peig-l, 0,0) is backward asymptotical stable.

_ m \
NN
/ .

FIGURES.7. Left: (Cross sections of) critical states at= 2% (blue) andw = 0 (red), and a transition state ab = 0.05 (green).
Right: A solution trajectory for the system (2.2) applied ).
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