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Abstract

Given two vectors a, A € R", the Schur-Horn theorem states that a majorizes A if and
only if there exists a Hermitian matrix H with eigenvalues A and diagonal entries a.
While the theory is regarded as classical by now, the known proof is not constructive.
To construct a Hermitian matrix from its diagonal entries and eigenvalues therefore
becomes an interesting and challenging inverse eigenvalue problem. Two algorithms
for determining the matrix numerically are proposed in this paper. The lift and pro-
jection method is an iterative method which involves an interesting application of the
Wielandt-Hoffman theorem. The projected gradient method is a continuous method
which, besides its easy implementation, offers a new proof of existence because of its
global convergence property.
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1. Introduction.

The well known Schur-Horn theorem [14] deals with the relationships between the
main diagonal entries and eigenvalues of a Hermitian matrix. For the reference, we
restate the theorem in the following form [15, Theorems 4.3.26, 4.3.32 and 4.3.33] :

THEOREM 1.1. (Schur-Horn Theorem)

1. Let H be a Hermitian matriz. Let A = [A;] € R™ and a = [a;] € R™ denote
the vectors of eigenvalues and diagonal entries of H, respectively. If the entries are
arranged in increasing order a;; < ... < aj., Apm, < ... < A, then

k k
(1) Za’ji > Z)\mi,
=1 =1

forall k =1,2,... n with equality for k = n.

2. Given any a,A € R" satisfying (1), there exists a Hermitian matrizc H with
eigenvalues A and diagonal entries a.

The notion of (1) is also known as a majorizing A, which has arisen as the precise
relationship between two sets of numbers in many areas of disciplines, including matrix
theory and statistics. There are extensive research results on this subject. See, for
example, [2, 16] and the references contained therein. The Schur-Horn theorem itself has
many important applications. For instance, through the Schur-Horn theorem the total
least squares problem can be seen to be equivalent to a linear programming problem
[3]. Some other applications can be found, for example, in [6, 7].

The second part of the Schur-Horn Theorem gives rise to an interesting inverse
eigenvalue problem, namely, to construct such a Hermitian matrix from the given eigen-
values and diagonal entries. For convenience, we shall refer to this problem as (SHIEP).
The proof of existence is usually known as the harder part of the Schur-Horn Theo-
rem. One point worthy of note is that there are far more variable in the (SHIEP) than
constraints, which presumably implies that the solution is far from unique. It turns
out that most of the proofs in the literature are not practicable for the (SHIEP) in
that a construction by mathematical induction, if possible at all, would be overwhelm-
ingly complicated. See, for example, [14, 15, 17]. In this paper we propose numerical
algorithms that are different from the classical ways of authenticating the existence.

Henceforth, we shall denote the diagonal matrix whose main diagonal entries are
the same as those of the matrix M as diag(M ), and the diagonal matrix whose diagonal
entries are formed from the vector v as diag(v). This notation will prove to be convenient
in the discussion. Any ambiguity can be clarified from the context. Also, we shall define

(2) T (a) :={T € R¥"|diag(T) = diag(a)}

(3) M(A) :={QTAQ|Q € O(n)}
where A := diag(A) and O(n) is the group of all orthogonal matrices in R™*™.
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Our algorithms are based on the idea of finding the shortest distance between 7 (a)
and M(A), i.e., we want to solve

4 i T—-27
( ) TET(aI)r,léIéM(A) || ||F
where || - ||r means the Frobenius norm. Clearly, the Schur-Horn Theorem attests that

7 (a) and M(A) intersect and hence the minimal value of (4) should be zero. Our goal
is to, starting with an arbitrary point on either 7(a) or M(A), find the intersection
point.

The (SHIEP) is fundamentally different from a classical inverse eigenvalue prob-
lem (CIEP) that has been discussed, for example, in [12]. Given symmetric matrices

Ao, A, ... A,, the (CIEP) is to find a vector ¢ € R™ such that the matrix A(c) where
(5) Alc) == Ao+ c1A1 + ...+ cidn

has the prescribed spectrum A. In relating the (CIEP) to the (SHIEP), one has to
specify each A; of the basis matrices. To characterize the matrices A4,..., A, a priori
so that a solution to the (SHIEP) may be written in the form of (5), however, is by no
means easy. One may select, for example, Ay = diag(a) and all other 4;, 1 <1 < n,
such that diag(A;) = 0. Even so, the off-diagonal entries of A; are still completely
free. Picking the remaining part of A; arbitrarily would be an absurd thing to do since
the resulting (CIEP) may very well not have a solution at all. In fact, one can easily
construct a 2 x 2 example to demonstrate a near miss case where A;’s are such that a
certain combination A(c) from a special ¢ is very near a solution of the (SHIEP), yet
the entire affine subspace of A(c) from every possible ¢ does not intersect M(A). One
may then wonder why not to exploit the freedom in the (SHIEP) by further restricting
the structure of the matrix. For example, it seems to be a sensible requirement that
the matrix being constructed should be a Jacobi matrix, since there are really 2n — 1
given data elements (both a and A hav the same sum.) Again, one can easily check that
there is no real numbers by, by so that the 3 x 3 matrix

1 b5 0
by 2 by
0 b 3

will have eigenvalues {—5, —4,15}. That is, the (SHIEP) for structured matrices is not
necessarily solvable. It is an interesting question to study what additional conditions
must be imposed in order that a more specified problem to have a solution, but in
this paper attention is paid only to the (SHIEP) arisen from the Schur-Horn Theorem.
Consequently, until A4, ..., A, are properly selected, any numerical techniques proposed
for (CIEP) are not directly applicable for the (SHIEP).

In contrast, a much easier iterative method that alternates points between 7 and
M(A) is possible. This procedure, called lift-and-projection for the reason that will
become clear from the geometry, will be discussed in section 2. The lift and pro-
jection method is essentially the same as the so called alternating projection method
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[4, 8, 11, 13] except that the latter requires the underlying sets to be convex. The set
M(A) is not convex. Nevertheless, we shall see for our problem that the so called proz-
1mity map can still be formulated. In particular, the projection is almost free and the
Wielandt-Hoffman theorem makes the action of lifting possible at the cost of a spectral
decomposition per step. We think this connection is worth mentioning even though the
rate of convergence is expected to be linear only.

Our main contribution in this paper is in the construction of a gradient flow on
the surface M(A) that moves toward the desired intersection point. No spectral de-
composition is needed. Our approach is similar to that developed in [9] with slight
modifications, but the application to the Schur-Horn theorem is apparently new. The
gradient flow is derived in Section 3. We should emphasize that our goal in this paper
is not to redo the proof of the Schur-Horn theorem, but rather to develop an algorithm
that can compute the results promised by the theorem. On the other hand, if we can
show that our algorithm always finds a solution, then in return we have indeed offered
a different proof for the Schur-Horn theorem. Numerical examples are demonstrated in
Section 4.

2. Lift and Projection.

In [10] we have introduced a notion that interprets numerical methods proposed in
[12] for the (CIEP) as a coordinate-free Newton method. For the (SHIEP), however,
one quickly discover that the same idea does not work. The search for a 7 -intercept
of a tangent array from M(A) amounts to a nonlinear system of ﬂnz——l'll equations in
n(n — 1) unknowns. When n > 3, this is an underdetermined system. Unlike those
methods discussed in [12], there is no clear strategy on how the this system could be
solved. In this section, we replace the concept of "tangent” by that of "projection” and
propose an analogous but easier iteration method, called lift and projection.

The main idea is to alternate between 7 and M(A) in the following way: From
a given T®) ¢ T first we find the point Z(*) € M(A) such that |T¢*) — Z(®)|p =
dist(T®*), M(A)). Then we find T*+1) € T such that ||T*+1) — Z()||p = dist(T, Z*)).
Here, as usual, the distance is measured in the Frobenius norm. A schematic diagram
of the iteration is illustrated in Figure 1, even though the topology of M(A) is much
more complicated. We call Z(¥) a lift of T®) onto M(A) and T*+1) € T a projection of
Z®) onto 7.

The projection is easy to formulate. In fact, the projection T' = [t;;] of any Z =
[2i;] € M(A) onto T must be given by

o {30 417

a;, ifi=j.

The Wielandt-Hoffman theorem [15, Theorem 6.3.5], on the other hand, furnishes
a mechanism for lifting. For demonstration purpose, we shall assume that both A and
the given T' € 7 have simple spectrum. (For the case of multiple eigenvalues, the result
only needs a slight modification.) Suppose T = QT DQ is a spectral decomposition of
T where D is a diagonal matrix of eigenvalues. Then the shortest distance between T'
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Fig. 1. Geometric sketch of lifting and projection

and M(A) is attained at the point (i.e., the lift of T onto M(A))

() Z = QTdiag(Anys- - A, )@

where 7 is a permutation so that A, ,..., Ar, are in the same algebraic ordering as the
diagonal entries in D. The justification on why this assertion is correct has already
been proved in [7, 9].

Since in either step of lifting or projection we are minimizing the distance between
a point and a set, we have

(8) I — ZED)E < 70D — Z20)F < |70 - 203

The lift and projection clearly is a descent method. The sequence {(T®*), Z*)} will
converge to a stationary point for the problem (4).

Because M(A) is not a convex set, a stationary point for (4) is not necessarily an
intersection point of 7 and M(A). This is a major difference between our method and
the alternating projection method [4, 8, 11, 13]. On the other hand, the application
of the Wielandt-Hoffman theorem to formulate the proximity map despite of the non-
convexity is remarkably simple and quite interesting. The rate of convergence being
expected to be linear only, this method might not be very efficient.



3. Gradient Flow.
We now consider a continuous approach for the (SHIEP) that does not need any
spectral decomposition. Similar to (4), our idea now is to solve the problem

i '—l ia — diag(a)||2
©) Jmin F(@) = 3 |diss(@7AQ) - diagla)]3

The Schur-Horn theorem guarantees that there exists a ¢ at which F' vanishes. We
now explain how to improve the matrix ¢ when F(@Q) is not minimal.
In terms of the Frobenius inner product

(10) <A, B>:=) a;by,
i

the Fréchet derivative of F' at @ acting on an arbitrary matrix U € R™™ can be
calculated as follows:

F(Q)U = 2(diag(QTAQ) — diag(a), diag(QTAV))
(11) = 2(diag(QTAQ) — diag(a), QTAU)
— 2(AQ(diag(Q"AQ) — diag(a), U).

The second equality in (11) follows from the observation that the first entry in the
inner product is a diagonal matrix which results in the same inner product with either
diag(QTAU) or QTAU. The third equality follows from the adjoint property of the

inner product. The gradient VF at ¢ can now be represented as

(12) VF(Q)=2AQ8(Q)
with B(Q) := diag(QTAQ) — diag(a).

Once we have (12), the entire framework developed in [9] for projected gradient
method can be applied. In particular, the projected gradient is readily available.
THEOREM 3.1. The projection g(Q) of VF(Q) onto O(n) is given by

(13) 9(Q) = QIRTAQ, 5(Q)]

where [A, B] := AB — BA 1is the Lie bracket.
Proof. See [9, formulas (20), (21) and (22)]. O

We may also calculated the projected Hessian as follows.

THEOREM 3.2. Let @ € O(n) be a stationary point of (9). Any tangent vector H
of the manifold O(n) at Q 1is of the form H = QK for some skew symmetric matriz K.
The projected Hessian ¢'(Q) acting on H is given by

(14) < (Q)QK,QK >=< diag[Q"AQ,K] — [8(Q), K], [QAQ,K] > .

Proof. See [9, formulas (27), (28) and (29)]. O

5



The vector field

(15) Q=-9(Q)

defines a steepest descent flow on the manifold O(n) for the function F(Q). Let X :=
QTAQ and o X) := B(Q) = diag(X) — diag(a), then correspondingly

(16) X = [X,[a(X), X]]

defines an isospectral flow on M(A) that moves to decrease the distance between
diag(X) and diag(a).

The algorithm for solving the (SHIEP) is then simply to integrate the differential
equation (16) from a starting point Xy € M(A).

We now take a closer look at where the flow of (16) will converge to. By the way
we construct (16), a natural Lyapunov’s function

(1) G(t) = 5 diag(X(1)) — diag(a)|[%

exists. Lyapunov’s second method [5, Theoremb5.5] implies that a limit point of (16)
must satisfy [a(X), X] = 0. For simplicity, we shall consider only the generic case where
all Aq,... A, are distinct. The case with some eigenvalues equal to each other is a little
bit more complicate to analyze, although our numerical experiences seem to indicate
that the convergence behavior should be similar. Under our assumption, a stationary
point @ of (9) necessarily corresponds to an equilibrium point X = QTAQ of (16), and
vise versa.

Recall that 8(Q) = diag(QTAQ) — diag(a). Obviously if B(Q) = 0 at a stationary
point @, then the corresponding X = QTAQ is a solution to the (SHIEP). Indeed, we
have the following observation that shows the stationary point ¢ in this case satisfies
the second order necessary condition for being a minimum of (9).

THEOREM 3.3. If B(Q) = 0 for some @ € O(n), then for all skew-symmetric
matrices K it is true that < ¢'(Q)QK, QK >= ||diag[QTAQ, K]||2 > 0. In other words,
the projected Hessian of F' at @) is positive semi-definite.

Proof. The result follows directly from (14) and the definition of Frobenius inner
product (10). O

The strict inequality is not true in the above theorem. In fact, if we denote 2 :=

diag| X, K| = diag{w1, ..., wn}, then

n

1—1
(18) w; = stiksi - Z Tkt
s=1

t=1+1

Let X be fixed. Since >0 ; w; = 0, the system w; = 0 for ¢« = 1,...,n contains only
n — 1 independent equations in the ﬂnz—_ll unknowns k;;. We should be able to find
non-trivial skew symmetric matrix K that makes Q = 0. However, we now show that
the X’s such that 5(Q) = 0 are the only possible asymptotically stable equilibrium point
for (16).
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THEOREM 3.4. If B(Q) # 0 at a stationary point @), then there exists a skew-
symmetric matriz K such that < ¢'(Q)QK,QK >< 0. Thus, @ cannot be a local
minimum of (9).

Proof. Transforming similarly by a permutation matrix if necessary, we may assume

that 8(Q) is of the form

(19) /B(Q) = dia‘g{ﬁljﬂn SR 75’6]”15}

where I, is the n; X n; identity matrix and 8; > ... > B. Since [QTAQ,B(Q)] =0, it
follows that X = QTAQ must be block diagonal of the form

(20) X = diag{Xu1,..., X}

where each X; is a real symmetric matrix of size n; x n;. Define E = QB(Q)QT.
Since [A, E] = 0 and all entries of A are distinct, E is a diagonal matrix whose entries
E = diag(ey, ..., e,) are simply a permutation of those of B(Q). Note that QT is the
orthogonal matrix of eigenvectors of X. So ) must also have the same structure as X.
For any n x n skew-symmetric matrix K = [Kj;], partitioned in the same way as in (20),
that satisfies K;; = 0 for all 2 = 1,...,k, it is easy to check that diag[QTAQ, K] = 0.

The projected Hessian now becomes

<¢'(Q)QK, QK > = —<[8(Q),K],[Q"AQ, K] >
= —<EK—-KE,AK— KA >
(21) = =23 (N = X)(ei — &)k

i<j

where K = [l~c”] = QKQT is still a skew symmetric matrix with the same structure as
K. From (21), it is now easy to pick up values of l~cij so that < ¢'(Q)QK,QK >< 0. O

Theorem 3.4 implies that at a stationary point @ where 8(Q) # 0 there exists a
certain direction along which the functional value F' is increasing. The corresponding
equilibrium point X = QTAQ), therefore, has at least one unstable (repelling) direction.
To converge to such an unstable equilibrium point, the descent flow X(¢) must stay on
very special directrices which form a measure zero, nowhere dense subset in R"®. From
the numerical analysis standpoint, this kind of equilibrium point will never be realized
because computation along the directrix can easily be derailed by round-off errors and
hence pushed away from the unstable equilibrium point.

4. Numerical Examples.

Since a(X) is a diagonal matrix, all diagonal matrices on M(A) are equilibrium
points for (16). Thus one should avoid using A as the initial value X;. One way
to generate a reasonable initial value is by defining Xy := QTAQ with @ a random
orthogonal matrix. There are many techniques for generating such a @ [1, 19].

All the following computations are done on a DECstation 5000/200 with double
precision. But we display all the numbers with only five digits so as to fit the data
comfortably in the running text.



ExXAMPLE 1. To simulate reasonable test data, we start with a randomly generated
symmetric matrix

4.3792x107* 4.3055x10™% 1.2086x107° 1.0968x10%° 1.4616x10™°
4.3055x107* 1.0388x10™° 1.5021x10%° 7.2134x107! 1.4543%x107*
1.2086x10%° 1.5021x10%° 1.5396x102 9.7239x10~! 7.2076x10~!
1.0968x10%° 7.2134x1071 9.7239x10~* 1.8609x107° 1.2622x101°
1.4616x10%° 1.4543x1071 7.2076x10* 1.2622x107° 1.4024x101°

Mo

The diagonal entries
a = [4.3792x107",1.0388x101°,1.5396x1072,1.8609x10%°, 1.4024x10™°]
and eigenvalues
A= [-1.4169x107° —5.6698x107",4.3890x107",1.4162x101°,4.8842x101°]
of My are used as the test data. Now we randomly generate an orthogonal matrix

—6.4009x1071 —5.3594x1071 —1.8454x10~! —3.3375x1072 —5.1757x107!
2.1804x107% —1.2359x107' —5.0336x107* —8.2193x10~  9.0802x10~2
Q= | —7.2099x107'  5.6072x107*  1.4302x107% —2.4876x10~' 3.2199x107*
2.8417x1073 —1.9828x107'  8.4401x107* —4.9375x10~! —6.7297x10~2
—1.5134x1071 —5.8632x10"  3.0406x1073 1.3284x107'  7.8464x107!

and define Xy = QTAQ;. We use the subroutine ODE in [18] as the integrator where
local control parameters ABSERR and RELERR in ODE are set to be 10712, We
examine the output values at time interval of 1, and assume the path has reached an
equilibrium point when two consecutive output points are within a distance of 10710,
At t = 11, the gradient flow converges to the matrix

4.3792x1071  2.6691x107! —1.9178x1071 —6.1356x10"" —1.5920x101°
2.6691x10"1  1.0388x10%° —7.2845x107* —8.6726x10~! —1.9618x101°
M, = | —1.9178x107! —7.2845x107*  1.5396x107% —6.3601x10"! 1.6256x107*
—6.1356x1071 —8.6726x107! —6.3601x10~!  1.8609x10™°  1.5032x10™°
—1.5920x10%° —1.9618x10M°  1.6256x107'  1.5032x10T°  1.4024x101°

The flow in theory should stay in the surface M(A). The eigenvalues of M; are checked
to agree with A to 10 digits.
If we use another random orthogonal matrix

—4.7879x1071  8.7948x107% —4.1424x1072  3.0041x107'  8.2022x107!
—4.1099x1071 —5.7368x10"t —6.8750x10"! —7.0455x1072 —1.5607x107*
Q2 = 1.7225x1071  6.1511x107* —6.1521x107% —4.2281x10"'  1.8634x107!
—7.1440x1071  2.5656x1071  3.2325x107! —5.0226x107' —2.5895x107*
2.4860x107! —4.6795x107*  2.1060x10"* —6.8830x10~!  4.4845x107*
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then at ¢ ~ 13, the gradient flow converges to the matrix

4.3792x1071 —1.4087x10T° 4.8811x107' —2.0882x10"°  1.2285x10%°
—1.4087x10%°  1.0388x10T°  2.3067x10"! 1.1160x10%° —8.8543x107*

M, = 4.8811x1071  2.3067x107!  1.5396x1072 —7.2958x107%  7.2054x10~!
—2.0882x10%°  1.1160x10M° —7.2958x107%  1.8609x10%° —3.7601x107*
1.2285x10%° —8.8543x1071  7.2054x10~! —3.7601x10~*  1.4024x10%°

whose eigenvalues again agree reasonably well with A.

ExXAMPLE 2. Under the same stopping criterion, we repeat the experiment in
Example 1 with 2,000 test data. The diagonal entries a and eigenvalues A are generated
from symmetric matrices with normal distribution entries. The orthogonal matrices )
are generated from the QR decomposition of other stochastically independent (non-
symmetric ) random matrices [19]. We collect the length of integration required for
reaching convergence in each case. This length should be inherent only to the individual
problem data (and the stopping criterion), but should be independent of the machine
used in computation. The histogram of the lengths is presented in Figure 2 where
for better display the frequency distribution is plotted in its natural logarithm. When
there is no distribution for a particular length (so the logarithm is negative infinity), the
plot is left blank. As can be seen, about 77% of the cases converge with the length of
integration less than 7 and about 93% converge with length less than 17. The maximal
length of integration occurred in this test is 296. It perhaps is also interesting to note
that all the 2,000 cases converge to a desirable solution. Confirming our previous
argument over Theorem 3.4, none of the cases gets trapped at a point where F(Q) # 0
although this kind of equilibrium points do exist.

EXAMPLE 3. In this example, we experiment with the case when multiple eigen-
values A = [1,1,1,1,4] are present. We take a = [1.0749,1.3309,1.1197,2.3035,2.1709].

Using the random orthogonal matrix

—4.8713x1072 —1.3354x1071  9.4639x10~! —1.1419x107'  2.6666x107*
9.8790x107! —4.3307x1072  7.2187x107% —5.1681x1072 —1.1955x107*

Q= | —6.9873x1072 —4.2957x10"*  1.8176x10~! 6.5185x107' —5.9384x107" |,
3.0930x1072 —8.5347x1071 —2.5445%x107* —8.1527x107%  4.4637x107*
1.2584x1071  2.5953x107 —3.6892x1072  7.4347x107'  6.0225x107!

we find that a limit point exists at

1.0749x10%° —1.5748x1071 —9.4707x107%  3.1254x107'  2.9622x107!
—1.5748x1071  1.3309x107°  1.9903x10~! —6.5679x10™1 —6.2250x107*

M = | —9.4707x1072  1.9903x10™*  1.1197x10%° —3.9499x10~' —3.7437x107*
3.1254x107! —6.5679x1071 —3.9499x107*  2.3035x107°  1.2354x10+°
2.9622x107! —6.2250x1071 —3.7437x107*  1.2354x10%°  2.1709x10+°

when t =~ 41.
EXAMPLE 4. In this example, we consider the case when multiple diagonal entries
a =[1,1,1,1,1] are present. Using A = [1.9747,2.3050, 3.8938, —0.8128, —2.3608] and
9
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the random orthogonal matrix

—3.3399x1071  2.6628x107! —2.3522x107! —6.6904x107*  5.6089x10*
—3.5191x107 —8.8924x10™!  2.0821x107% —1.9279x10™*  6.9964x10~2

Q= 2.6488x107! —3.3460x107* —8.6998x10~* 1.8120x10~! 1.6787x107*
6.2901x107% —1.2402x107*  2.8591x1072 —6.7641x10"! —3.6141x107*
5.4662x1071 —1.0493x1071  3.7899x10~' 1.5765x10~! 7.2230x107!

we find a limit point exists at

1.0000x10%° —1.4905x10™° 1.1257x107* —1.4301x107* —1.6216x10%°
—1.4905x10%°  1.0000x10%° —8.1015x107% —4.5784x107* —7.5669x10*

M = 1.1257x1071 —8.1015x107%  1.0000x107° 1.4749x10%° —2.1841x10%°
—1.4301x107 —4.5784x10™!  1.4749x10™° 1.0000x10%° 4.3081x107*
—1.6216x101° —7.5669x10~! —2.1841x10™® 4.3081x10~* 1.0000x10*°

when ¢ ~ 8.
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5. Conclusion.

The Schur-Horn theorem guarantees that the inverse eigenvalue problem of con-
structing a Hermitian matrix with prescribed diagonal entries and eigenvalues always
has a solution. The numerical methods described in [12] will not work in general for
finding such a solution. We propose two methods. The lift-and-project method makes
a connection with the Wielandt-Hoffman theorem. The gradient flow method can be
integrated by any available ordinary differential equation solver. We show the gradient
flow method always converges. Numerical experiment seems to suggest that the method
works reasonably well.
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