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Model updating concerns the modification of an existing but inaccurate model with measured data. For models

characterized by quadratic pencils, themeasured data usually involve incomplete knowledge of natural frequencies,

mode shapes, or other spectral information. In conducting the updating, it is often desirable tomatch only the part of

observed data without tampering with the other part of unmeasured or unknown eigenstructure inherent in the

originalmodel. Such anupdating, if possible, is said to haveno spillover. This paper studies the spillover phenomenon

in the updating of quadratic pencils. In particular, it is shown that an updatingwith no spillover is always possible for

undamped quadratic pencils, whereas spillover for damped quadratic pencils is generally unpreventable.

Nomenclature

A, B = parameter matrices; Eq. (37)
C = damping matrix in a pencil
C0 = initial damping matrix in a pencil
D = diagonal matrix; Eq. (25)
f�t� = external force
H, Ĥ = intermediate matrices
K = stiffness matrix in a pencil
K0 = initial stiffness matrix in a pencil
kmax = maximal allowable number of prescribed

eigenpairs; Eq. (28)
M = mass matrix in a pencil
M0 = initial mass matrix in a pencil
Q��� = quadratic pencil in �
Q̂ = orthogonal matrix in the QR decomposition

R̂ = upper triangular matrix in the QR decomposition

Rn = n dimensional Euclidean space over real numbers
Rn�n = vector space of all n � n real-valued matrices
S, T, U = parameter matrices; Eq. (33)
t = time variable
V = orthogonal matrix; Eq. (25)
v = eigenvector
X = eigenvector matrix
X̂ = extended matrix of X; Eq. (44)
X1 = eigenvector matrix with eigenvectors fuigki�1
X2 = eigenvector matrix of inert eigenvectors
x = state variable
_x = derivative of x with respect to time t
Y = eigenvector matrix with eigenvectors fyigki�1
� = (diagonal) parameter matrix

�C = correction of damping matrix C
�K = correction of stiffness matrix K
�M = correction of mass matrixM
�Q��� = incremental pencil; Eq. (59)
� = (diagonal) eigenvalue matrix
�̂ = expanded matrix of �; Eq. (45)
�2 = (diagonal) eigenvalue matrix of inert eigenvalues
� = eigenvalue
f�i;uigki�1 = initial eigenpairs to be updated

��2�j = 2 � 2 real-valued matrix with complex
eigenvalues �j � �jı; Eq. (38)

� = ��2
� = parameter matrix; Eq. (53)
� = (diagonal) eigenvalue matrix with eigenvalues

f�igki�1
� = parameter matrix; Eq. (23)
f�i; yigki�1 = newly measured eigenpairs
�1, �2 = intermediate matrices
�, 	 = intermediate matrices

I. Introduction

M ODELING is one of the most fundamental tools used to
simulate the complex world. The goal of modeling is to come

up with a representation that is simple enough for mathematical
manipulation yet powerful enough for describing, inducing, and
reasoning complicated phenomena. Partially because of the inevit-
able disturbances to the measuring devices of an observation and
partially because of the insufficient representation of the true attri-
butes of a physical system, precise mathematical models are rarely
available in practice. With gradual confidence built on improved
technologies or repeated experiments, the measured data are often
regarded as more realistic to the true natural phenomena than the
predicted value from an existing model. It thus becomes necessary,
when compared with realistic data, to update a primitive model to
attain consistency with empirical results. This procedure of updating
or revising an existing model is an essential step toward establishing
an effective model. This paper concerns the model updating of
quadratic pencils to reflect measured spectral information [1–3].

Quadratic pencils arise from the study of the second-order
differential system

M 
x	 C _x	 Kx� f�t� (1)
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where x 2 Rn andM, C, K 2 Rn�n. Such a differential system has a
wide scope of important applications, including applied mechanics,
electrical oscillation, vibroacoustics, fluid mechanics, signal
processing, and finite element discretization of partial differential
equations (PDEs). In most applications involving Eq. (1),
specifications of the underlying physical system are embedded in
the matrix coefficients M, C, and K. If a fundamental solution to
Eq. (1) is represented by

x �t� � ve�t

then the scalar � and the vector vmust solve the quadratic eigenvalue
problem (QEP):

��2M	 �C	 K�v� 0 (2)

In this way, the bearing of the dynamic system (1) can be largely
interpreted via the eigenvalues and eigenvectors of the algebraic
system (2). Because of this connection and applications to other
disciplines, considerable efforts have be devoted to the QEP in the
literature. A collection of applications, mathematical properties, and
a variety of numerical techniques for the QEP can be found in the
survey treatise by Tisseur and Meerbergen [4]. For convenience, the
quadratic pencil Q��� � �2M	 �C	 K will be identified by the
triplet �M;C;K� of matrices henceforth.

The eigenvalue problem associated with the model (1) can be
studied from two different aspects. The process of analyzing and
deriving the spectral information and, hence, inferring the dynamic
behavior of a system froma priori knownphysical parameters such as
mass, length, elasticity, inductance, capacitance, and so on is referred
to as a direct problem. The inverse problem, in contrast, is to validate,
determine, or estimate the parameters of the system according to its
observed or expected behavior. In other words, the concern in the
direct problem is to express the behavior in terms of the parameters,
whereas in the inverse problem, the concern is to express the
parameters in terms of the behavior. The inverse problem is just as
important as the direct problem in applications. The model updating
problem considered in this paper is a special case of the inverse
eigenvalue problem.

The inverse eigenvalue problem is a diverse area full of research
interests and activities. See the newly revised book by Gladwell [5],
the review article [6], and the recently completed monograph by Chu
and Golub [7] in which more than 460 references are collected. At
present, the theory and algorithms for the quadratic inverse
eigenvalue problem (QIEP), that is, finding �M;C;K� from given
eigeninformation, are far from being complete. Conceivably, the
quadratic problem is more challenging than the linear problems with
many unanswered questions.

There are various ways to formulate a QIEP, differing mainly in
the desirable structure of the matrix coefficientsM,C, andK and the
available eigeninformation. The focus of this paper is on the updating
of self-adjoint QIEPs in which all matrix coefficients are symmetric.
Be cautioned that this is just an important first step toward more
sophisticated structures. For example, in vibration modeling, often
the mass matrixM is diagonal and positive, both the damping matrix
C and the stiffness matrix K are symmetric and banded, and K is
positive semidefinite. Indeed, this paper is centered around one
specific scenario in which only a few eigenvalue and the
corresponding eigenvectors (measured at full degree of freedom) are
available. There are multiple reasons why such a scenario is
justifiable, namely, in vibration industries, including aerospace,
automobile, and manufacturing, through vibration tests in which the
excitation and the response of the structure at selected points are
measured experimentally, there are identification techniques to
extract a portion of eigenpair information from the measurements.
However, quantities related to high frequency terms in a finite-
dimensional model generally are susceptible to measurement errors
because of the finite bandwidth of measuring devices. It is simply
unwise to use experimental values of high natural frequencies to
reconstruct a model. In fact, in a large and complicated physical
system, it is often impossible to acquire knowledge of the entire

spectral information. Although there is no reasonable analytical tool
available to evaluate the entire spectral information, only partial
information through experiments is attainable. Additionally, it is
often demanded, especially in structural design, that certain
eigenvectors should also satisfy some specific conditions. For these
reasons, it might bemore sensible to consider amodel updating using
only a fewmeasured eigenvalues and eigenvectors [1,8,9]. Note that
in practice the eigenvectors are measured only at finite degree of
freedombecause of hardware limitations. There areways to dealwith
incomplete measured data, such as model reduction and model
expansion techniques. See the discussion in the book by Friswell and
Mottershead [1] and some algorithmic approaches developed in [10].
For the purpose of clarity, it is assumed that the eigenvectors in this
paper have been measured to the full degree of freedom, or some
measures have been taken so that a comparison with analytical
eigenvectors is possible.

It is often desirable in updating an existent model that the newly
measured parameters enter the system without altering other
unrelated vibration parameters. The so-called no spillover
phenomenon in the engineering literature imposes an additional
challenge in model updating. No spillover is required either because
these unrelated parameters are proven acceptable in the previous
model, and engineers do not wish to introduce new vibrations via
updating, and engineers simply do not know any information about
these parameters. The quadratic model updating problem (MUP)
with no spillover, therefore, can be stated as follows.

MUP: Given a structured quadratic pencil �M0; C0; K0� and a few
of its associated eigenpairs f��i;ui�gki�1 with k
 2n, assume that
newly measured eigenpairs f��i; yi�gki�1 have been obtained. Update
the pencil �M0; C0; K0� to �M;C;K� of the same structure such that

1) The subset f��i;ui�gki�1 is replaced by f��i; yi�gki�1 as k
eigenpairs of �M;C;K�.

2) The remaining (unknown) 2n � k eigenpairs of �M;C;K� are
the same as those of the original �M0; C0; K0�.

The MUP, as stated before, is of immense practical importance.
Similar problems have been studied in the literature. The work by
Friswell et al. [11] updates the model by minimal adjustment of only
the damping and the stiffness matrices. Baruch [12], Bermann and
Nagy [13], andWei [14,15] consider only undamped systems.Minas
and Inman [16,17] correct the finite element model with measured
modal data. The team of Datta, Elhay, Ram, and Sarkissian [18–21]
and the team of Lin and Wang [22] adopt the feedback control
approach. Despite the many efforts, there does not seem to be a
satisfactory theory or techniques thus far, even for the case in which
the required structure in the MUP is self-adjoint only. Existing
methods have severe computational and engineering limitations,
which restrict their usefulness in real applications. One of the main
concerns is that these methods “cannot guarantee that extra, spurious
modes are not introduced into the range of the frequency range of
interest.” [1] The purpose of this paper is to provide a systematic
study toward this spillover phenomenon.

Themain contribution of this paper is as follows. This paper offers
a simple yet effective mathematical argument to reach a conclusion
that is perhaps a rather surprising disappointment to engineering
practitioners: for a damped system, the MUP as is described here
generally is unsolvable. In other words, unless the newly measured
eigenpairs f��i; yi�gki�1 satisfy some fairly stringent conditions, an
updating of a damped quadratic pencils will surely cause spillover.
The characterization of those sufficient and necessary conditions for
solvability is complicated enough that it warrants a separate paper
[23] to address the details. This paper concentrates on the
unsolvability, which offers a different view of the MUP.

The notation will prove to be convenient. The diagonal matrix
� 2 R2n�2n represents the “eigenvalue matrix” of the quadratic
pencil (2) in the sense that � is in real diagonal form with 2 � 2
blocks along the diagonal replacing the complex-conjugate pairs of
eigenvalues originally there. Similarly, let X 2 Rn�2n represent the
eigenvector matrix in the sense that each pair of column vectors
associated with a 2 � 2 block in� retains the real and the imaginary
part of the original complex eigenvector. It is clear that the
relationship
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MX�2 	 CX�	 KX � 0n�2n (3)

holds. Partition X and � as

X� �Y; X2�; �� diagf�;�2g (4)

where the pair �Y;�� 2 Rn�k � Rk�k corresponds to the portion of
eigenstructure that has been modified, and �X2;�2� corresponds to
the inert portion of eigenstructure in the originalmodel,which should
not be changed. To answer whether a self-adjoint quadratic pencil
can be updated with no spillover, a more fundamental question is
whether self-adjoint quadratic pencils can have arbitrary spectral
structure �X;��. The main thrust in the paper is to answer the MUP
from the QIEP point of view.

II. Zero Damping

We first consider the self-adjoint pencil:

�2M0 	 K0

whereM0 is assumed to be positive definite. It is known in this case
that �2 is real. Thus, by defining � :� ��2, we can rewrite the
quadratic pencil as a linear pencil

�M0 � K0 (5)

effectively reducing the number of eigenvalues for the system (5) to
n. We shall continue using the same notation in (4) to indicate the
partition of eigenstructure for (5), except that we know for sure in this
case that � 2 Rn�n is truly diagonal and that no complex-valued
eigenvectors are involved in X 2 Rn�n. We shall make a practical
assumption that all diagonal entries of � are distinct. Such an
assumption can be deemed reasonable because multiple roots are
sensitive to perturbations and, hence, are hardly observable in real
applications.

A. Two-Sided Updating

Given �X;��, this updating problem concerns finding symmetric
matrices �M and �K such that the following equations hold
simultaneously:

�M0 	�M�X2�2 � �K0 	�K�X2 (6)

�M0 	�M�Y�� �K0 	�K�Y (7)

Note that each eigenpair gives rise to n equations and that �M and
�K involve only n�n	 1� unknown entries. Because there are n2

equations in n�n	 1� unknowns, it is likely that the system (6) and
(7) is solvable for any given �X;�� where X 2 Rn�n is nonsingular
and� 2 Rn�n is diagonal. In other words, not only the updating with
no spillover is always possible, but there are n degrees of freedom in
choosing the parameters. The question is how to find such a general
solution. The following analysis is classical in the literature. We
include somewhat details for completion.

Our answer comes from the observation that for the linear pencil
�M � K to have eigenstructure �X;��, it is necessary that

��X>;�>X>�
�
K>

M>

�
� 0 (8)

On the other hand, it is trivial that

��In;�>�
�
�>S

S

�
� 0 (9)

for any S 2 Rn�n. We thus obtain a parametric representation:

M � S>X�1; K � S>�X�1

Weare interested in selecting S so as to construct self-adjoint pencils.
ForM to be symmetric, the matrix S must be such that

S>X�1 � X�>S

implying that the matrix � defined by

� :� SX� X>S> (10)

is symmetric. ForK to be symmetric, the matrix Smust also be such
that

S>�X�1 � X�>�>S

implying the equality

�>�� �� (11)

Because� is of diagonalmatrixwith distinct entries, it follows that�
is also a diagonal matrix containing exactly n free parameters. Upon
choosing an arbitrary�, a substitution by S> � X�>� concludes that
the linear pencil �M � K with

M� X�>�X�1 (12)

K � X�>��X�1 (13)

is self-adjoint and has eigenstructure �X;��. This is the parametric
solution to the inverse eigenvalue problem associated with �X;��.
More important, if the parameter matrix� is positive definite, then so
is the matrixM. We thus have proved the following fact.

Theorem 2.1: A self-adjoint linear pencil can have arbitrary
eigenstructure with distinct eigenvalues and linearly independent
eigenvectors. Indeed, given an eigenstructure �X;��, the solutions
�M;K� form a subspace of dimensionality n in the product space
Rn�n � Rn�n and can be parameterized by the diagonal matrix � via
the relationships (12) and (13).

The task of modifying a partial eigenstructure from �X1;�1� to
�Y;�� while maintaining the remaining eigenstructure �X2;�2�,
therefore is possible.

Corollary 2.2: Given any k � n, assume that the observed
eigenvalues � and the original eigenvalues �2 are all distinct.
Assume also that the corresponding observed eigenvectors Y and the
original eigenvectorsX2 form an nonsingularmatrix. Then themodel
updating of (5) with no spillover is always possible.

With the parameterization (12) and (13) in hand, we can further
refine the model updating problem by demanding that the changes
�M and�K be kept atminimumwith respect to somemeasurement.
For instance, the model updating problem could be modified to the
problem of finding the optimal solution to the minimization problem
[24]:

min
��diagonal

kX�>�X�1 �M0k2F 	 kX�>��X�1 � K0k2F (14)

We hastily point out that in the recipe (12) and (13) for
constructingM andK, as well as in the minimal change formulation
(14), knowledge of the full eigenstructure is required. This is
precisely the scenario which we dismissed earlier as not feasible in
practice. What we have proved is that the updating with no spillover
is possible in theory. It remains a problem of practical importance to
constructM and K without any a priori knowledge of �X2;�2�.

We demonstrate one possible way of constructing M and K
without any prior knowledge of �X2;�2�. Recall that wemay always
assume without loss of generality that the eigenvectors �X1; X2� 2
Rn�k � Rn��n�k� of the original pencil �M0 � K0 are normalized in
such a way that �

X>1
X>2

�
M0�X1; X2� � In (15)

�
X>1
X>2

�
K0�X1; X2� � diagf�1;�2g (16)

Likewise, by choosing �� In, we see that
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M� X�>X�1 (17)

K � X�>�X�1 (18)

If none of the diagonal entries is zero, then from the facts that

M�1 � XX> � YY> 	 X2X
>
2 ;

K�1 � X��1X> � Y��1Y> 	 X2�
�1
2 X

>
2 ;

M�10 � X1X
>
1 	 X2X

>
2 ; K�10 � X1�

�1
1 X

>
1 	 X2�

�1
2 X

>
2

we can expressM�1 and K�1 as

M�1 �M�10 	 YY> � X1X
>
1 (19)

K�1 � K�10 	 Y��1Y> � X1�
�1
1 X

>
1 (20)

showing the construction of M and K without the knowledge of
�X2;�2�. Note that the previous approach constructs M�1, not M.
Note also that thematrix coefficientsM andK constructed in thisway
are uniquely determined, and we no longer have the freedom in
selecting other �. Our construction demonstrates only the point that
in theoryM can be constructed without reference to X2, but may not
be of much value in real application. Developing a more practical
way of constructingMwithout reference toX2 remains an interesting
research topic. We do have in this case the inequalities

kM0M
�1 � Ik � kM0kkX1X

>
1 � YY>k;

kK0K
�1 � Ik � kK0kkX1�

�1X>1 � Y��1Y>k

which might be useful for estimating an upper bound for (14).

B. One-Sided Updating

It might beworthy to briefly examine another scenario proposed in
the dissertation by Carvalho [25]. The question is whether an
updating can be accomplished by just modifying one single
coefficient matrix, say K0. That is, instead of (6) and (7), can a
symmetric matrix �K be found such that the equations

M0X2�2 � �K0 	�K�X2 (21)

M0Y�� �K0 	�K�Y (22)

are satisfied? A quick count shows that there are n2 equations in
n�n	 1�=2 unknowns. We think that the updating problem as an
overdetermined system cannot be solved unless the newly prescribed
eigenstructure �Y;�� satisfies some consistency stipulations. To
explore the necessary conditions, we first claim that any feasible
candidate �K must be parameterized as follows:

Lemma 2.3: Assume that the eigenvectors �X1; X2� of the pencil
�M0 � K0 have been normalized as in (15) and (16). A symmetric
matrix�K satisfies (21) if and only if there exists a symmetricmatrix
� 2 Rk�k such that

�K �M0X1�X
>
1 M0 (23)

Proof: The matrix �K satisfies (21) if and only of �KX2 � 0,
implying that the row space of �K must be a left null space of X2,
which, by (15), is spanned by the rows of X>1 M0. The formula (23)
then follows from the requirement for the symmetry of �K.

With �K defined by (23), we now argue that the Eq. (22) holds
only when a rather strict consistency condition is satisfied. The call
made in [25] about updating (5)with no spillover on the singlematrix
K0 therefore can be achieved only when Y is of some very special
form. We remark that a similar spirit holds for the damped problem,
but the derivation of the corresponding form is much more
complicated [23]. □

Lemma 2.4: There exists a symmetric matrix � 2 Rk�k such that

M0Y�� �K0 	M0X1�X
>
1 M0�Y (24)

if and only if

Y � X1VD (25)

for some orthogonal matrix V 2 Rk�k and some nonsingular
diagonal matrix D 2 Rk�k.

Proof: The proof is based on the orthogonality assumed in (15) and
(16) among the eigenvectors. Because Y>M0X2 � 0, Y must be of
the form Y � X1L for some k � kmatrix L. Furthermore, Y>M0Y �
L>X>1 M0X1L� L>L is a diagonal matrix. We thus can write L�
VD as described. □

III. Quadratic Inverse Eigenvalue Problem

We have seen in the preceding section that a self-adjoint pencil
�M � K in Rn�n with positive definite M can have arbitrary n
distinct real eigenvalues and n linearly independent real
eigenvectors. Consequently, the model updating with no spillover
for self-adjoint linear pencils is always possible. Before we explore
whether this result can be extended to quadratic pencils, it is natural
to ask how much partial eigenpair information is allowable for
constructing a self-adjoint quadratic pencil �2M	 �C	 K. A
special case related to this question can be found in an earlier paper
[26]. A more detailed analysis partially addressing this issue is given
in the recent paper by Kuo, Lin, and Xu [27]. Our main contribution
in this section is a complete characterization of the general solution.

Without causing ambiguity, we shall use the same notation
�X;�� 2 Rn�k � Rk�k to denote k given eigenpairs. For themoment,
k can be any integer between 1 and 2n. We shall assume that � is
closed under complex conjugation. Thus� is of diagonal form with
2 � 2 blocks along the diagonal wherever a complex-conjugate pair
of eigenvalues appear in the prescribed spectrum.

Consider the algebraic system

MX�2 	 CX�	 KX� 0n�k (26)

for the triplet �M;C;K�. There are nk equations in 3n�n	1�
2

unknowns
in this homogeneous equation. It is intuitively true that if the number
k of prescribed eigenpair is capped by the bound

k < 3�n	 1�=2 (27)

then the system (26) is underdetermined and the solutions form a
subspace of dimensionality �3n�n	 1�=2� � nk; otherwise, the
algebraic system and, hence, the QIEP, will have only a trivial
solution. Inwhat follows,we prove that this conjecture is indeed true.
More important, in our proof, we provide a parametric representation
of the solution. For solvability, we thus see that the maximal
allowable number kmax of prescribed eigenpairs is given by

kmax �
�
3‘	 1; if n� 2‘
3‘	 2; if n� 2‘	 1

(28)

These bounds of kmax have the consequence that, in contrast to the
linear pencil, the remaining 2n � kmax eigenpairs of a quadratic
pencil cannot be arbitrarily assigned anymore. In other words, when
n � 3, there will be no room to maintain no spillover if the updating
intends to replace kmax original eigenpairs by newly measured data.

We first analyze the necessary condition for the self-adjoint
quadratic pencil �M;C;K� to have eigenstructure

�X;��Rn�k � Rk�k

For now, we have no restriction on k. Consider the matrix

	 :� �Ik;�>;�2>� 2 Rk�3k (29)

and let a basis of its null space be partitioned into three blocks so that
we can write
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U
T
S

2
4

3
5� 0k�2k (30)

where S, T, and U are matrices in Rk�2k. Obviously,

U���>T ��2>S (31)

is determined once S and T are specified. Any triplet �M;C;K�
satisfying (26) must be such that

	

X>K
X>C
X>M

2
4

3
5� 0k�n (32)

There must exist a matrix � 2 R2k�n such that

U
T
S

2
4

3
5�� X>K

X>C
X>M

2
4

3
5 (33)

BecauseM, C, and K are symmetric, the three matrices

A :� S�X (34)

B :� T�X (35)

F :� U�X (36)

must also be symmetric inRk�k. Substituting (31) into (36) and using
the fact that F� F>, we obtain a critical relationship between A and
B:

�>B � B�� A�2 ��2>A (37)

Observe that the difference on either side of (37) is a skew-symmetric
matrix.

The previously detailed necessary condition can also be used to
construct a solutions �M;C;K� in terms of A and B. Because of the
constraint (37), not all entries in A or B are free. We shall exploit
those free parameters and establish a parametric relationship. For
clarity, we divide our discussion into three cases.

A. Case k� n

This is the most important case, which plays a pivotal role in the
other two cases. Suppose that a symmetric matrix A 2 Rn�n is given.
Denote

� :� A�2 ��2>A

We need to see how B can be determined from the equation

�>B � B���

For convenience, wemay assumewithout loss of generality that� is
of the diagonal form

�� diagf��2�1 ; . . . ; �
�2�
� ; ��	1; . . . ; �‘g; (38)

where

��2�j �
�j �j
��j �j

� �
2 R2�2

�j ≠ 0, if j� 1; . . . ; �; �j 2 R if j� �	 1; . . . ; ‘, and ‘	 �� n.
PartitionB into ‘ � ‘ blocks, denoted byB� �Bij�, in such away that
diagfB11; . . . ; B‘‘g has exactly the same structure as �. Then the
�i; j� block of the skew-symmetric matrix �>B� B� is given by
one of the following three possibilities:

8>><
>>:
�>i Bij � Bij�j; if �	 1 � i; j � ‘
���2�i �>Bij � Bij�j; if 1 � i � � and �	 1 � j � ‘
���2�i �>Bij � Bij��

�2�
j �; if 1 � i; j � �

(39)

In the first case, Bij is a scalar. Upon comparing with the
corresponding blocks in �, we find that Bij is uniquely determined
except that Bii is free. Likewise, Bij in the second case is a 2 � 1
block and all its entries are uniquely determined. In the third case, if
we write

Bij �
x y
y z

� �

then

���2�i �>Bij � Bij��
�2�
j � �

x��i � �j� � y��i � �j� �z�i � x�j
x�i 	 y��i � �j� 	 z�j y��i � �j�

� �

It is clear that if i� j, then y is free and x	 z is a fixed constant, still
giving rise to 2 degrees of freedom. If i ≠ j, then all entries ofBij are
uniquely determined. In all, we conclude that the symmetric matrix
A 2 Rn�n can be totally arbitrary, whereas B is determined up to n
free parameters. We thus declare the following theorem.

Theorem 3.1: Given n distinct eigenvalues � and n linearly
independent eigenvectors X, both of which are closed under
conjugation, letA 2 Rn�n be an arbitrary symmetric matrix and letB
be a solution to the Eq. (37). Then the self-adjoint quadratic pencil
with its coefficients �M;C;K� defined by

M� X�>AX�1 (40)

C� X�>BX�1 (41)

K ��X�>�>�B	�>A�X�1 (42)

and has the prescribed pair �X;�� as part of its eigenstructure.
Proof: The proof is already contained in our construction

mentioned here, except that we need to remove the reference to the
intermediate parameters �, S, and T. The relationship (33) implies
thatM� X�>S� for some� 2 R2n�n. We also know from (34) that
A� S�X. Together, we can express M as M � X�>AX�1. Similar
arguments can be applied to C andK. □

It is worth mentioning that if A is selected to be symmetric and
positive definite, then so is the leading coefficient M. Indeed, the
previously stated construction parameterizes all possible solutions.

Corollary 3.2: The solutions �M;C;K� to the quadratic inverse
eigenvalue problem with eigenstructure �X;�� as described in
Theorem 3.1 form a subspace of dimensionality n�n	 3�=2 in the
product space Rn�n � Rn�n � Rn�n.

Corollary 3.3: With �M;C;K� being defined in Theorem 3.1, the
corresponding quadratic pencil can be factorized as

�2M	 �C	 K � X�>��In ��>��B	 ��In 	�>�A�X�1

� X�>��B	 A��In 	�����In ���X�1 (43)

Based on Corollary 3.3, the remaining eigenvalues therefore are
determined by those of the linear pencil �A	 B	 A�. Because the
entire A and part of B are free, there is room to impose additional
eigeninformation to the pencil. In [27], for instance, it was argued
that additional n eigenvalues could be specified. In our context, we
ask howmanymore eigenpairs can be prescribed. We shall study the
general case in Sec. III.C.

B. Case k< n

If less than n eigenpairs �X;�� are given, we can solve the QIEP
by embedding this given eigeninformation in a larger set of n
eigenpairs, giving leeway of more free parameters. In particular, we
expand X 2 Rn�k to
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bX :� �X; eX� 2 Rn�n (44)

where eX 2 Rn��n�k� is arbitrary while making X̂ nonsingular. A
caution should be taken when counting the degrees of freedom; the

columns in ~X should be considered as being normalized because
otherwise any normalization factor would have been included in the
arbitrariness ofA. With this normalization in mind, this expansion of
eigenvectors involves additional �n � 1��n � k� degrees of freedom.
We then expand � 2 Rk�k to

�̂ :� diagf�; ~�g (45)

where �̂ is a diagonal matrix with distinct eigenvalues. This
expansion of eigenvalues gives rise to another n � k degrees of

freedom. With �X̂; �̂� playing the role of �X;�� in Theorem 3.1, we
can now construct the coefficient matricesM,C, andK according to
the formulas (40–42), respectively, whereasA is taken as an arbitrary

symmetric matrix in Rn�n, and B, depending on �̂ through the
relationship (37), maintains n degrees of freedom. Note that the
parametrization of �M;C;K� in this embedding approach is

nonlinear in A, B, ~X and ~�. We summarize this construction as
follows:

Theorem 3.4: The quadratic inverse eigenvalue problem with k,
k < n prescribed eigenpairs is always solvable. For almost all
prescribed eigenstructure �X;��, the solutions form a subspace of
dimensionality �n�n	 3�=2� 	 n�n � k�.

Proof: We only need to justify the dimensionality. It is clear that
the solutions �M;C;K� to the homogeneous system (26) with k
prescribed eigenpairs form a subspace of dimensionality at least
�3n�n	 1�=2� � nk, but in the previous equation, we have just found
a parametric representation of �M;C;K�, which involves precisely

n�n	 1�=2 free parameters in A, n in B, n � k in ~�, and �n �
1��n � k� in ~X, giving a total of �3n�n	 1�=2� � nk free
parameters. □

C. Case k> n

This case is rather involved and, to our knowledge, has never been
discussed in the literature. At a first glance, we know from the
relationships (33–35) that

A� S�X � X>MX (46)

B� T�X� X>CX (47)

F�U�X � X>KX (48)

remain symmetric even in the case k > n. However,we cannot obtain
a parametric representation of M, C, and K from A and B directly
because X 2 Rn�k is no longer an injection transformation. The
challenge is to retrieve M, C, and K 2 Rn�n from the seemingly
overspecified A and B.

Rewrite the eigenvectors as

X� �Z1; Z2�

where Z1 2 Rn�n and Z2 2 Rn��k�n�. Then we see that

A� A11 A12

A>12 A22

� �
� Z>1MZ1 Z>1MZ2

Z>2MZ1 Z>2MZ2

� �
(49)

where Aij, i, j� 1, 2, are blocks with appropriate sizes. This
relationship suggests that we may choose a symmetric matrix A11 2
Rn�n arbitrarily and define

M� Z�>1 A11Z
�1
1 (50)

This selection give rises to n�n	 1�=2 degrees of freedom. Once
M 2 Rn�n is determined, the matrix A 2 Rk�k is completely
specified. There is no additional freedom in the choice of A. With

A 2 Rk�k given,we need to determine thematrixB 2 Rk�k so that the
necessary condition (37) is satisfied. Note that

B� B11 B12

B>12 B22

� �
� Z>1 CZ1 Z>1 CZ2

Z>2 CZ1 Z>2 CZ2

� �
(51)

Consider the (1, 1) block of B first. With A11 given, using an
argument similar to that made in Sec. III.A [see (39)], we see that the
submatrix B11 is completely determined up to n free parameters.
These would have determined a symmetric matrix

C� Z�>1 B11Z
�1
1 (52)

and, hence, the matrix B up to n free parameters. However, the very
same C should also equate the two sides of Eq. (37) at the (1, 2) and
(2, 2) blocks, respectively. These blocks involve more than n
equations to be satisfied.We have no choice but to go back to modify
the selection ofA11 and sacrifice some of the freedom. In otherwords,
the n free parameters in B11 and the matrix A11 must be further
restricted so that the remaining part of B also satisfies (37). Toward
that end, we reexamine the relationship between A and B block by
block. If we define

� :� Z�11 Z2 (53)

then it follows that

A� A11 A11�

�>A11 �>A11�

� �
; B� B11 B11�

�>B11 �>B11�

� �

If we partition the given eigenvalues as

�� diagf�1;�2g

where �1 2 Rn�n and �2 2 R�k�n���k�n�, then the critical condition
(37) to be satisfied can be expressed as three equations:

�>1 B11 � B11�1 � A11�
2
1 � �2>

1 A11 (54)

�>1 B11� � B11��2 � A11��2
2 � �2>

1 A11� (55)

�>2 �
>B11� ��>B11��1 ��>A11��2

2 � �2>
2 �>A11� (56)

Postmultiplying (54) by � and subtracting (55), we obtain that

A11�
2
1�	 B11�1�� A11��2

2 	 B11��2

It follows that

�>�A11��2
2 	 B11��2� ��>�A11�

2
1�	 B11�1��

� ��>A11�
2
1 	�>B11�1��� ��>2 �>B11 	 �2>

2 �>A11��

which is precisely (56). In the previous equation, the last equality
follows from taking the transpose of Eq. (55). What we have just
proved is that if we can solve Eqs. (54) and (55), then (56) is
automatically solved. We have indicated earlier that any given A11

will determineB11 through (54) up to n free parameters. Thus, it only
remains to choose the n free parameters in B11 and the n � n
symmetric matrix A11 to satisfy the n�k � n� linear equations
imposed by (55). Totally, only

n�n	 1�
2

	 n � n�k � n� � 3n�n	 1�
2

� nk

degrees of freedom remain.
Together with results proved in the preceding sections, we have

now established the following results.
Theorem 3.5: Given any 1 � k < 3�n	 1�=2, the quadratic

inverse eigenvalues with k prescribed eigenpairs is always solvable.
For almost all prescribed eigenstructure �X;��, the solutions form a
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subspace of dimensionality precisely �3n�n	 1�=2� � nk. The
maximal allowable number of prescribed eigenpairs is given by (28).

We demonstrate the occurrence of the spillover phenomenon
when k is too large.

Example 1. Suppose that the prescribed eigenstructure is given by

X �
1 0 0 2 �1
0 1 0 �2 0

0 0 1 2 2

2
4

3
5

and

�� diagf1; 2; 3; 5; 8g

This is a case in which n� 3 and k� kmax � 5. By our theory, the
solution has 3 degrees of freedom. Solving the linear system (54) and
(55), we find that the general solution to the QIEP can be represented
as

M�
s �s	 4u u

�s	 4u w � 7
10
s	 14

5
u

u � 7
10
s	 14

5
u � 3

10
u	 7

10
s

2
4

3
5

C�
�9s	 10u 3s � 12u �4u
3s � 12u � 27

5
s	 108

5
u � 7w 7

2
s � 14u

�4u 7
2
s � 14u 34

5
u � 77

10
s

2
4

3
5

K �
8s� 10u �2s	 8u 3u
�2s	 8u 54

5
s � 216

5
u	 10w � 21

5
s	 84

5
u

3u � 21
5
s	 84

5
u � 177

10
u	 84

5
s

2
4

3
5

It can be computed that

det�M�

�� 1

100
�7s� 10u��272u2 � 136su� 10wu� 10ws	 17s2�

Obviously, the parameters s, u and w can be chosen so that M is
positive definite. We also find that the sixth eigenvalue is given by

�6 ��2
52u2 	 37s2 � 161su	 40st� 35tu

17s2 � 136su � 10wu	 272u2 � 10sw

with its corresponding eigenvector given by

x 6 �
�
2

5

9s � 36u	 5w

7s� 10u
; 1;

2

5

9s � 36u	 5w

7s� 10u

�>
It is clear that x6 cannot be arbitrarily assigned and, hence, no
spillover cannot be maintained.

IV. Case Study of No Spillover

We have argued in the preceding section that in the process of
updating a quadratic pencil, the phenomenon of spillover is

inevitable in general. Thus it is natural and critical to ask under what
stringent conditions we can maintain no spillover. To answer this
question requires laborious and careful analysis, which is
accomplished in the paper [23]. It might be informative if we
demonstrate in this section by a numerical example on how specific
the prescribed eigenstructure �Y;�� must be to maintain the no
spillover in the updating.

Given the original self-adjoint quadratic pencil
Q��� � �2M0 	 �C0 	 K0, let its eigenvector and eigenvalue
matrices be expressed in real-value form as we have described
before. Partition the eigenstructure as �X1; X2� 2 Rn�2n and
diagf�1;�2g 2 R2n�2n, respectively, where the portion �X1;�1� 2
Rn�k � Rk�k is to be updated by newly measured eigenpair �Y;��.
Recall that the updating with no spillover means to find symmetric
matrices �M, �C, and �K such that the equations

�M0	�M�X2�
2
2	�C0	�C�X2�2	�K0	�K�X2� 0 (57)

�M0 	�M�Y�2 	 �C0 	�C�Y�	 �K0 	�K�Y � 0 (58)

are satisfied simultaneously. Considering this updating problem as a
QIEP with prescribed eigenvectors �Y; X2� and eigenvalues
diagf�;�2g, we are facing a homogeneous system with 2n2

equations in 3n�n	 1�=2 unknowns. If n > 3, the system is
overdetermined. To have a nontrivial solution, �Y;�� must satisfy
some consistency conditions. This is in contrast to the undamped
case studied in Sec. II.

We first explain the subtlety involved in the generic nature of the
eigenpair �X2;�2�. Observe that if (57) holds, then the incremental
pencil

�Q��� :� �2�M	 ��C	�K (59)

necessarily has the k̂� 2n � k eigenpairs �X2;�2� as part of its

eigenstructure. If k̂ < 3�n	 1�=2, that is, if k > �n � 3�=2, then our
theory asserts that there are nontrivial solutions ��M;�C;�K�
which, for almost all �X2;�2�, form a subspace of dimension
n�2k � n	 3�=2. The pencil ��M;�C;�K� can be characterized

by the procedures described in Sec. III.C. If k̂ � 3�n	 1�=2, that is,
if k � �n � 3�=2, then our theory implies that the solution space to
the QIEP with generic eigenpairs �X2;�2� should be made of the
trivial solution only. However, because we have already assumed
that �M0; C0; K0� has �X2;�2� as part of its eigenstructure, we have
to conclude that �X2;�2� is not generic in the sense that the seemingly
overdetermined algebraic system

�MX2�
2
2 	�CX2�2 	�KX2 � 0 (60)

is not overly determined at all and in fact has nontrivial solutions. The
following numerical experiment serves to shed some insight into this
situation. For more complete theory, readers are encouraged to read
through [23].

Example 2. Consider the case n� 5 and k� 1 with

M0 �

3:3308 1:9508 2:0792 1:0873 2:3424
1:9508 1:6595 1:3898 0:6036 1:5318
2:0792 1:3898 1:7062 0:8195 1:5197
1:0873 0:6036 0:8195 0:5217 0:7819
2:3424 1:5318 1:5197 0:7819 1:7472

2
66664

3
77775; C0 �

1:0454 0:8031 1:1669 1:0143 0:7795
0:8031 1:3832 0:6174 1:3404 0:8307
1:1669 0:6174 1:6762 0:6650 1:0423
1:0143 1:3404 0:6650 0:9317 1:2889
0:7795 0:8307 1:0423 1:2889 0:5037

2
66664

3
77775

K0 �

2:6981 2:2257 1:5499 1:6738 1:5832
2:2257 2:2472 1:4826 1:6162 1:3072
1:5499 1:4826 1:2197 1:0846 1:1743
1:6738 1:6162 1:0846 1:5889 0:8304
1:5832 1:3072 1:1743 0:8304 1:4532

2
66664

3
77775
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The pencil �M0; C0; K0� has eigenvectors

�0:0101
0:0395
�0:0537
0:0805
�0:0073

2
66664

3
77775

|��������{z��������}
X1

;

0:1148 �0:0410 �0:5947 �0:2308 �0:3380
0:0625 �0:0001 �0:2369 �0:0038 0:4726
0:0243 �0:0536 0:6170 0:1379 �1:0000
0:0927 �0:0737 0:4292 0:2892 0:2785
�0:2859 0:1619 0:5020 0:1943 0:5821

2
66664

3
77775

|�����������������������������������������������������{z�����������������������������������������������������}
Z1

;

0:4771 �0:0893 0:4573 �0:2609
0:5463 0:0699 �0:6302 0:3698
�0:3110 �0:3052 �0:4527 0:1497
�0:5810 �0:4190 0:4052 �0:2067
�0:1483 0:6559 0:2904 �0:1039|��������������������������������������{z��������������������������������������}

Z2

and eigenvalues

�12:4263|����{z����}
�1

;
2:4975 1:5414
�1:5414 2:4975

� �
�1:0079 0:6851
�0:6851 �1:0079

� �
; �0:0603|�������������������������������������������������������{z�������������������������������������������������������}

�1

;
0:3444 0:9859
�0:9859 0:3444

� �
�0:1218 0:7665
�0:7665 �0:1218

� �
|����������������������������������������{z����������������������������������������}

�2

which we have partitioned into �X1; Z1; Z2� and ��1;�1;�2� with
X1 2 R5�1, Z1 2 R5�5, Z2 2 R5�4, �1 2 R, �1 2 R5�5, and
�2 2 R4�4, respectively. According to the theory developed earlier,
the general solution ��M;�C;�K� to (60) can be expressed in the
form

�M� Z�>1 A11Z
�1
1 ; �C� Z�>1 B11Z

�1
1 ;

�K ��Z�>1 �A11�
2
1 	 B11�1�Z�11

where the symmetric matrices A11 andB11 must satisfy Eqs. (54) and
(55) simultaneously. Using our data listed previously, we find that

A11 � �A�1� 	 �A�2� (61)

B11 � �B�1� 	 �B�2� (62)

with arbitrary �, � 2 R, where

A�1� �

0:0010 �0:0015 0:0005 �0:0044 �0:0297
�0:0015 0:0025 �0:0008 0:0070 0:0472
0:0005 �0:0008 0:0006 �0:0022 �0:0161
�0:0044 0:0070 �0:0022 0:0201 0:1351
�0:0297 0:0472 �0:0161 0:1351 0:9106

2
66664

3
77775

A�2� �

�0:0026 0:0020 �0:0047 �0:0023 0:0050
0:0020 �0:0021 0:0068 0:0031 0:0016
�0:0047 0:0068 �0:1916 �0:0800 0:1530
�0:0023 0:0031 �0:0800 �0:0295 0:0994
0:0050 0:0016 0:1530 0:0994 0:0379

2
66664

3
77775

B�1� �

�0:0096 0:0100 �0:0051 0:0170 0:1452
0:0100 �0:0075 0:0052 �0:0031 �0:0693
�0:0051 0:0052 �0:0020 0:0091 0:0754
0:0170 �0:0031 0:0091 0:0439 0:1554
0:1452 �0:0693 0:0754 0:1554 0:1111

2
66664

3
77775

B�2� �

0:0159 �0:0113 0:0159 0:0116 �0:0097
�0:0113 0:0075 �0:0007 �0:0057 �0:0115
0:0159 �0:0007 �0:3738 �0:1494 0:2315
0:0116 �0:0057 �0:1494 �0:0719 0:0013
�0:0097 �0:0115 0:2315 0:0013 �0:7634

2
66664

3
77775

serve as a basis. In other words, the solutions to (60), including the
original pencil �M0; C0; K0�m which corresponds to �0 � 0:5820
and �0 ��1:8046, form a two-dimensional subspace.

It is now clear that to update the eigenpair �X1;�1� of the pencil
�M0; C0; K0� to newly measured �Y;�� while maintaining no
spillover to �X2;�2�, the newly measured eigenpair �Y;�� must
satisfy the algebraic system

��A�1� 	 �A�2��Z�11 Y�2 	 ��B�1� 	 �B�2��Z�11 Y�
� ���A�1� 	 �A�2���2

1 	 ��B�1� 	 �B�2���1�Z�11 Y

for some�,� 2 R. Atfirst glance, this is a systemoffive polynomials
in eight unknowns whose real solutions form an algebraic variety of
dimension three. Two degrees of this freedom come from the choice
of � and�, and the third degree of freedom comes from the scaling of
the eigenvector. More specifically, the system by construction
already has one real eigenvalue and four pairs of complex-conjugate
eigenvalues. So the remaining eigenvalue � and the associated
eigenvector Y must be real and are completely determined by � and
�. In fact, in the case when � ≠ 0, then� is determined by the ratio
�� �

�
through the characteristic polynomial

detf�2��A�1� 	 A�2�� 	 ���B�1� 	 B�2��
� ���A�1� 	 A�2���2

1 	 ��B�1� 	 B�2���1�g � 0

In Fig. 1 we sketch the admissible values of� as a function �. Note
that the quadratic pencil becomes singular when� is an eigenvalue of
the linear pencil �A�1� 	 A�2�. In Fig. 1, this happens at approximately
��0:2388. The other �1 to 1 jump depicted in the lower
drawing of Fig. 1 indicates�� 0 at approximately � 0:9050. It is
seen empirically that � can be arbitrary real numbers. However, to
keep the eigenstructure �X2;�2� in the updated model, the
admissible eigenvectors Y corresponding to � form at most a two-
dimensional manifold in R5.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−800

−600

−400

−200
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200
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Fig. 1 Admissible values of � as a function of �.
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V. Conclusions

To mend the discrepancy between a mathematical model and the
corresponding real-world system, one common procedure is to
modify themodel parameters so as to achieve a good correspondence
between the analytic solution and the real data. In this paper, one such
model updating of self-adjoint quadratic pencils using a few
measured natural frequencies and mode shapes is considered. The
model updating problem is cast as a quadratic inverse eigenvalue
problem with prescribed eigenpairs.

Constructive proofs are given to show that the QIEP with no
damping can be solved with any number of arbitrarily assigned
eigenpairs, whereas the QIEPwith damping can be solved with up to
maximal allowable kmax arbitrarily assigned eigenpairs. Con-
sequently, updating with no spillover is entirely possible for
undamped quadratic pencils, whereas spillover for damped quadratic
pencils generally is unpreventable. Examples are given to
demonstrate both the phenomenon of spillover and the conditions
under which no spillover might be maintained. For the latter, the
more complicated analytic conditions are presented in a separate
paper [23]. In short, unless the newly measured eigenpairs satisfy
some fairly stringent conditions, an updating of a damped quadratic
pencils will surely cause spillover.
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