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Abstract. Quadratic pencils arising from applications are often inherently structured. Factors contributing to the
structure include the connectivity of elements within the underlying physical system and the mandatory nonnegativity
of physical parameters. For physical feasibility, structural constraints must be respected. Consequently, they impose
additional challenges on the inverse eigenvalue problems which intend to construct a structured quadratic pencil from
prescribed eigeninformation. Knowledge of whether a structured quadratic inverse eigenvalue problem is solvable is
interesting in both theory and applications. However, the issue of solvability is problem dependent and has to be
addressed structure by structure. This paper considers one particular structure where the elements of the physical
system, if modeled as a mass-spring system, are serially linked. The discussion recasts both undamped or damped
problems in a framework of inequality systems that can be adapted for numerical computation. Some open questions
are described.
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1. Introduction. The time-invariant second order differential system

M ẍ + Cẋ + Kx = f(t), (1.1)

where x ∈ R
n and M , C, K ∈ R

n×n, arises in many important applications, including applied me-
chanics, electrical oscillation, vibro-acoustics, fluid mechanics, signal processing, and finite element
discretization of PDEs. In most cases, parameters characterizing the underlying physical system are
embedded in the matrix coefficients M , C and K. It is well known that if

x(t) = veλt

represents a fundamental solution to (1.1), then the scalar λ and the vector v must solve the quadratic
eigenvalue problem (QEP)

(λ2M + λC + K)v = 0. (1.2)

That is, the dynamical bearing of the differential system (1.1) usually can be interpreted via the
eigenvalues and eigenvectors of the algebraic system (1.2). Because of this connection, considerable
efforts have been devoted to the QEP in the literature. Readers are referred to the treatise by
Tisseur and Meerbergen [28] for a good survey of many applications, mathematical properties, and
a variety of numerical techniques for the QEP.

The eigenvalue problem associated with the model (1.1) can be considered from two different
viewpoints. From a priori known physical parameters such as mass, length, elasticity, inductance,
capacitance, and so on, the process of analyzing and deriving the spectral information so as to
induce the dynamical behavior of a system is referred to as a direct problem. The inverse problem,
in contrast, is to validate, determine, or estimate the parameters of the system according to its
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observed or expected behavior. The concern in the direct problem is to express the behavior in
terms of the parameters whereas in the inverse problem the concern is to express the parameters in
term of the behavior. Both problems are important in applications. This paper is concerned about
the inverse problem.

The inverse eigenvalue problem is a diverse area full of research interests and activities. See
the newly revised book by Gladwell [20] for mechanics applications, the review article [6] for linear
problems, the recently completed monograph by Chu and Golub [8] for general theory, algorithms
and applications, and the many references collected therein from various disciplines. Among current
development, the quadratic inverse eigenvalue problem (QIEP) is particularly more important and
challenging with many unanswered questions. This paper concentrates only on the issue of solvability
for one specially structured QIEPs.

We have to stress that depending on the applications, the term QIEP has been used in the
literature to mean a rather wide variety of formulations. For instance, the QIEP studied by Ram and
Ehlay in [25] involves only symmetric tridiagonal matrix coefficients where two sets of eigenvalues
are given. The QIEP studied by Starek and Inman in [27] is associated with nonproportional
underdamped systems. Lancaster and Prells [23] considered the QIEP with symmetric and positive
semi-definite damping C where complete information on eigenvalues and eigenvectors is given and all
eigenvalues are simple and non-real. There are also works which utilize notions of feedback control
to reassign the eigenstructure [11, 24]. The list goes on and on and can hardly be exhaustive. The
QIEP considered in this article deals with yet another scenario which is quite common in practice
— construct the quadratic pencil with only a few eigenvalues and their corresponding eigenvectors.

In vibration industries, including aerospace, automobile, and manufacturing, through vibration
tests where the excitation and the response of the structure at selected points are measured experi-
mentally, there are identification techniques to extract a portion of eigenpair information from the
measurements. However, the size of the physical system can be so large and complicated that it is
not always possible to attain knowledge of the entire spectrum. While there is no reasonable analyt-
ical tool available to evaluate the entire spectral information, it is simply unwise to use experimental
values of high natural frequencies to reconstruct a model. Additionally, it is often demanded, espe-
cially in structural design, that certain eigenvectors should also satisfy some specific conditions. A
finite-element generated model therefore needs to be updated using only a few measured eigenvalues
and eigenvectors [14, 17]. Furthermore, quantities related to high frequency terms in a finite model
generally are susceptible to measurement errors due to the finite bandwidth of measuring devices.
Spectral information, therefore, should not be used at its full extent. For these reasons, it might
be more sensible to consider an inverse eigenvalue problem where only a portion of eigenvalues and
eigenvectors is available. The QIEP that is of interest to us therefore can be formulated as follows:

(QIEP) Construct a nontrivial quadratic pencil Q(λ) = λ2M + λC + K so that its matrix
coefficients (M, C, K) are of a specified structure and Q(λ) has a specified set {(λi,vi)}k

i=1

as its eigenpairs.

Since we are only interested in real matrices, it is natural to expect that the prescribed eigenpairs
are closed under complex conjugation. Without loss of generality, we shall denote the prescribed
eigenpairs in the matrix form (Λ, X) where Λ ∈ R

k×k is block diagonal with at most 2×2 blocks along
the diagonal wherever a complex-conjugate pair of eigenvalues appear in the prescribed spectrum
and X ∈ R

n×k represents the “eigenvector matrix” in the sense that each pair of column vectors
associated with a 2 × 2 block in Λ retains the real and the imaginary part, respectively, of the
original complex eigenvector. In this way, we may identify the given eigepairs (Λ, X) as an element
in R

k × R
n×k. The QIEP therefore amounts to solving the algebraic equation

MXΛ2 + CXΛ + KX = 0. (1.3)

At the first glance, the relationship (1.3) is only a homogeneous linear system of nk algebraic
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equations. If there are no other constraints, the triplet (M, C, K) constitutes 3n2 unknowns. Since
k is bounded above by 2n, the system is well under-determined. It is intuitively true that the system
should be solvable in general. The real challenge is to characterize the solution in terms of the given
(Λ, X), when the matrix coefficients in the pencil are required to satisfy some structural constraints.

The particular constraints that will be studied in this paper are twofold — the connectivity
constraint inherent to the serially linked physical structure and the nonnegative constraint required
by the physical parameters. Despite the fact that some general results have been obtained for
the quadratic inverse eigenvalue problems [21, 23, 25], we have not seen that the above-mentioned
constraints being taken into account. Our contribution is innovative in that the structured QIEP is
cast as a system of inequalities whose solvability can then be checked numerically.

2. Issue of Connectivity. An inverse eigenvalue problem without a structure often is trivial
and meaningless [8]. This is particularly so for QIEPs arising from applications. The structure
imposed on a QIEP depends inherently on the connectivity of the underlying physical system. For
practical reasons, the physical feasibility must be respected. It is therefore necessary that the
reconstructed pencil in the inverse problem staisfies the inherent connectivity structure. In other
words, there is more to just solving the algebraic equation (1.3) for a QIEP. The matrices in the
solution (M, C, K) must carry a certain specified structure. We give two examples to illustrate how
the connectivity affects the structure.

Example 1. Assuming that the springs respond according to Hook’s law and that the damping
is negatively proportional to the velocity, the coefficient matrices corresponding to the four-degree-
of-freedom mass-spring system depicted in Figure 2.1 should be structured as follows:

M =

2

6

4

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

3

7

5
, C =

2

6

4

c1 + c2 0 −c2 0
0 0 0 0

−c2 0 c2 + c3 −c3

0 0 −c3 c3

3

7

5
, K =

2

6

4

k1 + k2 + k3 −k2 −k5 0
−k2 k2 + k3 −k3 0
−k5 −k3 k3 + k4 + k5 −k4

0 0 −k4 k4

3

7

5
.

A typical way in the literature to describe the structure of a general mass-spring system is that the
mass matrix M is diagonal, both the damping matrix C and the stiffness matrix K are symmetric
and banded, M is positive definite and K is positive semi-definite. But now we see that such a
characterization indeed is not fine enough for physical feasibility. One must be specific in that the
internal connectivity of the masses and springs defines how the diagonal entries of C and K are
related to their off-diagonal entries. A different configuration of the connectivity in the system will
lead to a different structure. It is extremely important to point out an additional inherent constraint,
that is, all physical parameters are expected to be nonnegative.

Example 2. Assuming Ohm’s law and Kirchoff’s law in the circuit, the matrix coefficients for
the governing equation of the current in the RLC network depicted in Figure 2.2 should have the
following structure:

M =

2

6

4

−L2 L2 0 0
L2 −L2 0 0
0 0 L3 0
0 0 0 L4

3

7

5
, C =

2

6

4

0 R2 −R2 0
R1 + R4 0 0 −R4

0 −R2 R2 + R3 0
−R4 0 0 R4

3

7

5
, K =

2

6

6

6

4

0 1
C2

0 0

0 0 0 0
0 0 1

C3
− 1

C3
0 0 − 1

C3

1
C3

+ 1
C4

3

7

7

7

5

.

In contrast to the structure associated with a mass-spring system, note that the structure associated
with an electronic circuit generally may not be definite or even symmetric.

Since structured problems often results in special interrelationship within its eigenstructure,
the observed measurement which in many cases is contaminated with random noise may not be
consistent with that innate structure. The structural constraint therefore severely limits whether
a QIEP is solvable. It would be desirable to have a general theory by which one can obtain an
affirmative answer on whether a specifically configured system could be build or not and, if yes,
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Fig. 2.1. A four-degree-of-freedom mass-spring system.
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Fig. 2.2. An RLC electronic network.

how the parameters should be valued. To our knowledge, such a theory does not exist. Most of the
current QIEP techniques consider only the algebraic solvability, that is, solving the QIEP without
taking into account the nonnegativity of the solution. The main thrust of this paper is to discuss
the (physical) solvability of one particular structure. This is only one step forward with the hope of
stimulating further studies toward solving the general structured QIEPs.

3. Symmetric structure. One of the simplest structural constraint in many applications is
symmetry. If all matrix coefficients involved in a pencil are symmetric, we say that we have a
self-adjoint pencil. The theory of solvability for self-adjoint QIEPs has been established recently by
Chu, Datta, Lin and Xu in [9]. To make this note more self-contained, it might be informative to
summarize some of the results in this section without repeating the details. Define

kmax =

{
3ℓ + 1, if n = 2ℓ,

3ℓ + 2, if n = 2ℓ + 1.
(3.1)

The following theorem characterizes the general solvability [9].

Theorem 3.1. Given any positive integer k ≤ kmax, let (Λ, X) represent k arbitrarily prescribed
eigenpairs which are closed under complex conjugation. Then

1. The self-adjoint QIEP associated with (Λ, X) is always solvable.
2. For almost all k prescribed eigenpairs (Λ, X), the solutions to the corresponding self-adjoint

QIEP form a subspace of dimensionality 3n(n+1)
2 − nk.

It might shed some additional insight if we elaborate a little further upon the solvability indicated
in the above theorem. In the event that k ≥ n, partition the eigenvalues and eigenvectors as

Λ = diag{Υ1, Υ2},
X = [Z1, Z2],
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with Z1 ∈ R
n×n, Z2 ∈ R

n×(k−n), Υ1 ∈ R
n×n and Υ2 ∈ R

(k−n)×(k−n), respectively. Define

Ξ := Z−1
1 Z2. (3.2)

Then there exists a nontrivial self-adjoint quadratic pencil Q(λ) with partial eigenstructure (Λ, X)
if and only if the system of matrix equations [8],






Υ⊤
1 B − BΥ1 = AΥ2

1 − Υ2⊤
1 A,

Υ⊤
1 BΞ − BΞΥ2 = AΞΥ2

2 − Υ2⊤
1 AΞ,

A = A⊤,

B = B⊤,

(3.3)

has a nontrivial solution (A, B) in R
n×n ×R

n×n. In that case, the solution to the QIEP is given by

M = Z−⊤
1 AZ−1

1 ,

C = Z−⊤
1 BZ−1

1 ,

K = Z−⊤
1 (−Υ⊤

1 B − Υ2⊤
1 A)Z−1

1 .

To better grasp the linear system (3.3), let vec(A) represent the matrix A by stacking the columns

of A into one long vector. Let K ∈ R
n(n−1)

2 ×n2

denote the matrix representation of the projection of
a square matrix onto the subspace of skew-symmetric matrices. Then (3.3) can be expressed as




Υ2⊤
1 ⊗ In − In ⊗ Υ2⊤

1 Υ⊤
1 ⊗ In − In ⊗ Υ⊤

1

(ΞΥ2
2)

⊤ ⊗ In − Ξ⊤ ⊗ Υ2⊤
1 (ΞΥ2)

⊤ ⊗ In − Ξ⊤ ⊗ Υ⊤
1

K On(n−1)
2 ×n2

On(n−1)
2 ×n2 K




︸ ︷︷ ︸
T

[
vec(A)
vec(B)

]
= 0. (3.4)

In other words, in order to have nontrivial solution (A, B) for (3.3), the prescribed eigenpairs (Λ, X)
must be such that the n(n + k − 1) × 2n2 coefficient matrix T has column rank less than 2n2.

Corollary 3.2. Given k ≥ n arbitrarily prescribed eigenpairs (Λ, X) which are closed under
complex conjugation, define the matrix T as in (3.4).

1. If n ≤ k ≤ kmax, then the null space of T has dimensionality at least 3n(n+1)
2 − nk and is

generically of that dimensionality.
2. If k > kmax, then the matrix T is generically of full column rank. The collection of (Λ, X) for

which (1.3) has a nontrivial self-adjoint solution has measure zero in the space R
n ×R

n×k.
In the event that k < n, we still can solve the QIEP by embedding this eigeninformation in a

larger set of n eigenpairs. In particular, we expand X ∈ R
n×k to

X̂ := [X, X̃] ∈ R
n×n, (3.5)

where X̃ ∈ R
n×(n−k) is arbitrary while making X̂ nonsingular and expand Λ ∈ R

k×k to

Λ̂ := diag{Λ, Λ̃}, (3.6)

where Λ̂ is a diagonal matrix with distinct eigenvalues. Taking into account the freedom of this
expansion, it is not difficult to prove that the solutions to the QIEP with k < n form a subspace of

dimensionality n(n+3)
2 + n(n − k).

Example 3. Suppose n distinct eigenvalues Λ and n linearly independent eigenvectors X , both
of which are closed under conjugation, are given. Let A ∈ R

n×n be an arbitrary symmetric matrix.
The system (3.3) is reduced to the equation

Λ⊤B − BΛ = AΛ2 − Λ2⊤A. (3.7)

5



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

k1 k2 k3 kn

x1 x2 xn

m1 m2 mn

Fig. 4.1. An undamped mass-spring system.

for the unknown symmetric matrix B. From the block diagonal structure of Λ, it follows that B

is determined up to n free parameters. Using A and B as parameters, the general solution to the
self-adjoint QIEP with the prescribed pair (X, Λ) as part of its eigenstructure is given by

M = X−⊤AX−1, (3.8)

C = X−⊤BX−1, (3.9)

K = −X−⊤Λ⊤(B + Λ⊤A)X−1. (3.10)

In all cases, so long as the self-adjoint QIEP is solvable, we do have a way to obtain a parametric
representation of the solution (M, C, K) of (1.3). Despite the fact that we know how to solve a self-
adjoint QIEP algebraically, however, it must be stressed that algebraic solvability does not necessarily
imply physical feasibility. Physical feasibility means, for example, that the special matrix structure
resulting from the underlying connectivity must hold and that the physical parameters must be
nonnegative. These added conditions make the QIEP much more interesting but harder. We are
not aware of many research results in this regard. In what follows, we consider a special structure
resulted from serially linked mass-spring systems.

4. Serially linked structure without damping. Our experience seems to indicate that
whether a structured QIEP is solvable probably is problem dependent. The issue of solvability
needs to be analyzed structure by structure. One special setting, the serially linked, undamped
mass-spring system depicted in Figure 4.1, is considered in this section. Such a setting can be used
to model many other physical systems, including a vibrating beam, a composite pendulum, or a
string with beads [20].

Matrices corresponding to the quadratic pencil λ2M + K for the system in Figure 4.1 have the
structure,

M =

2

6

6

6

4

m1 0 . . . 0
0 m2

.

.

.
. . .

0 mn

3

7

7

7

5

, K =

2

6

6

6

6

6

6

6

4

k1 + k2 −k2 0 . . . 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4

.

.

.
. . .

.

.

.
0 kn−1 + kn −kn

0 −kn kn

3

7

7

7

7

7

7

7

5

. (4.1)

It is natural to assume that the masses and spring constants are all positive. In this case, eigen-
values associated with this kind of system are necessarily pure imaginary. The inverse eigenvalue
problem means to find positive values for the masses m1, . . . , mn and spring constants k1, . . . , kn

from prescribed eigeninformation.
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4.1. Sign Condition. A typical approach in the literature for this type of inverse problem has
been to recast the quadratic pencil as a linear pencil µI+J with a Jacobi matrix J = M−1/2KM−1/2.
A classical theory has been that two sets of eigenvalues can uniquely solve the corresponding Jacobi
inverse eigenvalue problem [8, Section 4.2], but that result does not guarantee the nonnegativity of
M and K. Furthermore, what can be said if the system is to be reconstructed from eigenpairs?

A total of 2n physical parameters are to be determined in (4.1). Each given eigenpair provides
n equations. Imposing two eigenpairs generally will lead to the trivial algebraic solution for such
a system, unless the prescribed eigenpairs satisfy some additional internal relationship. So it is
reasonable to ask a more fundamental question of constructing the system with one prescribed
eigenpair (iβ,x) where i =

√
−1, β ∈ R and x ∈ R

n.
Denote x = [x1, . . . , xn]⊤ and x0 = 0. It is not difficult to see from (1.3) under the structure

(4.1) that the recursive relationship,

kn =
β2mnxn

xn − xn−1
, (4.2)

ki =
β2mixi + ki+1(xi+1 − xi)

xi − xi−1
, i = n − 1, . . . , 1, (4.3)

must hold. Our goal is to choose a positive value for mi so as to define a positive value for ki. In
order to achieve this goal, the entries of the eigenvector x must satisfy some sign properties. More
specifically, we observe the following fact directly from (4.2) and (4.3).

Theorem 4.1. The necessary condition for a given vector x = [x1, . . . , xn]⊤ ∈ R
n with distinct

entries to be an eigenvector of a quadratic pencil λ2M + K with structure as is specified in (4.1)
where masses mi and spring constants are positive is that xn(xn − xn−1) > 0 and the signs of the
triplets (xi+1 − xi, xi, xi − xi−1) for i = 2, . . . , n − 1 are neither (+, +,−) nor (−,−, +).

4.2. Numerical Algorithm. In the event that the given vector x does satisfy the necessary
condition in Theorem 4.1, there are infinitely many ways to choose positive values for mi which are
then used to define ki. The following is a make-or-break algorithm for the construction where we
specify only one particular way of selecting mi.

Algorithm 4.1. Given an arbitrary eigenpair (iβ,x), β 6= 0 and x 6= 0, assume the normaliza-
tion xn = 1 and mn = 1. The following steps either construct the masses m1, . . . , mn−1 and spring
constants k1, . . . , kn, all positive, for the pencil λ2M + K, or determine that such a system with the
prescribed eigenpair does not exist.

1. initialization:
sn = 0.9; (mass decreasing factor)
sp = 1.1; (mass increasing factor)
η = β2;

2. if xn−1 < 1,

kn = β2

1−xn−1
; (use formula (4.2))

else
return (inconsistent eigenvector)

end
3. for i from n − 1 to 2, do

(a) ρ = η
xi

;
(b) if xi−1 < xi,

if ρ > 0,
if xi < 0,

return (inconsistent eigenvector)
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else
mi = 1; (any mi > 0 will be fine)

end
else

if xi < 0,
mi = − snρ

β2 ; (need 0 < mi < − ρ
β2 )

else
mi = − spρ

β2 ; (need mi > − ρ
β2 )

end
end

else
if ρ > 0,

if xi < 0,
mi = 1;

else
return (inconsistent eigenvector)

end
else

if xi < 0,
mi = − spρ

β2 ;
else

mi = − snρ
β2 ;

end
end

end
(c) η = η + β2mixi;
(d) ki = η

xi−xi−1
; (use formula (4.3))

4. finale:
(a) ρ = η

x1
;

(b) if ρ > 0,
m1 = 1;

else
m1 = − spρ

β2 ;
end

(c) η = η + β2m1x1;
(d) k1 = η

x1
; (use formula (4.3))

The working of the algorithm, based on Theorem 4.1, appears naive enough in just checking
a few signs. It is precisely this simplicity of the necessary and sufficient conditions on the given
eigenvector for ensuring a positive solution that we think is gratifying and elegant.

Note that in the above construction no restriction on the magnitude of β is imposed. This is
quite curious in that the physical system can have one arbitrary natural frequency. One might thus
ask that, after the pencil λ2M + K is determined, what the remaining eigenstructure should look
like. To explore this important question, it is interesting to recall the classical Courant Nodal Line
Theorem [31]. Roughly speaking, it has been known that critical information about a vibration
system can be recovered from the places where nothing happens. These places are referred to as
the nodal lines. In our discrete model, the incident of “nothing happens” means that natural mode
crosses the zero equilibrium. Courant’s theorem gives an exact count of the numbers of nodal lines.
We shall not elaborate the particulars here, but refer readers to the treatises [10, 31] for more detailed
discussion. Its simplest form related to our application can be stated as follows:
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Fig. 5.1. A damped mass-spring system.

Theorem 4.2. If the given eigenvector x is feasible and if there are τ changes of signs in the
sequence when going through x1 to xn, then x is the (τ + 1)-th eigenvector (in the series where
the corresponding frequencies are arranged in the ascending order) of the pencil regardless how the
masses mi are defined.

In other words, from the changes of signs in the prescribed eigenvector x, we know precisely
how many other natural frequencies are above β and how many are below, although the values of
these other frequencies can be quite arbitrary. The normalization mn = 1 is immaterial. It only
indicates the unit of mass used relative to mn. It is the choice of values for other mi’s, which
in turn determines values for other ki’s, that affects the total spectrum. How to select values for
mi when there are multiple alternatives so as to satisfy some additional spectral information is a
very different but important question. At present, we have no knowledge about how this problem
should be tackled. For other types of connectivity including damped systems or RLC configurations,
the resulting pencil matrix structure will be different. We are not aware of any similar nodal line
theorem. It is very likely that the condition of solvability will also vary. Again, this is a widely open
area for further research.

5. Serially linked structure with damping. When damping is present in the mass-spring
system in the way depicted in Figure 5.1, the QIEP becomes much more complicated. The associated
matrices in the pencil λ2M+λC+K have the same structure of M and K as in (4.1) and, additionally,
that of

C =

2

6

6

6

6

6

6

6

4

c1 + c2 −c2 0 . . . 0 0
−c2 c2 + c3 −c3 0
0 −c3 c3 + c4

.

.

.
. . .

.

.

.
0 cn−1 + cn −cn

0 −cn cn

3

7

7

7

7

7

7

7

5

. (5.1)

There are a total of 3n physical parameters to be determined, all of which need to be positive real
numbers. It is clear that specifying more than three eigenpairs will make the QIEP over-determined.
In the same spirit as before, we shall consider that two pairs of eigenpairs are given and want to
determine c1, . . . , cn and k1, . . . , kn in terms of m1, . . . , mn. Depending upon whether the specified
eigenvalues are complex or not, we divide our discussion into two cases.
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5.1. Complex eigenpairs. Assume that the given eigenpair are complex conjugate to each
other. This eigeninformation is given through the matrices

Λ =

[
α β

−β α

]
, X =

[
x1 x2 . . . xn

y1 y2 . . . yn

]⊤
, (5.2)

where the 2 × 2 matrix Λ represents the complex-conjugate eigenvalues α ± iβ, the first and the
second columns of X represent the real and the imaginary parts of the corresponding eigenvector,
respectively.

For i = 1, . . . , n, denote the differences

Xi := xi − xi−1, (5.3)

Yi := yi − yi−1, (5.4)

with the notation x0 = y0 = 0. The algebraic system (1.3) characterizing the QIEP can be expressed
as a system of n pairs of equations:

{ (
(α2 − β2)xn − 2αβyn

)
mn + (αXn − βYn)cn + Xnkn = 0

(
2αβxn + (α2 − β2)yn

)
mn + (αYn + βXn)cn + Ynkn = 0,

(5.5)

and
{(

(α2 − β2)xi − 2αβyi

)
mi + (αXi − βYi)ci − (αXi+1 − βYi+1)ci+1 + Xiki − Xi+1ki+1= 0

(
2αβxi + (α2 − β2)yi

)
mi + (αYi + βXi)ci − (αYi+1 + βXi+1)ci+1 + Yiki − Yi+1ki+1 = 0,

(5.6)

for i = n − 1, . . . , 1. Our goal is to seek positive solutions c1, . . . , cn and k1, . . . , kn in terms of
positive values of m1, . . . , mn. Toward that end, we find it convenient to rewrite the above equations
in matrix form. Define

Γ := −
[

α2 − β2 −2αβ

2αβ α2 − β2

]
= −Λ2⊤, (5.7)

and

Θi :=

[
αXi − βYi Xi

βXi + αYi Yi

]
, (5.8)

zi :=

[
xi

yi

]
, (5.9)

for i = 1, . . . , n. It is readily seen that equations (5.5) and (5.6) can be conveniently expressed in
the compact form:

Θn

[
cn

kn

]
= mnΓzn, (5.10)

Θi

[
ci

ki

]
= Θi+1

[
ci+1

ki+1

]
+ miΓzi, i = n − 1, . . . , 1. (5.11)

Clearly, det(Θi) = −β(X2
i +Y 2

i ). By assuming the generic condition that no two consecutive entries
of the given eigenvectors are the same, all matrices Θi are invertible. We thus obtain the following
recursive relationship:

[
cn

kn

]
= mnΘ−1

n Γzn, (5.12)

[
ci

ki

]
= Θ−1

i Γ [mnzn + mn−1zn−1 + . . . + mizi] , i = n − 1, . . . , 1, (5.13)

10



where we can express Θ−1
i explicitly as

Θ−1
i =

1

β(X2
i + Y 2

i )

[
−Yi Xi

βXi + αYi −αXi + βYi

]
.

It remains to analyze conditions under which the physical parameters are positive.
Observe that all entries in Γ, Θ−1

i and zi, i = 1, . . . , n, are known and fixed from the prescribed
eigenpairs. For each i = 1, . . . n and j = i, . . . n, write

Θ−1
i Γzj =

[
aij

bij

]
. (5.14)

Assemble these entries into upper triangular matrices

A :=

2

6

6

6

4

a11 a12 . . . a1n

0 a22 . . . a2n

.

.

.
.
.
.

0 0 . . . ann

3

7

7

7

5

, B :=

2

6

6

6

4

b11 b12 . . . b1n

0 b22 . . . b2n

.

.

.
.
.
.

0 0 . . . bnn

3

7

7

7

5

,

respectively. From (5.12) and (5.13), we now recast the QIEP as a system of inequalities.
Theorem 5.1. Solving for positive physical parameters ci and ki in terms of positive masses

mi, i = 1, . . . , n, for the QIEP amounts to showing that the system of inequalities
[

A

B

]
m > 0, (5.15)

is consistent for some m = [m1, . . . , mn]⊤ > 0.

5.2. Real eigenpairs. Assume that the given pair of eigenvalues are real and distinct. We
denote the prescribed eigenpairs via the matrices

Λ =

[
α 0
0 γ

]
, X =

[
x1 x2 . . . xn

y1 y2 . . . yn

]⊤

, (5.16)

where the two columns of X are the two eigenvectors associated with eigenvalues α and γ, respec-
tively. The corresponding algebraic equation (1.3) can be formulated as the following n pairs of
equations:

{
α2mnxn + αXncn + Xnkn = 0
γ2mnyn + γYncn + Ynkn = 0,

(5.17)

and
{

α2mixi + αXici − αXi+1ci+1 + Xiki − Xi+1ki+1 = 0
γ2miyi + γYici − γYi+1ci+1 + Yiki − Yi+1ki+1 = 0,

(5.18)

for i = 1, . . . , n − 1. Defining the 2 × 2 matrices,

Πi := −
[

αXi Xi

γYi Yi

]
, i = 1, . . . , n, (5.19)

we obtain equivalent equations in compact form:

Πn

[
cn

kn

]
= mnΛ2zn (5.20)

Πi

[
ci

ki

]
= Πi+1

[
ci+1

ki+1

]
+ miΛ

2zi, i = n − 1, . . . , 1 (5.21)
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Assuming that all matrices Πi’s are nonsingular, again we obtain a recursive relationship,
[

cn

kn

]
= mnΠ−1

n Λ2zn, (5.22)

[
ci

ki

]
= Π−1

i Λ2 [mnzn + mn−1zn−1 + . . . + mizi] , i = n − 1, . . . , 1, (5.23)

which is in the same format as that in (5.12) and (5.13). If we write

Π−1
i Λ2zj =

[
aij

bij

]
, (5.24)

then to determine positive ci and ki in terms of positive mi would end up with a system of inequalities
similar to (5.15).

5.3. Numerical algorithm. We have shown in the above that solving a QIEP with damping
from two given eigenpairs, both of which are either real-valued or complex-conjugate, is equivalent
to solving a linear (strict) inequality system of the form (5.15). Without causing any ambiguity, we
shall use the same notation A and B to represent the coefficient matrices involved in the inequality
systems for both cases. Specifically, recall that both A and B are upper triangular matrices whose
entries are defined by either (5.14) or (5.24). The question now is to determine the conditions on the
prescribed eigenpairs under which the QIEP is solvable. In contrast to the QIEP with no damping
in the preceding section, we are not aware of any analytic way to characterize the solvability of the
QIEP with damping. To check the feasibility, we will have to resort to some numerical procedures.

Solving inequality systems of convex functions is a classical problem that has been discussed
extensively in the literature, including the Farkas Lemma [15], the von Neumann Theorem [29,
pp.138-143], and the Ky Fan Theorem [16, Theorem 1]. As an example, we state without proof the
Strong Alternative Theorem [4, pp.260-262] as follows.

Theorem 5.2. The system of strictly linear inequalities Ax < b is infeasible if and only if there
exists a vector ω ≥ 0, ω 6= 0 such that A⊤

ω = 0 and b⊤
ω ≤ 0.

For our application, we embed the need of m > 0 in the inequalities and consider the augmented
system Am > 0 with

A =




A

B

I


 .

By Theorem 5.2, we see that Am > 0 is infeasible and, hence, our (serially linked with damping)
structured QIEP is not solvable if and only if there exist nonnegative vectors ω1, ω2 and ω3, not all
zero, such that A⊤

ω1 +B⊤
ω2 +ω3 = 0. This is equivalent to the statement that A⊤

ω1 +B⊤
ω2 ≤ 0

for some nonnegative, but not both zero, vectors ω1 and ω2. Such a result of duality, though
interesting in theory, might not be easy to realize in computation. Instead, we propose a much
simpler numerical approach.

Observe that the inequality system (5.15) is solvable for some m > 0 if and only if it is solvable
for cm with any c > 0. By scaling the variable m if necessary, we can recast our problem of solving
an inequality system into the problem of finding a minimax solution of a multi-variable function.
More specifically, we consider the problem

max
0≤m≤1

min {Am, Bm} , (5.25)

where for each given m ∈ R
n the minimum is taken over the 2n entries of the vectors Am and Bm.

It is not difficult to observe the following fact.

12



Theorem 5.3. If the inequality system (5.15) is consistent, then the maximal objective value
in (5.25) is positive. Conversely, if (5.15) is inconsistent, then the optimal objective value to (5.25)
is necessarily zero with m = 0.

Note that the function min {Am, Bm} is concave in m. Thus its maximal value over the
convex domain {m ∈ R

n|0 ≤ mi ≤ 1, i = 1, . . . n} is unique. We can easily convert (5.25) into a
convex programming problem and there are readily available routines to solve (5.25). For example,
the Matlab routine fminimax implements a sequential quadratic programming method and seems
capable of handling our problem reasonably well. With the equivalence of (5.15) and (5.25) in mind,
we propose the following algorithm.

Algorithm 5.1. Given two arbitrary complex-conjugate (or real-valued) eigenpairs, the fol-
lowing steps generally will either construct the masses m1, . . . , mn, the damping constants c1, . . . , cn

and the spring constants k1, . . . , kn, all positive and mi ≤ 1, for the pencil λ2M + λC + K with
the prescribed eigenpairs, where M , C and K are of the structure specified in (4.1) and (5.1), or
determine that such a system does not exist. In the rare case where the algorithm is terminated
prematurely, the prescribed eigenpairs are not generic enough in the sense that one of the matrices
Θi defined in (5.8) (or Πi defined in (5.19)) is singular for some i = 1, . . . , n.

1. Let (Λ, X) represent the given eigenpairs in the sense of (5.2) (or (5.16)).
(a) For i = 1, . . . , n, form vectors zi according to (5.9), and compute the differences Xi

and Yi according to (5.3) and (5.4), respectively.
(b) Check to see that Θi (or Πi) is nonsingular for all i = 1, . . . , n. Otherwise, report that

the given spectral information is not generic and stop.
2. Form the upper triangular matrices A and B according to (5.14) (or (5.24)).
3. Solve the minimax problem (5.25).

(a) If a solution m > 0 exists, define c = Am and k = Bm.
(b) If a solution m > 0 does not exist, the given eigenpairs are not feasible.

6. Numerical Experiment. In this section we demonstrate the above ideas by some numerical
examples.

Example 4. We first generate randomly the data

m = [1.0660, 0.2593, 0.6809, 0.5453, 1.0000]⊤,

k = [7.6210, 4.5647, 0.1850, 8.2141, 4.4470]⊤,

and create an undamped pencil λ2M + K in the form (4.1). The resulting system has natural
frequencies

5.7620, 4.9207, 2.5971, 2.3485, 0.2768,

with columns in the matrix
2

6

6

6

4

−0.0080 −0.5440 −0.1126 0.7932 0.0153
0.0405 1.6238 −0.1232 1.0958 0.0405

−0.6480 −0.0019 0.7796 0.0902 0.6579
1.1197 −0.0347 0.3641 0.0263 0.6677

−0.1732 0.0078 −0.7046 −0.1095 0.6794

3

7

7

7

5

,

as the corresponding natural modes. We point out earlier that the order of frequencies corresponds
precisely to the number of sign changes in the eigenvector. Suppose now we use the third eigenpair
as the given eigenpair and apply Algorithm 4.1 to reconstruct the quadratic pencil. To illustrate
the working of Algorithm 4.1, we allow the mass increasing factor sp to vary from 1.001 to 105.
The resulting allowable masses and the corresponding frequencies are plotted in the left and right
graphs of Figure 6.1, respectively. Clearly, the solution to the QIEP is not unique. Note that in this
particular example, only the second and the third masses are changed by our algorithm, whereas in
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Fig. 6.1. Allowable masses and frequency responses for undamped system.

all cases the third frequency stays invariant. The experiment also suggests an interesting observtaion
that an increase on the second and the third mass, while maintaining the third eigepair, has more
effect on the first eigenvalue than on the fourth or the fifth eigenvalues.

Example 5. We randomly generate the data

m = [3.4915, 4.4928, 5.2297, 4.1880, 1.0000]⊤,

c = [0.0579, 0.3529, 0.8132, 0.0099, 0.1389]⊤,

k = [4.0571, 9.3547, 9.1690, 4.1027, 8.9365]⊤,

and create a pencil λ2M + λC + K in the form (5.1). The resulting system has 5 pairs of complex
conjugate eigenvalues,

−0.0863± 3.3596i,−0.1792± 2.6044i,−0.0792± 1.7918i,−0.0079± 1.0365i,−0.0019± 0.3736i,

not necessarily in any particular order, and the corresponding eigenvectors
2

6

6

6

4

0.0005 ∓ 0.0005i 0.0696 ∓ 0.2457i −0.2044 ± 0.3474i −0.2495 ± 0.3822i −0.3451 ± 0.1371i
−0.0012 ± 0.0015i −0.1084 ± 0.2648i −0.0325 ± 0.0894i −0.2572 ± 0.3949i −0.4763 ± 0.1907i

0.0019 ∓ 0.0056i 0.0566 ∓ 0.1061i 0.1583 ∓ 0.3303i −0.1457 ± 0.1913i −0.5767 ± 0.2341i
−0.0176 ± 0.0597i −0.0018 ± 0.0095i −0.0335 ± 0.0987i 0.3470 ∓ 0.5006i −0.7014 ± 0.2830i

0.0676 ∓ 0.2260i −0.0181 ± 0.0339i −0.0575 ± 0.1522i 0.3943 ∓ 0.5691i −0.7125 ± 0.2875i

3

7

7

7

5

.

Suppose we use the first complex conjugate eigenpairs as the given eigenpairs and apply Algo-
rithm 5.1 to reconstruct the quadratic pencil. We solve the minimax problem (5.25) by employing
the Matlab code fminimax with tolerance TolFun = TolCon = 10−8. We obtain a solution to the
QIEP at

m = [0.0512, 0.2413, 0.5096, 0.1653, 0.0326]⊤,

c = [0.0045, 0.0045, 0.0588, 0.0045, 0.0045]⊤,

k = [0.0045, 0.1520, 0.6021, 0.4316, 0.2912]⊤.
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Note that m is limited to the range [0, 1], whereas we could have normalized m5 to unit mass without
effecting the spectrum. An examination of the remaining eigenvalues does not seem to suggest that
there is anything analogous to the Courant Nodal Line theorem for the damped case.

7. Conclusion. We have studied the quadratic inverse eigenvalue problem arising from dynam-
ical systems whose vibratory properties can be modeled after a serially linked mass-spring oscillator.
The resulting QIEP must oblige a special matrix structure. In particular, the physical parameters
must be positive. These constraints severely limit the solvability of the QIEP.

We show that for undamped problem, the order of frequencies corresponds precisely to the
number of sign changes in the eigenvectors. A make-or-break algorithm is proposed in this work.
For damped problem, we show that the solvability of the QIEP is equivalent to the consistency of a
certain system of inequalities which can be solved via a minimax algorithm.

Thus far, the permissible eigenpair information is rather limited. For undamped problem only
one eigenpair is allowed while for damped problem only two eigenpairs are allowed. In either case,
the masses m are used as the free parameters to express the other two physical parameters c and
k. In certain applications, it is desirable to express m and c in terms of k. However, such a task is
much harder to analyze and we have not obtained significant results yet.

If the QIEP is solvable, usually there are multiple solutions. Although we are able to match
the prescribed eigenpair information in our construction, our technique thus far cannot control the
remaining eigenvalue or eigenvectors. It remains to be an open question on whether additional
eigenvalue information, not eigenvector information, can help to further restrict the number of
solutions or control the remaining eigenstructure.
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