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ABSTRACT 

We consider the problem of approximating the singular value decomposition of a 
bidiagonal matrix by a one-parameter family of differentiable matrix flows. It is shown 
that this approach can be fully expressed as an autonomous, homogeneous, and cubic 
dynamical system. Asymptotic behavior is justified by the established theory of the 
Toda lattice. 

1. INTRODUCTION 

One of the most important decompositions in matrix computations is the 

singular value decomposition (SVD), i.e. 

THEOREM 1.1. If A E IWt”X”, then there exist orthogonal matrices U E 

Iw “’ X’r’ and V E (w n x * such that U TAV assumes one of the two following 

forms : 

if man, 

(1.1) 

UTAV= [X,0] if m<n, 

where 

Z=diag(a,,a, ,..., a,), (1.2) 

p=min{m,n}, and a,>ua,a ... >up>O. 
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It is also well known that the SVD of a matrix A is closely related to the 
Schur decompositions of the symmetric matrices A’A and AAl‘. Indeed, 

THEOREM 1.2. Suppose that A E [w “’ xn (we shall assume that m >, n 
henceforth) has the SVD as in (1.1). Then 

(1.3) 

Ur(AAr)U=diag(a~,~$ ,..., a:,0 ,..., O)~ll%“‘~“‘. (1.4) 

These connections allow us to adapt the mathematical and algorithmic 
developments for symmetric eigenvalue problems to this singular value 
problem. For example, (1.3) suggests that the SVD of A can be calculated 
through the following steps [8]: 

(1) Form C = ArA. 
(2) Use the symmetric QR algorithm to compute VirCV, = 

diag( af, . . . , I$). 
(3) Use QR with column pivoting to upper-triangularize B = AV,, i.e. 

U7‘( AV,)?’ = R. 

In actual practice, however, one does not want to form the matrix C explicitly 
nor apply the QR algorithm directly. Various reasons for not doing so can be 
found in [5, 81. A preferable method, proposed by Golub and Kahan [6], is 
then composed of two distinct parts: 

(1) Reduce A to upper bidiagonal form using a sequence of Householder 
transformations, i.e. 

b b,, I1 
b 22 b2, 

0 

. . 
. . 

. b !, I. ,I 

0 b II , ,1 ____________________---_______ 
0 

. (1.5) 

(2) Compute the SVD of B by implicitly applying the symmetric QR 
algorithm to A’A. 
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The algorithmic details of this method are discussed in [6, 81 and documented 
in [5, 71. 

In this note we shall assume that the bidiagonalization process has been 
accomplished somehow. We are interested in developing a continuous ap- 
proximation to the SVD of B. It turns out that such an approach is totally 
feasible and can be fully expressed as an autonomous ordinary differential 
system. The derivation of this homogeneous cubic differential system is 
presented in the next section. It is related to the Golub-Kahan SVD algorithm 
almost in the same way as the Toda lattice is related to the QR algorithm. 
Therefore, conclusions on its asymptotic behavior can be drawn from the 
knowledge of the Toda lattice. This result is presented in the last section 
together with a summary theorem. 

2. DERIVATION OF THE O.D.E. 

Consider the one-parameter family of matrices 

X(t) = u(t)4bv(t), (2.1) 

where both U(t) and V(t) are families of orthogonal matrices to be specified 
and are assumed to be differentiable with respect to the parameter t. 
Differentiating with respect to t yields 

= X.N- M.X, (2.2) 

where we have defined 

M(t) = -ti(+UT(t) (2.3) 

and 

N(t) =VT(t)+(t). (2.4) 

Since both U(t) and V(t) are orthogonal, it is clear that both M(t) and N(t) 
are skew-symmetric. Furthermore, we note that the above argument can be 
reversed, namely 
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THEOREM 2.1. Let M( t ) and N( t ) be two one-parameter families of 

skew-symmetric matrices (both continuous in t ). Suppose U( t ) and V( t ) 
solve the initial value problems 

6’(t) = - M(t)JY(t), u(o) = I, (2.5) 

v(t) =V(t).N(t), V(0) = I, (2.6) 

respectively. Then 

(1) both U( t ) and V( t ) are orthogonal matrices; 

(2) the solution X(t) to (2.2) with initial value X(0) = B can be expressed 

as (2.1). 

Proof. Assertion (1) follows from the observation that [U r( t ). U( t )] = 0 

for all t and that UT(0).U(O) = 1. Assertion (2) follows from the direct 
substitution and the uniqueness theorem. n 

Apparently not all choices of M( t ) and N( t ) would lead to nice asymp- 
totic behavior for the resulting X( t ). We now describe a specific selection of 
this pair. 

Denote the components of a given matrix by the associated lowercase 
letter, e.g. X = [x,~], M = [mij], and so on. We insist on the following two 
conditions throughout the continuous transition: 

(Cl) In addition to being skew-symmetric, both M( t ) and N( t ) are 
further required to be tridiagonal. 

(C2) X( t ) maintains the bidiagonal form for all t. 

To fulfill these requirements, it is not difficult to derive from (2.2) that the 
following equality constraints must be satisfied: 

Xi+l,i+lni+l,i - mi+l,ixi,i = O for all n - 1 >, i > 1, (2.7) 

-~;,i+lni+z,i+1+mi+l,ixi+l,i+2=o foraIl n-2>i>l. (2.8) 

This is an underdetermined system of 2n - 3 equations in 2n - 2 unknowns. 
In matrix form, this system may be represented as 

.dz=o, (2.9) 
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where z& is the (2n - 3) x (2n - 2) bidiagonal matrix 

0 

75 

and CC is the (2 n - 2) x 1 column vector 

[ 1 7 
x= n21,m21,n32,...,m,~l,.~2,n, ,,,- l,m,,.-l . (2.11) 

Substituting (2.8) into (2.7) yields the following relationships: 

ni+l.i ‘i i’i it1 . . 

ni+2,i+l LX r+l,i+lxi+l,i+2 

(2.12) 

mi+l,i Xi+l,i+lxi,i+l 
= 

mi+2,i+l ’ t+2.i+Zxi+l,i+2 

(2.13) 

for all n - 2 > i > 1. Therefore, a particular solution of (2.9) is given by 

ni+l,i=X~ i’i i+l7 / . (2.14) 

mi+l,~=Xi+l,i+lXi,i+l (2.15) 

for all n - 1 > i > 1. In this case, the matrices M(t) and N(t) in particular 
can be represented as 

M(t) = rIo(X(t).XT(t)) (2.16) 

and 

N(t) = n”(xr(t)qq)> (2.17) 
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respectively, where II,(X) represents the skew-symmetric matrix defined by 

rI,(x)=X--(x-y, (2.18) 

and X means the strictly lower triangular matrix of X. One should note that 
(2.16) and (2.17) are just for notational convenience, and should not be 
misled to think that X r. X and X. X r must be formed explicitly to define the 
system (2.2). Indeed, though the system (2.2) is now written as 

r;-(t) = x(t).rI”(xyt)~x(t))- n,(x(t>~xT(+w)> (2.19) 

the resulting arithmetic is nothing more than 

fi,i=Xi,i(X;i+l-X;_l i) for all n>,i>l, (2.20) 

'i,i+l='i ii-1 , (xF+l,i+l- 'F,i) forall n-l>i>l, (2.21) 

where we adopt the notation x0 r = x n ,,+ r = 0. Since this is an autonomous 
system, we see that the contra& (2.7)‘and (2.8) are sufficient conditions for 
(Cl) and (C2) as well. Note that the system (2.19) is homogeneous and cubic. 
It is also worth noting that the Golub-Kahan SVD algorithm usually requires 
20n flops and 2n square roots per step [B], whereas the function evaluation of 
(2.19) requires only 2n flops and 2n squares per step. In addition, the system 
(2.19) appears parallel in nature. An investigation of the possible advantages 
of implementing this system on parallel computers has just been initiated. 

3. ASYMPTOTIC CONVERGENCE 

In this section we want to explore the asymptotic behavior of the 
nontrivially coupled differential system (2.19). Our basic tool is the so-called 
Toda lattice [1-41-a differential system of the form 

i(t) = z(t)TI,(z(t))- II()(z(t)).z(t). (3.1) 

To make this note complete, we review below some important properties of 
the Toda flow. Their proofs can be found in [l] and [3]. 
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THEOREM 3.1. The solution Z(t) of (3.1) with initial value Z(0) = Z, 

can be written as 

Z(t) =Q’(t)qyQ(tL (3.2) 

where Q( t ) solves the initial value problem 

O(t) =Q(t>~~“(zw Q(0) = I. (3.3) 

THEOREM 3.2. Let Z( t ) be an integral curve of (3.1). For k = 

0, + 1, _t 2,. . , suppose that the matrix exp(Z( k)) has the QR decomposition 

Then 

edZ(k)) = QkRk. (3.4) 

exp( Z( k + 1)) = R,Q,. (3.5) 

THEOREM 3.3. Suppose the initial value Z,, of (3.1) is upper Hessenberg 
and has u complete set of real eigenvalues. Then the solution Z( t ) of (3.1) 

converges to an upper triangular mutrix with the eigenvalues of Z,, appearing 

on the diagonal in a nondecreasing order as t goes to infinity. In this case, the 

corresponding Q(t) of (3.3) also converges to a limit. 

Equipped with the knowledge of the Toda lattice, we now show the 
asymptotic convergence of the system (2.19). Let 

Y(t)=X“(t).x(t). (3.6) 

Then 

y=k’.x+x’.k 

= { XTl,,(X’.X)- n,(x.x”).x}‘.x 

+ XT. { XTl,,(XT.X)- rI”(X.X7‘).X} 

=(Xr.X)41,)(X7‘.X)-n”(x’.x).(x’.x) 

=Y.II,(Y)-II,(Y).Y. (3.7) 

In other words, Y( t ) satisfies the Toda lattice. We shall assume henceforth 
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that IT,,( Y ) f 0, since otherwise Y = 0. Since Y( t ) is symmetric and hence 
has a complete set of real eigenvalues, by Theorem 3.3, Y(t) converges to a 
diagonal matrix. Furthermore, from (2.6) and (2.17), 

So it also follows from Theorem 3.3 that V(t) converges to a constant limit. 
Similar arguments can be applied to U(t) as well. In conclusion, we observe 
from (3.6) that X( t ) converges to a matrix with mutually orthogonal columns. 
But X(t) also maintains the bidiagonal form for all t. Therefore, X(t) 
converges to a diagonal matrix. 

We summarize our results in the following theorem. 

THEOREM 3.4. Let B be a real bidiagonal matrix such that not all 

bi,ibi,i+l and bi,ibi_, i , are zeros. Consider the initial value problem 

X(0) = B. (3.9) 

Then: 

(1) The solution X(t) remains bidiagonal and can always be decomposed 
as 

X(t) =U(t).BJqt), (3.10) 

where both U( t ) and V( t ) are orthogonal matrices and are respectively 
solutions of the initial value problems 

ii(t) = - rI”(x(t)~xr(t))qt), U(0) = I, (3.11) 

V(t) =V(t).n,(x’(t).x(t)), V(0) = I. (3.12) 

(2) As t goes to infinity, both U( t ) and V(t) converge to certain constant 
matrices, say U(t) + U, and V(t) + V,, and X( t ) converges to a diagonal 
matrix, say X(t) + 2. The decomposition 

B = U;ZV: (3.13) 

is a singular value decomposition of B. 
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