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Abstract. Similar to the well known Schur-Horn theorem that characterizes the
relationship between the diagonal entries and the eigenvalues of a Hermitian matrix,
the Sing-Thompson theorem characterizes the relationship between the diagonal en-
tries and the singular values of an arbitrary matrix. It is noted in this paper that,
based on the induction principle, such a matrix can be constructed numerically by a
fast recursive algorithm, provided that the given singular values and diagonal elements
satisfy the Sing-Thompson conditions.

1. Introduction. It has been observed that the main diagonal en-
tries and the eigenvalues of any Hermitian matrix enjoy an interesting
relationship. This relationship is completely characterized by what is
now known as the Schur-Horn theorem [2]. For reference, we describe
specifically the theorem in two parts. More details and related topics
can be found, for example, in [3, Theorems 4.3.26, 4.3.32 and 4.3.33].

THEOREM 1.1. (Schur-Horn Theorem)

L. Given an arbitrary Hermitian matriz H, let A\ = [\;] € R" and
a = |a;] € R™ denote the vectors of eigenvalues and main diagonal entries
of H, respectively. If the entries are arranged in increasing order aj <
o Zaj, and Ay, < ..o < Ay, then

k k
(1.1) > oaj, > A,
=1 =1

forall k =1,2,...,n, and the equality holds when k = n.

2. Let a,\ € R™ be two given vectors that satisfy (1.1). Then there
exists a Hermitian matrix H with eigenvalues A and diagonal entries a.

The notion of (1.1) is also known as a magjorizing A. The second part
of the Schur-Horn theorem gives rise to an interesting inverse eigenvalue
problem, namely, to construct a Hermitian matrix with the prescribed
eigenvalues and diagonal entries. Numerical methods for such a con-
struction were first proposed in [1]. Later an efficient recursive method
was discussed in [9].

In the case of a general real matrix, it seems impossible that the main
diagonal entries and the eigenvalues would continue to hold a connection
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as specific as the Schur-Horn theorem. Indeed, the most general result in
this regard is as follows due to Mirsky [4]. Seeking any additional bearing
would be too vague a problem to have any significant ramification.
THEOREM 1.2. A necessary and sufficient condition for the exis-
tence of a matriz with eigenvalues Ay, ..., A\, and main diagonal elements

ai,...,a, is that
n

(12 i%:;M

Naturally, the next level of question is to find any connection be-
tween the main diagonal entries and the singular values of a general
matrix, as was posed by Mirsky in [5]. Such a relationship was discov-
ered independently by Sing [6] and Thompson [7]. Similar to the notion
of majorization, it turns out that the necessary and sufficient conditions
for the existence of a matrix with prescribed main diagonal entries and
prescribed singular values also involve a set of inequalities which we state
as follows.

THEOREM 1.3. (Sing-Thompson Theorem) Let d,s € R™ be two
vectors with entries arranged in the order sy > sy > ...s, and |dy| >
|do| > ... |dy|, respectively. Then there exists a real matriz A € R"™"
with singular values s and main diagonal entries d (possibly in different
order) if and only if

k k
(13) 21| <3 s
i=1 i=1
forallk=1,2,...,n and

(1.4 (S 1)l < (£ ) -

In analogue to that in the Schur-Horn theorem, the sufficient con-
dition in Sing-Thompson theorem gives rise to an inverse singular value
problem, namely, to construct a real n x n matrix from the prescribed
singular values and diagonal entries. This paper discusses one numerical
procedures for solving such a problem. The idea is based on Thompson’s
original proof by induction and is inspired by the approach in [9].

For convenience, we shall denote the diagonal matrix whose main
diagonal entries are the same as those of the matrix M as diag(M), and
denote the diagonal matrix whose diagonal entries are formed from the
vector v as diag(v). In this paper, we first demonstrate how the 2 x 2 case
can be constructed by elementary algebra. We then use the 2 x 2 case a
building block to construct the general matrix. Numerical experiments
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Fi1G. 2.1. Domain of feasible di and ds, given o1 and os.

suggest that the construction of an n x n matrix requires approximately
O(n?) flops.

2. The 2 x 2 Case. The conditions in Theorem 1.3 for the existence
of a matrix A € R**? with singular values {oy,0,} and main diagonal
entries {d;, d>} become that

o1 2 09

|di| > |ds]

(2.1) |di| < oy
dy| + |da| < 01 + 0
|di| = |da| < o1 — 09

A typical region for d; and ds satisfying the above conditions with fixed
o1 > 09 > 0 is depicted by the shaded domain in Figure 2.1. In this
section we study how such a matrix A can be constructed. Specifically,
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we want to determine the two orthogonal matrices U; and U, such that
(2.2) diag(U,SUT) = diag([dy, ds])

where ¥ = diag([o1, 03]). This 2 x 2 construction will become a building
block in our recursive algorithm.
There are only two classes of 2 x 2 orthogonal matrices, i.e.,

[efels

where ¢? + 52 = 1. The orthogonal matrices U; and U, can assumed
any of these two forms. Let the entries corresponding to U; be denoted
as ¢; and s;. If both U; and U, belong to the same class of orthogonal
matrices, then the equation (2.2) is equivalent to the system

(2.3) { (03 —0)erez = (o1dy — 0ada)

(O’%—U%)8182 = (0’1d2-0’2d1).

If U; and U, belong to two different classes, then (2.2) is equivalent to
the system

(2.4) { (07 —o3)cica = (01dy + 02dy)

(O’%—U%)8182 = —(O'ld2+0'2d1).

We want to show that if conditions (2.2) are satisfied, then at least one
of the two systems (2.3) and (2.4) will have real solutions for ¢; and s;,
1= 1,2, and we want to compute these values.

With the notation defined by

2

o1dy — oady )

)

o1dy — 02d1)27
)
)

= (
= (
= (01dy + 09ds
= (
= (

2

Y

o d2 +0’2d1 2

1 )
ot = 03)%,

D]UQUU

we claim that the orthogonal matrices U; and U, can be constructed
according to the following recipe.

LEMMA 2.1. Suppose |0y — 09| > |dy — d3|. Then the two roots r;,
1 =1,2, of the quadratic equation

(2.5) —Ex? +(E-B+ Az —-A=0
4



are real and bounded between 0 and 1. Define U; = [ _C; il ] where
c1 =T,
o1dy — 0ady
Cy = 8gn | ————5— | o,
S p)

sp =y/1—r%,
dy — ood
S9 = 8gn <%> V1—ri

01 — 03

Then (2.2) is satisfied.
LEMMA 2.2. Suppose |01 — 03| < |dy — dg|. Then the two roots r;,
1 = 1,2, of the quadratic equation

(2.6) ~Ex*+(E-D+C)z—C=0

& S1

are real and bounded between 0 and 1. Define Uy = l . ¢
—S51 €

] and

U; = [ €2 52 ] where

So —Co

C1 =Ty,

O'1d1 + O'ng
Co =8N\ —— 5 | T2

01y — 03

sp =y/1—r%,
o1dy + o9d
S9 = —5gn <%> 1 —173.

01 — 03
Then (2.2) is satisfied.
Proof. We shall prove Lemma 2.1 only. The case in Lemma 2.2 can
be argued similarly. For convenience, we write X := ¢ and Y := 3.
Upon squaring both sides of (2.3), we obtain

@.7) { EXY = A

E(1-X)1-Y) = B
because s2 = 1 — X and s3 = 1 — Y. Upon further elimination and
substitution, (2.7) is equivalent to the quadratic equation (2.5) in terms
of X. The discriminant of (2.5) can be factorized as

(E— B+ A)? —4AE = (0, — 09)*(01 + 02)?
(28) [(0’1 + 0'2)2 - (d1 + d2)2][(0'1 - 0'2)2 — (d1 — d2)2].
)



Obviously, the first two factors in each of the above two expressions are
obviously nonnegative. The Sing-Thompson conditions imply that the
third factor in each expressions is also nonnegative. Since it is assumed
that |0y — 09| > |d; — dg|, the fourth factor is also nonnegative. This
proves that the equation (2.5) has real solutions.

Note specifically that the smaller root,

(E—B+A)—\/(E—B+A)?—44E

2F ’
is positive because £ — B+ A = (0? — 03)(0? — 03 + d? — d3) > 0 and
and AF > 0. To show that the larger root,

E—-—B+A)+/(E—B+ A)?—4AF

is no greater than 1, it suffices to show that \/(E — B+ A)?2 —4AF <
E + B — A. The inequality follows directly from the factorization that
(V(E = B+ A)? —4AE) —(B+B—A)? = —4(01—02)*(01+0%) (01—
o9dy)? < 0. and the observation that E+ B — A = (6% — 02)[(0? — 02) —
(d — d3)] > 0 because of the Sing-Thompson conditions in (2.2).

Symmetry of X and Y in the system (2.7) implies that X and Y are
exactly the two roots of (2.5). The signs of ¢; and ¢, (and also those of s;
and sp) should be determined from (2.3). Indeed, it can be checked that
only the signs of the products c¢;cy and sys9 matter in the construction.
This proves Lemma 2.1. O

It is interesting to note that the pair (d;, ds) described in Lemma 2.1
corresponds to the region in Figure 2.1 where the shaded lines are slanted
from the northwest to the southeast. In the meantime, the pair (di, ds)
described in Lemma 2.2 must come from the region in Figure 2.1 where
the shaded lines are slanted from the northeast to the southwest. In

summary, the above argument can be implemented into an algorithm
that is listed in Table 2.1.

(2.9) X, =

3. A Recursive Algorithm. Assuming that the vectors d and s
are arranged in non-increasing order and satisfy the Sing-Thompson con-
ditions, Thompson carried out the proof of sufficient conditions in The-
orem 1.3 by considering two mutually exclusive cases followed by the
mathematical induction. In this note we want to point out that his in-
duction argument is in fact implementable as a recursive algorithm.

In order to explain the recursive algorithm more plainly, we quickly
review Thompson’s proof below. Let

(3.1) k:=max{i||d| <s;forj=1,...,i}.
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function [U,V]=two_by_two(d,s);
h
% Create 2 by 2 orthogonal matrices U and V such that
h
h diag(Uxdiag(s)*V’) = diag(d)
b
if abs(s(1)-s(2)) <= 2*s(1)*eps
U = eye(2); V = eye(2);
return
end
if abs(d(1)) <= abs(d(2))
iflag = 1; d = flipud(d);

else

iflag = 0;
end
templ = s(1)*d(1)-s(2)*d(2); A = templ~2;
temp2 = s(1)*d(2)-s(2)*d(1); B = temp2~2;
temp3 = s(1)*d(1)+s(2)*d(2); C = temp3~2;
temp4 = s(1)*d(2)+s(2)*d(1); D = tempd~2;

tempbs = s(1)*s(1)-s(2)*s(2); E = temp5~2;
if abs(d(1)-d(2)) <= abs(s(1)-s(2))
temp = sqrt(abs((E-B+A) ~2-4*A*E));

R = sqrt ([(E-B+A)+temp; (E-B+A)-temp] /(2*E)) .*[1;sign(templ/temp5)];
S = sqrt(1-R."2) .*[1;sign(temp2/temp5)];
U = [R(1),5(1);-s5(1),R(1)]; V = [R(2),5(2);-5(2),R(2)];

else

temp = sqrt(abs((E-D+C) “2-4*ExC)) ;

R = sqrt ([(E-D+C)+temp; (E-D+C)-temp] /(2*E)) .*[1;sign(temp3/temp5)];
S = sqrt(1-R."2) .*[1;-sign(temp4/temp5)];
vV = [R(2),8(2);8(2),-R(2)]; U = [R(1),S5(1);-S(1),R(1)];
end
if iflag ==
U = flipud(U); V = flipud(V);
end

TABLE 2.1
A MATLAB program for 2 x 2 case.




Clearly, k£ > 1 by conditions in (1.3).
Case 1. Suppose k < n — 2. Let

(3.2) t:= Sk + Sk+1 — |d1|

Then ¢t > 0. It is not definite which of |d;| and ¢ is larger, but by the
definition of k it is easy to see that ||d;| — t| < s — sg41. It follows that
the two sets of numbers {d;,t} and {sg, sry1} satisfy the conditions in

(2.2). For these 2 x 2 case, there exists orthogonal matrices U; and U,
in R?*? such that

diag (U diag([sy, s+1]))U3 ) = diag ([dy, £]) .
Furthermore, using the definition of ¢, the two new sequences of numbers,

(3.3) §1 2822 .81 212 Spp1 2 ... 2 Sy
|do| > |d3| > ... [di| > |dis1| > |diyo| .. > [dy]

satisfy the Sing-Thompson conditions. If the induction hypothesis holds,
then there exist orthogonal matrices U; and U, in R(=1x(=1) gych that

diag (Urdiag([s1, ..., sk—1,t, Sks1, -, sal)U5 ) = diag([da, ..., .., dy]).
If we decompose partition U; into blocks

[ Ui,ll Ui,12 ]

34 Ul: A~ ~
( ) Uioi Ui

1=1,2

=

where Uy is of size (k — 1) x (k — 1) and define

Un 0 Uz | [ L 00
35) Ui==| 0 1 0 0o U 0 . i=1,2,
Ui,21 0 Ui,22 0 0 [n—k—l

then it is readily seen that
diag (Uldiag{sl, o sn}UQT) = diag{ds, ..., dp_1,dr, djr1, ..., dn}.

Case 2. Suppose n —1 < k < n. Through an amazing insight,
Thompson observed that all twelve inequalities involved in the following
extremes

—Sn—1 + Sn + |dn| Sn-1
(3.6) 0 L] Snotton — ldnl
) |d| s - Sp— 1_8n+|dn|
1 )

Z? 1 Si — ?;12 |dz| + |dn—1|
8



held. Let t be any value lying between the maximum of the left extremes
and the minimum of the right extremes. Then it follows that the two
set of numbers {¢,d,} and {s, 1,s,} satisfy the conditions in (2.2), re-
gardless whichever ¢ or |d,| is larger. It also follows that the two new
sequences of numbers,

> > .. > 8,9 >
(3.7) { §1 2> Sg > > Sp_o >t

|di| > |da| > ... > |dy—2| > |dn_1]

satisfy the Sing-Thompson conditions. We therefore can construct or-
thogonal matrices U; and U, in R**? such that

diag (U1 diag([sn-1, 5a)) U5 ) = diag ([t, dn]).

By the induction hypothesis, we also can construct orthogonal matrices
U, and Uy in R™Y*(=1) guch that

diag (Uldiag([sl, Sy vy Sn_2, t])UZT) = diag([dy, ds, ..., d, 1]).

If we define

L Ul 0 In—2 0 .
oo w=[U ][ 0] s

then it is readily seen that
diag (Uldiag{sl, Ce sn}UQT) = diag{dy,ds, ..., d,}.

In both cases, we notice that the original problem of size n is broken
down to two subproblems of sizes 2 and n — 1. The discussion in the
previous section leads to a constructive solution for the subproblem of
size 2. More significantly, the desired diagonal entries and singular values
for the subproblem of size n—1 are given explicitly by either (3.3) or (3.7),
which therefore can be further downsized to subproblems of sizes 2 and
n — 2. Repeating this argument, we find out that the construction of
a matrix with prescribed diagonal entries and singular values can now
be done by first dividing the original problem into a sequence of 2 x 2
subproblems and then by conquering these 2 x 2 subproblems to build up
the original problem. This divide and conquer process is similar to that
occurred in the radix-2 fast Fourier transform.

In MATLAB expressions, this recursive algorithm can be conve-
niently described as in Table 3.1. Note that the function svd_diag calls
itself. The divide-and-conquer feature in our algorithm bring on fast
computation. The cost should be in the order of O(n?). This estimation
can be observed from numerical experiments. Using the diagonal entries
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Fia. 3.1. Computational cost versus size of problems.

and singular values of 200 random matrices from size 2 to 200 as test
data, we report the total floating point operations on log-log scale in
Figure 3.1. The near linearity and its slop of the graph strongly suggests
that the cost is approximately O(n?).

4. Conclusion. In an environment that allows a subprogram to in-
voke itself recursively, the existence of a solution proved by the mathe-
matical induction can often be transformed into an recursive algorithm.
In this note we have illustrated one particular application, by using MAT-
LAB, to the construction of matrices with prescribed diagonal elements
and singular values.
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function [U,V]=svd_diag(d,s);
= length(d);
if n ==
[U,V] = two_by_two(d,s);
else
k=1; 1= 2;
while (i <= n & abs(d(1)) <= s(i))
k= k+l; i = i+1;
end
if k <= n-2
t = s(k)+s(k+1)-abs(d(1));
[U2,V2] = two_by_two([d(1);t],[s(k);s(k+1)]1);
= [s(1:k-1);t;s(k+2:n)]; d = d(2:n);
[U1,V1] = svd_diag(d,s);
= [U1(1:k-1,1:k-1),zeros(k-1,1),U1(1:k-1,k:n-1);
zeros(1,k-1),1.0,zeros(1,n-k);
Ul(k:n-1,1:k-1),zeros(n-k,1),U1(k:n-1,k:n-1)];
= [V1(1:k-1,1:k-1),zeros(k-1,1),V1i(1:k-1,k:n-1);
zeros(1,k-1),1.0,zeros(1,n-k);
Vi(k:n-1,1:k-1),zeros(n-k,1),Vi(k:n-1,k:n-1)];
UC:,k:k+1)=U(C: ,k:k+1)*U2; V(:,k:k+1)=V(:,k:k+1)*V2;
else
templ = sum(abs(d(1:n-2))); temp2 = sum(s(1:n-2));
temp3 = abs(d(n))-s(n-1); temp4d = s(n)-abs(d(n));
temp5 = templ-temp2;
lower = max([s(n)+temp3,0,temp5+abs(d(n-1))1);
upper = min([s(n-1),s(n-1)+temp4,s(n-1)-temp4,+abs(d(n-1))-temp5]) ;
= (lower+upper)/2;
[U2,V2] = two_by_two([t;d(n)], [s(n-1);s(n)]);
= [s(1:n-2);t]; d = d(1:n-1);
[U1,V1] = svd_diag(d,s);
= [U1l,zeros(n-1,1); zeros(l,n-1),1];
= [V1,zeros(n-1,1); zeros(l,n-1),1];
U(:,n-1:n)=U(:,n-1:n)*U2; V(:,n-1:n)=V(:,n-1:n)*V2;
end
end

TABLE 3.1
A MATLAB program for the recursive algorithm.
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