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Abstract� The Weyl�Horn theorem characterizes a relationship between the
eigenvalues and the singular values of an arbitrary matrix� Based on that charac�
terization� a fast recursive algorithm is developed to construct numerically a matrix
with prescribed eigenvalues and singular values� Beside being theoretically interest�
ing� the technique could be employed to create test matrices with desired spectral
features� Numerical experiment shows this algorithm is quite e�cient and robust�
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�� Introduction� It is perhaps valid to state that eigenvalues and
singular values are two of the most distinguishing characteristics in any
given general square matrix� Eigenvalue analysis� for example� simpli�es
the representation of complicated systems� sheds light on the asymptotic
behavior of di�erential equations� and helps to understand the perfor�
mance of important numerical algorithms� Information on singular val�
ues� on the other hand� assumes a critical role whenever there is presence
of roundo� error or inexact data� Many fundamental topics in linear al�
gebra and important applications in practice are best understood when
formulated in terms of the singular value decomposition�

Over the years� one of the most fruitful developments in numerical
linear algebra� which serves as computational platforms for a variety of
application problems� is that of e�cient and stable algorithms for the
computation of eigenvalues and singular values of a given matrix� This
paper concerns an interesting inverse problem� i�e�� instead of computing
eigenvalues and singular values from a given matrix� we are interested in
constructing a matrix that has prescribed eigenvalues and singular values�
In this paper we propose a fast recursive algorithm to accomplish this
construction� Our method� though simple and derived from an old theory�
appears to be the �rst ever in dealing with this problem numerically�

For a Hermitian matrix A� the singular values of A are simply the
absolute values of eigenvalues of A� For non�Hermitian matrices� some
restrictions must be placed between eigenvalues and singular values� In�
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deed� the following key result is �rst proved by Weyl ���	�
Theorem ���� Given any n � n matrix� A� let its eigenvalues

��� � � � � �n and singular values ��� � � � � �n be arranged in the order

j��j � � � � � j�nj and �� � � � � � �n�
����

Then

kY
j��

j�jj �
kY

j��

�j� k � �� � � � � n� ��
����

nY
j��

j�jj �
nY

j��

�j�
���

If j�nj � �� then the conditions 
���� and 
��� may also be referred to
as that the sequence flog�ig majorizes the sequence flog j�ijg� Theory
of majorization and its applications can be found in ��	� It turns out�
due to Horn �	� that the above necessary conditions are also su�cient�
i�e�� 
���� and 
��� are the only relations between the eigenvalues and
the singular values of any general matrix�

The result by Weyl and Horn then gives rise to an interesting inverse
problem� i�e�� to numerically construct a square matrix that possesses
a prescribed set of eigenvalues and singular values� Such a construction
might be useful in designing matrices with desired spectral speci�cations�
Many important properties� such as the conditioning of a matrix� are
determined by eigenvalues or singular values�

Our approach is based on the original proof by Horn that� in turn�
is completed by the mathematical induction� Upon a careful study of
his inductive argument� we realize that� with the aid of modern pro�
gramming languages that allow a subprogram to invoke itself recursively�
Horn�s induction proof can be transformed into a recursive algorithm� In
this way� we are able to construct numerically a matrix with prescribed
eigenvalues and singular values� so long as the conditions 
���� and 
���
are satis�ed� Our contribution in this paper is twofold� We signi�cantly
relax one key component in Horn�s proof that� in return� enables us to
implement a fast recursive algorithm�

This paper is organized as follows� We begin in Section � with a
demonstration on how a �� � matrix can be handled explicitly� given its
eigenvalues and singular values� This � � � construction plays a signi��
cant role in the subsequent steps since the original problem is eventually
reduced to ��� blocks� We slightly extend Horn�s result by showing that
if the prescribed eigenvalues are complex conjugate to each other� then
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a real�valued � � � matrix with the prescribed eigenvalues and singular
values does exist� To explain our recursive algorithm more plainly� we
brie�y review Horn�s inductive proof in Section � In particular� we point
out how and where the splitting can take place and� hence� the recur�
sive algorithm can be applied� To know the splitting exactly is a crucial
step in our recursive algorithm� The matrix under construction carries
a speci�c structure� If we had followed Horn�s proof precisely� then the
resulting algorithm would have become extremely expensive� We discuss
this issue in Section �� In particular� we argue that the required struc�
ture of matrices in Horn�s proof is entirely not necessary� This insight
enables us to derive a very e�cient algorithm� In Section � we give a
symbolic example to demonstrate the �ow of our recursive process� In
Section � we report some interesting results from our numerical experi�
ment� Speci�cally� we are able to construct nonsymmetric matrices that
have the same eigenvalues and singular values as what those classical
eigenvalue test matrices possess� including the most challenging Rosser
matrix and the Wilkinson�s matrices�

�� The ��� Case� The conditions in Theorem ��� for a ��� matrix
A to have eigenvalues f��� ��g and singular values f��� ��g are�

j��j � ���

j��jj��j � �����

����

It follows that �� � j��j � j��j � �� and j��j
� � j��j

� � ��
� � ��

�� In this
section� we explain in details how a ��� matrix can be constructed� Such
a construction will serve as the building block in our recursive algorithm�

Horn�s proof starts with the simple fact that the triangular matrix

A �

�
�� �

� ��

�

����

has singular value f��� ��g if and only if

� �
q
��
� � ��

� � j��j� � j��j��
���

His proof for the higher dimensional case is then completed by induction
which we will explain in the next section�

In the case when the eigenvalues or singular values are nearly equal
to each other� the calculation of � according to 
��� is unstable when the
magnitude of �i or �i is large� Instead� we suggest to compute � through
the equivalent formula

� �

�
�� if j
������

��
j��j�j��j�
�j � �q

j
��������
j��j�j��j��j� otherwise





where � is the machine accuracy�
Horn�s proof� while valid over the complex domain� has one short�

coming in that the matrix constructed is generally complex�valued even
if the two eigenvalues are complex�conjugate� It appears di�cult and
sometimes impossible to convert the triangular matrix A in 
���� by uni�
tary similarity transformation into a real matrix� Suppose the given
eigenvalues appear in complex�conjugate pairs� we often are interested in
constructing a real�valued matrix� To our knowledge� we are not aware of
any theory showing that such a real matrix exists� It is perhaps still an
open problem� We are able to show� however� that such a construction
for �� � matrices is possible�

Consider the matrix

A �

�
a b

c d

�
�
����

where a� b� c� and d are real numbers to be determined� For the matrix A
to have eigenvalues f��� ��g and singular values f��� ��g� the entries of
A must satisfy the following equations������

����
a � d � �� � ���

ad� bc � �����

a� � b� � c� � d� � ��
� � ��

��


ad� bc�� � ��
��

�
��


����

Obviously� the last equation is equivalent to the second equation ac�
cording to 
����� Assume that � �� ����� is a real number� i�e�� assume
that the given eigenvalues �� and �� are either real or complex�conjugate�
Upon substitution by d � ��a� we obtain a reduced system of equations��

a
� � a�� bc � �����

a� � b� � c� � 
� � a�� � ��
� � ��

��

����

It follows that
b � c�

q
��
� � ��

� � ��� � ����
����

Note that the quantity under the radical in the above is nonnegative� It
now boils down to determining whether the equation

c� � c
q
��
� � ��

� � ��� � ��� � 
a� � �a � ����� � �
����

has real solutions a and c� Since all coe�cients in 
���� are real� a nec�
essary condition for c to be real is that the discriminant is nonnegative�
i�e�� it requires to �nd a real value a so that

��
� � ��

� � ��� � ��� � �
a� � �a� ����� � ��
����
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From 
���� and our assumption� we know that the products ���� and
���� di�er by at most a negative sign� Depending upon the sign in

���� � ������
�����

we thus may rewrite the left�hand side of 
���� as

��
a�
�

�
��� � 
�� � ���

��

Obviously� if we choose

a �
�

�
��
�����

then 
���� is satis�ed� In that case� we may choose

c �
�
q
��
� � ��

� � ��� � ��� � 
�� � ���

�

�����

where the �rst signs can be arbitrary and the last sign � is minus or plus
depends upon the sign in 
������

In summary� we have shown the existence of a � � � matrix with
prescribed eigenvalues and singular values� provided the conditions in

���� are met� More speci�cally� we have shown that the matrix can be
real�valued� if the given eigenvalues are a complex�conjugate pair�

�� A Recursive Algorithm� Assuming that the two sets of num�
bers f�ig and f�ig are arranged in the order as in 
���� and satisfy the
conditions in 
���� and 
���� Horn proves the existence of a matrix with
eigenvalues f�ig and singular values f�ig by treating the case of zero
singular values separately followed by the mathematical induction� In
this note we want to point out that his induction argument is in fact
implementable as a recursive algorithm�

In order to explain the recursive algorithm more plainly� we brie�y
outline Horn�s proof below�

Case �� Suppose �i � � for all i � �� � � � � n� Then� from the
condition 
���� we know that �i �� � for all i� Let

�
�� �� ���

�i �� �i��
�i
j�ij

� for i � �� � � � � n� ��

���

Assume the minimum value of these �i� denoted by

� �� min
��i�n��

�i�
���

�



occurs at the index j� By the condition 
����� it follows that j��j � �i
for all i� Hence� j��j � �� De�ne

	 ��
j���nj

�
�
��

By the de�nition of � and the condition 
���� we also have �n� �
�n��

Qn��
i��

�i
j�ij

� j���nj� It follows that

�n � 	 � j�nj � j��j � � � ���
���

The relationship in 
��� implies that the two conditions in 
���� are
satis�ed by the two pairs of numbers f��� �ng and f�� 	g� From the
discussion in the preceding section� there exist a number � � R and
unitary matrices U�� V� � C��� such that

U�

�
� �
� 	

�
V �
� � A� �

�
�� �

� �n

�
�
���

Furthermore� it can be veri�ed that each of the two sets of numbers�

�
� � j��j � � � � � j�jj
�� � �� � � � � � �j


���

and �
j�j��j � � � � � j�n��j � 	

�j�� � � � � � �n�� � �n�

���

satis�es the Weyl�Horn conditions 
���� and 
��� by itself� Upon apply�
ing the induction hypothesis� there exist unitary matrices U�� V� � Cj�j�
U�� V� � C�n�j���n�j�� and triangular matrices A�� A� such that

U�

�
����	
�� � � � � �
� �� �
���

� � �

� � � � � �j



�����V �

� � A��

�
�������	

� � � � � � �
� �� �

���
� � �

� � �j



��������
�


���

U�

�
����	
�j�� � � � � �
� �j�� �
���

� � �

� � � � � �n



�����V �

� � A��

�
�������	

�j�� � � � � � �
� �j�� �
���

� � �
���

�n�� �
� � � � � � 	



��������
�

�



In the above� the symbol � stands for some appropriate numbers� Horn
claims that the block diagonal matrix�

A� 	
	 A�

�

is unitarily equivalent to the triangular matrix�
��������������������	

�� � � � � � �
� �
���

� � �
��� 	

�j �

� � � � � � �
� � � � � � � 	 � � � � � �

�j�� �
	

���
� � �

� � � � � �n��



���������������������


���

which� by applying 
���� is unitarily equivalent to the triangular matrix�
��������������������	

�� � � � � � �
� �
���

� � �
��� 	

�j �

� � � � � �� �

� � � � � � � �n � � � � � �
�j�� �

	
���

� � �

� � � � � �n��



���������������������

�

Case �� Suppose �� � � � � � �k � �k�� � � � � �n � � for some k�
It follows from the condition 
���� that �k�� � � � � � �n � �� Let m be
the largest integer for which �m �� � but �i � � for all i � m� Clearly�
m � k� De�ne


 ��

Qm
i�� j�ijQm��
i�� �i

�
����

It follows from 
���� that � � 
 � �m� Note that this set of numbers��
j��j � � � � � j�mj
�� � � � � � �m�� � 
�


����

�



satis�es the Weyl�Horn conditions again� By induction hypothesis� there�
fore� there exist unitary matrices U�� V� � Cm�m and an upper triangular
matrix A� such that

U�

�
�������	

�� � � � � � �
� �� �
���

� � �

� �m�� �
� � � � � � 




��������
V �
� � A��

�
�������	

�� � � � � � �
� �� �

���
� � �

� � �m



��������
�

De�ne

A �

�
�����������������	

V �
� A�V� 	 	

� � � � � � � � � � � � � � � � �
� � � �m�� �

� �
� � �

���
���

� � �
���

� � � � � � �k � � � � � �

	 	 	



������������������


����

with
� ��

q
��
m � 
��
���

Then it is readily seen that A has eigenvalues f��� � � � � �m� �� � � � � �g and
singular values f��� � � � � �k� �� � � � � �g�

In both cases above� we see that the original inverse problem is re�
duced to inverse problems of smaller sizes that are guaranteed to be solv�
able according to the induction hypothesis� In the �rst case� the problem
of size n is broken down two subproblems of sizes j and n�j� respectively�
After �nding the solutions A� and A� to the smaller problems� the two
subproblems are then a�xed together by working on a �� � submatrix�
The � � � problem has an explicit solution from the discussion in the
preceding section� More signi�cantly� the eigenvalues and the singular
values for the two subproblems are given explicitly by 
��� and 
����
respectively� Therefore� by repeating the argument� each of the two sub�
problems can further be downsized� In this way� the original problem is
eventually solved by �rst dividing the problem into subproblems of blocks
� � � or � � �� and then by conquering these small blocks to build up
the the original size� This divide and conquer process is similar to that
occurred in the radix�� fast Fourier transform� In the second case� the

	



zero eigenvalues are �rst taken out of consideration� The remaining data

���� constitute a new subproblem that can be solved by the divide and
conquer process discussed in the �rst case� Finally� the o��diagonal ele�
ment � de�ned in 
��� and the structure of A in 
���� take the original
singular values into account�

In an environment that allows a subprogram to invoke itself recur�
sively� we can exploit this feature by providing a routine that does ex�
actly one step of the divide�and�conquer procedure described above� As
a simple example� in MATLAB syntax� this recursive algorithm can be
conveniently expressed as the program in Table ��� More details on
the structure of the matrix under construction will be discussed in the
next section� At this moment� note that the function svd eig calls it�
self which results in further splitting� In the �nal return� the program
produces a matrix A that has eigenvalues f��� � � � � �ng and singular val�
ues f��� � � � � �ng� Once A is constructed� any similarity transformation
QAQ� by an unitary matrix Q will maintain the same eigenvalues and
singular values�

It should be pointed out that in the attached program we choose not
to calculate the unitary matrices mentioned in the discussion� If desired�
these matrices could be computed in a very e�ciently way as we shall
see in the next section�

�� The Matrix Structure� It is necessary to make one important
remark concerning the structure of the matrix we intend to construct� In
his inductive proof� Horn assumes that both the intermediate matrices
A� and A� are upper triangular matrices and that the diagonal entries
are arranged in a certain order� See 
��� and 
���� Horn has never been
speci�c on how these assumptions can be satis�ed� though their validity
can be seen from the Schur decomposition theorem� In practice� how�
ever� it turns out that these assumptions cannot be achieved simply by
permutations� It� in fact� involves a quite complicated procedure to re�
arrange the diagonal entries by unitary similarity transformations while
maintaining the upper triangular structure� This procedure of rearrange�
ment is one order more expensive than the divide and conquer algorithm
described above�

One important contribution in our study is that the triangular struc�
ture is entirely unnecessary� The matrix A produced from our algorithm
is generally not triangular� Unlike Horn�s proof� we do not require to
�rst rearrange the diagonal entries and then perform the unitarily equiv�
alent transformation to the middle � � � block� Instead� we modify the
�rst and the last rows and columns of the corresponding block diagonal

�



function �A��svd�eig�alpha�lambda��

n � length�alpha��

if n �� � 	 The � by � case

A � �lambda�����

elseif n �� 
 	 The 
 by 
 case

�U�V�A� � two�by�two�alpha�lambda��

else 	 Check zero singular values

tol � n�alpha����eps�

k � sum�alpha � tol�� m � sum�abs�lambda� � tol��

if k �� n 	 Case �

j � �� s � alpha���� temp � s�

for i � 
n��

temp � temp�alpha�i��abs�lambda�i���

if temp � s� j � i� s � temp� end

end

rho � abs�lambda����lambda�n���s�

�U��V��A�� � two�by�two��s�rho���lambda����lambda�n����

�A�� � svd�eig�alpha��j���s�lambda�
j����

�A
� � svd�eig�alpha�j��n���lambda�j��n����rho���

A � �A��zeros�j�n�j��zeros�n�j�j��A
��

Temp � A�

A�����U�������Temp�����U����
��Temp�n���

A�n���U��
����Temp�����U��
�
��Temp�n���

Temp � A�

A�����V�������Temp�����V����
��Temp��n��

A��n��V��
����Temp�����V��
�
��Temp��n��

else 	 Case 


beta � prod�abs�lambda��m����prod�alpha��m�����

�U��V��A�� � svd�eig��alpha��m����beta��lambda��m���

A � zeros�n�� A��m��m� � V���A��V��

for i � m��k� A�i�i��� � alpha�i�� end

A�m�m��� � sqrt�abs�alpha�m��
�beta�
���

end

end

Table ���

A MATLAB program for the recursive algorithm�

�




matrix

�
A� 	
	 A�

�
according to entries in the �� � unitary equivalence

transformation matrices U� and V�� More precisely� let the entries of U�

and V� be denoted by U� � �u��st	 and V� � �v��st	� respectively� De�ne

U ��

�
�	
u���� � u����
� In�� �

u���� � u����



��
�
U� �
� U�

�
�
����

V ��

�
�	
v���� � v����
� In�� �

v���� � v����



��
�
V� �
� V�

�
�
����

where In�� stands for the identity matrix of size n� �� We a�x the two
matrices A� and A� together by de�ning

A �� U

�
����	
�� � � � � �
� �� �
���

� � �

� �n



�����V ��
���

It is easy to see that A has the structure

A �

�
��������������������	

�� 
 � � � 
 
 � � �


 � � � �
���

� � �
��� 	

�j�� �

 � � � � � �j �
� � � � � � � �j�� � � � � � 

� � � �j�� 


	
���

� � �

� � � � � � � 
 
 �n



���������������������

�
����

In the above� the symbol � represents unchanged� original entries from
A� or A�� The symbol 
 denotes entries of A� or A� that are modi�ed
by scalar multiplications� Note that if an entry at 
 was zero to begin
with� then it remains zero after the scaling� Finally� we use � to represent
possible new entries that were originally zero� It is important to observe
that the zero pattern of � in the �rst
last� row is exactly the same as that
of 
 in the last
�rst� row� A similarly observation holds for columns�
Note also that the four corners of A follow from 
����

��



Clearly� the matrix A has singular values f��� � � � � �ng� We need
to show that A has eigenvalues f��� � � � � �ng� If the procedure works�
formulas 
���� and 
���� also suggest an e�cient way to compute the
unitary matrices if so desired�

We now examine the structure of A more closely and explain why
our algorithm works� In contrast to 
��� where A� and A� are upper
triangular matrices� we shall assume in our induction hypothesis that
the unitary matrices Ui and Vi have produced Ai� i � �� �� with the
following properties�


P�� Diagonal entries of A� and A� are in the order

�� ��� � � � � �j�

and

�j��� � � � � �n��� 	�

respectively�

P�� Each Ai is similar through permutations to a lower triangular ma�

trix whose diagonal entries constitute the same set as the diagonal
entries of Ai� 
Thus� each Ai has precisely its own diagonal entries
as its eigenvalues�� More speci�cally� each Ai has the following
structure�
�� The �rst row and the last row have the same zero pattern

except that the lower�left corner is always zero�
�� The �rst column and the last column have the same zero

pattern except that the lower�left corner is always zero�

If we can show that the a�xed matrix A� de�ned in 
����� has exactly the
same properties� the the induction principle implies that our algorithm
is indeed a variation of Horn�s original proof� Our implementation of
making it operative then becomes quite remarkable�

The general proof can be best argued through the graph theory� We
suggest the book ��	 as a general reference� Instead of providing the
heavy machinery involved� we provide a short�cut proof below� Consider
the digraph Gi corresponding to Ai � �ai�st	� i � �� �� where the directed
edge from vertex s to vertex t is marked by the entry ai�st� Then the
property 
P�� is equivalent to the following statement�


P��� The graph Gi contains no cycles of length greater than ��
��� Whenever there is an edge outgoing from the �rst vertex�

there is an edge outgoing from the last vertex� and vise versa�
��� Whenever there is an edge ingoing into the �rst vertex� there

is an edge ingoing into the last vertex� and vise versa�

��



Let Pi� i � �� �� be the permutation matrix such that P T
i AiPi is lower

triangular� Let P ��

�
P� 	
	 P�

�
� Label the vertices of A as ��� � � � � �n

where we identify �� with the �rst vertex � in A� and �n with the last
vertex 	 in A�� Since simultaneous permutations of rows and columns
introduce isomorphic graphs� we conclude that P TAP is of the form�
���������������������������������������������	

�� � � � � � �
� �� �
���

� � �
��� 	 	 	

� �
� � � � � � ��

�� �� � � ��� �� �� � � � � � �n�n � � ��n �n

� � � � � � � �� �
� � � � � �

��� � � �
���

���
� � �

���
���

���
���

��� 	
� � � �� � � � � � �

� � � � � � �� � � � ���� � � � � � � �

� � � � � � �� � � � � � �
� � � � � � � �� �
��� � � �

��� 	
���

� � �
��� 	

� � � � � � � � �� �
���� � � ����� �n�n�n�n �n

n � � � � � � � � � � � � �n �� � � � � � �
n � � � � � � � � � � � � �n � �� �

	
���

���
���
���

���
���

���
���

� � �
���

n � � � � � � �n � � �� �
n � � � � � � � � � �n � � � ��



����������������������������������������������

�

To facilitate the understanding� we have adopted some special symbols
in the above to mark where the new edges connecting graphs G� and G�

to form the graph for A are added�
� �� represents generically any value from the list f��� � � � � �jg� Like�
wise� �� represents any value from the list f�j��� � � � � �n��g�

� �� indicates a possible 
and the only possible� edge outgoing from
the vertex �� Consequently� according to 
P������ a corresponding
new edge outgoing from the vertex n could occur only at ���
Similar meaning holds for �n and �n�

� �� indicates a possible 
and the only possible� edge ingoing into
the vertex �� Consequently� according to 
P������ a corresponding
new edge ingoing into the vertex n could occur only at �� Similar
meaning holds for �n and n�

�



It should be clear from the structure of P TAP that the matrix A indeed
also enjoys properties 
P�� and 
P��� Our proof therefore is complete�
Speci�cally� we have proved that the rearrangement as is required in
Horn�s proof is not necessary� We have proved that modifying the �bor�

der� of the matrix

�
A� 	
	 A�

�
as is done in our program will result in a

matrix with eigenvalues f��� � � � � �ng and singular values f��� � � � � �ng�

�� A Symbolic Example� The recursive process and the structure
of the resulting matrices are quite complicated� It perhaps will be helpful
if we illustrate the idea by tracing symbolically one possible scenario of
our algorithm in details�

Consider the case n � �� For clarity� we shall denote the splitting
index j� the corresponding �� and 	 
See 
��� and 
��� at the �th step
by j�� �� and 	�� respectively� Let each non�empty box in the diagram
below represents a matrix to be constructed with values at the top row
and the bottom row in each box as the corresponding eigenvalues and
singular values� respectively� For reference� we also mark down on the
right side of the down�pointing arrow the eigenvalues and the singular
values of the associated �� � matrix that will be used to a�x matrices
together�

Suppose� for a certain set of eigenvalues ��� � � � � �� and singular values
��� � � � � ��� that our algorithm results in splittings at j� � �� j� � �� and
j� � �� The data available for construction are as follows�
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Our algorithm then builds up the ��� matrix step by step according
to the order depicted in the following diagram� To stress how the �� �
a�xing matrix changes the entries� we use the same symbols as in 
����
to indicate how an entry is modi�ed�
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Note that each matrix in the box� i�e�� either A� or A� constructed in each
step� is not necessarily triangular� A closer examination of each matrix�
however� shows they possess the properties 
P�� and 
P�� described be�
fore� In particular� each Ai can be transformed into blocks of triangular

��



matrices by permutations 
Though this is still di�erent from what Horn
assumes in his proof�� For example� if we permute a 
�� �� permutation�
i�e�� if we swap the �rst and the sixth rows and columns of the top �� �
matrix� we obtain the matrix�

��������	

�� � � � � �
� �� � � � �
� � �� � � �
� � � �	 � �
� � � � �
 �
� � � � � ��
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whose ��� principal submatrix has exactly the same structure as that of
the ��� matrix A� constructed in the previous step� Note that properties

P���� and 
P���� ensure that no other structure along the �border� will
be changed� The � at the 
�� �� position seems troublesome� However�
if we further perform the 
�� �� permutation� we obtain the matrix

�
��������	

�
 � � � � �
� �� � � � �
� � �� � � �
� � � �	 � �
� � � � �� �
� � � � � ��
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whose block triangular structure should be obvious by now�

�� Numerical Experiment� The algorithm described above can be
used to generate test matrices with desired spectral properties� As it is
written now� the algorithm will produce real matrices if all eigenvalues
are real� However� when complex eigenvalues are present� the resulting
matrix will be complex�valued� even if they appear in complex conjugate
pairs�

Example �� A classical challenge for eigenvalue algorithms is the
�� � Rosser matrix R with integer elements

R �

�
�������������	

��� ��� ���� ��� �� ��� ��� ��
��� ��� �� ���� ��� �� �� ���
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The matrix is symmetric� but has a double eigenvalue� three nearly equal
eigenvalues� a zero eigenvalue� two dominant eigenvalues of opposite sign
and a small nonzero eigenvalues� From MATLAB� the computed eigen�
values and singular values of R are

��
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respectively� We notice that the MATLAB estimates the rank of R to be
� due to the nearly zero singular value� The machine zero corresponding
to a matrix A of size n is de�ned to be n�kAk� where the �oating point
relative accuracy � is approximately ������� ������

Using our recursive algorithm for the above � and �� we obtain the
followingmatrixA which� for the convenience of running text� is displayed
in only � digits�

A �

�
���	

������e��� � � � � � � �

� �������e��� � � � � � �

� � ������e��� � � � � �

� � � ������e��� � � �����	e��� �

� � � � ������e��� � � �

� � � � � ������e��� � �

� � � ���
�
�e��
 � � ��	���e��� �

� � � � � � �����
e��� �
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The computed eigenvalues and singular values of A are
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respectively� It is interesting to note that the resulting A is not symmet�
ric� yet the eigenvalues and singular values of A agree with those of R up
to the machine accuracy�

Example �� Wilkinson�s matrices are symmetric and tridiagonal
with pairs of nearly� but not exactly� equal eigenvalues� This is another

��
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well known class of eigenvalue test matrices� We use the eigenvalues and
singular values of these matrices from size � to �� as the test data� In
Figure ��� we report the discrepancy in eigenvalues and singular values
between our constructed matrices and Wilkinson�s matrices� Again� the
discrepancy is in the range of machine accuracy� It is interesting to
represent these ����� matrices by �D mesh surfaces in Figure ���� It is
also interesting to note that the matrices constructed by our algorithm
are nearly but not symmetric�

Example �� The divide�and�conquer feature in our algorithm brings
on fast computation� A closer examination of our algorithm suggests
the overall cost should be in the order of O
n��� Using eigenvalues and
singular values of ��� random matrices from size � to ��� as test data�
we gauge the total cost by measuring the �ops� The result is plotted in
log�log scale in Figure ��� The linearity of that curve as well as its slops
con�rms that the cost is approximately O
n���

�� Conclusion� We have modi�ed Horn�s original proof on the re�
lationship between eigenvalues and singular values of a matrix� With
the aid of programming languages that allow a subprogram to invoke
itself recursively� we have developed a fast algorithm for reconstruct�

�	
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ing matrices with prescribed eigenvalues and singular values� The cost
of construction is approximately O
n��� The matrix being constructed
usually is not symmetric and is complex�valued� if complex eigenvalues
are present� Numerical experiment on some very challenging problems
suggests that our method is quite robust�
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