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Abstract. The Weyl-Horn theorem characterizes a relationship between the
eigenvalues and the singular values of an arbitrary matrix. Based on that charac-
terization, a fast recursive algorithm is developed to construct numerically a matrix
with prescribed eigenvalues and singular values. Beside being theoretically interest-
ing, the technique could be employed to create test matrices with desired spectral
features. Numerical experiment shows this algorithm is quite efficient and robust.
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1. Introduction. It is perhaps valid to state that eigenvalues and
singular values are two of the most distinguishing characteristics in any
given general square matrix. Eigenvalue analysis, for example, simplifies
the representation of complicated systems, sheds light on the asymptotic
behavior of differential equations, and helps to understand the perfor-
mance of important numerical algorithms. Information on singular val-
ues, on the other hand, assumes a critical role whenever there is presence
of roundoff error or inexact data. Many fundamental topics in linear al-
gebra and important applications in practice are best understood when
formulated in terms of the singular value decomposition.

Over the years, one of the most fruitful developments in numerical
linear algebra, which serves as computational platforms for a variety of
application problems, is that of efficient and stable algorithms for the
computation of eigenvalues and singular values of a given matrix. This
paper concerns an interesting inverse problem, i.e., instead of computing
eigenvalues and singular values from a given matrix, we are interested in
constructing a matrix that has prescribed eigenvalues and singular values.
In this paper we propose a fast recursive algorithm to accomplish this
construction. Our method, though simple and derived from an old theory,
appears to be the first ever in dealing with this problem numerically.

For a Hermitian matrix A, the singular values of A are simply the
absolute values of eigenvalues of A. For non-Hermitian matrices, some
restrictions must be placed between eigenvalues and singular values. In-
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deed, the following key result is first proved by Weyl [12].
THEOREM 1.1. Given any n X n matriz, A, let its eigenvalues

Al, ..., Ay and singular values aq, . .., ay, be arranged in the order
(1.1) M| > ... > || and oy > ... > .
Then
k k
(1.2) NI <I[ey, kE=1,...,n-1,
j=1 j=1

(1.3) II 1Nl =11 o
j=1 j=1

If |An| > 0, then the conditions (1.2) and (1.3) may also be referred to
as that the sequence {log«;} majorizes the sequence {log|\;|}. Theory
of majorization and its applications can be found in [6]. It turns out,
due to Horn [3], that the above necessary conditions are also sufficient,
i.e., (1.2) and (1.3) are the only relations between the eigenvalues and
the singular values of any general matrix.

The result by Weyl and Horn then gives rise to an interesting inverse
problem, i.e., to numerically construct a square matrix that possesses
a prescribed set of eigenvalues and singular values. Such a construction
might be useful in designing matrices with desired spectral specifications.
Many important properties, such as the conditioning of a matrix, are
determined by eigenvalues or singular values.

Our approach is based on the original proof by Horn that, in turn,
is completed by the mathematical induction. Upon a careful study of
his inductive argument, we realize that, with the aid of modern pro-
gramming languages that allow a subprogram to invoke itself recursively,
Horn’s induction proof can be transformed into a recursive algorithm. In
this way, we are able to construct numerically a matrix with prescribed
eigenvalues and singular values, so long as the conditions (1.2) and (1.3)
are satisfied. Our contribution in this paper is twofold: We significantly
relax one key component in Horn’s proof that, in return, enables us to
implement a fast recursive algorithm.

This paper is organized as follows: We begin in Section 2 with a
demonstration on how a 2 X 2 matrix can be handled explicitly, given its
eigenvalues and singular values. This 2 x 2 construction plays a signifi-
cant role in the subsequent steps since the original problem is eventually
reduced to 2 x 2 blocks. We slightly extend Horn’s result by showing that
if the prescribed eigenvalues are complex conjugate to each other, then
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a real-valued 2 x 2 matrix with the prescribed eigenvalues and singular
values does exist. To explain our recursive algorithm more plainly, we
briefly review Horn’s inductive proof in Section 3. In particular, we point
out how and where the splitting can take place and, hence, the recur-
sive algorithm can be applied. To know the splitting exactly is a crucial
step in our recursive algorithm. The matrix under construction carries
a specific structure. If we had followed Horn’s proof precisely, then the
resulting algorithm would have become extremely expensive. We discuss
this issue in Section 4. In particular, we argue that the required struc-
ture of matrices in Horn’s proof is entirely not necessary. This insight
enables us to derive a very efficient algorithm. In Section 5 we give a
symbolic example to demonstrate the flow of our recursive process. In
Section 6 we report some interesting results from our numerical experi-
ment. Specifically, we are able to construct nonsymmetric matrices that
have the same eigenvalues and singular values as what those classical
eigenvalue test matrices possess, including the most challenging Rosser
matrix and the Wilkinson’s matrices.

2. The 2x2 Case. The conditions in Theorem 1.1 for a 2 x 2 matrix
A to have eigenvalues {1, \»} and singular values {ay, ay} are

{ |)\1| < aq,

|>\1||>\2| = 1.

(2.1)

It follows that a < |Ao| < |A\1] <y and [A\i|? + [A2|? < a2 + o2, In this

section, we explain in details how a 2 x 2 matrix can be constructed. Such

a construction will serve as the building block in our recursive algorithm.
Horn’s proof starts with the simple fact that the triangular matrix

(2.2) A= [ AOI 52]

has singular value {a, as} if and only if

(2.3) p=Jad + a3 — ]2 — o2

His proof for the higher dimensional case is then completed by induction
which we will explain in the next section.

In the case when the eigenvalues or singular values are nearly equal
to each other, the calculation of u according to (2.3) is unstable when the
magnitude of o; or A; is large. Instead, we suggest to compute p through
the equivalent formula

0, if [(ar—0a2)?—(|A|—[A2])?| <€

M:{ \/|(CY1—CY2)2—(|>\1|—|)\2|)2|, otherwise
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where € is the machine accuracy.

Horn’s proof, while valid over the complex domain, has one short-
coming in that the matrix constructed is generally complex-valued even
if the two eigenvalues are complex-conjugate. It appears difficult and
sometimes impossible to convert the triangular matrix A in (2.2) by uni-
tary similarity transformation into a real matrix. Suppose the given
eigenvalues appear in complex-conjugate pairs, we often are interested in
constructing a real-valued matrix. To our knowledge, we are not aware of
any theory showing that such a real matrix exists. It is perhaps still an
open problem. We are able to show, however, that such a construction
for 2 x 2 matrices is possible.

Consider the matrix

(2.4) A:l‘;ft],

where a, b, ¢, and d are real numbers to be determined. For the matrix A
to have eigenvalues {\;, Ao} and singular values {ay, s}, the entries of
A must satisfy the following equations:

a—i—d = )\1 —|—)\2,
ad — bc = )\1)\2,

A+ +cF+d* = ol +al
(ad — bc)> = aiad.

(2.5)

Obviously, the last equation is equivalent to the second equation ac-
cording to (2.1). Assume that v := A\; + Ay is a real number, i.e., assume
that the given eigenvalues \; and \; are either real or complex-conjugate.
Upon substitution by d = v —a, we obtain a reduced system of equations:
(2.6) a(v—a) —bc = Ay,

' a?+0?+cF+ (v—a)? = o +as.
It follows that
(2.7) b=c+ /ol +ad— N -\

Note that the quantity under the radical in the above is nonnegative. It
now boils down to determining whether the equation

(2.8) cZic\/a%—l—a%—)\%—)\§+(a2—z/a+)\1)\2) =0

has real solutions a and c. Since all coefficients in (2.8) are real, a nec-
essary condition for ¢ to be real is that the discriminant is nonnegative,
i.e., it requires to find a real value a so that
(2.9) oF + a5 — A\ — A3 —4(a® —va+ M\ Ay) > 0.

4



From (2.1) and our assumption, we know that the products A; Ay and
ay g differ by at most a negative sign. Depending upon the sign in

(2.10) A = faqan,

we thus may rewrite the left-hand side of (2.9) as
L L2 2
—4(a — 51/) + (g F ag)”.

Obviously, if we choose

1
2.11 =
2.11) 0=

then (2.9) is satisfied. In that case, we may choose

B :F\/a%—l—a%—)\%—)\%j:(aloag)
B 2

(2.12) ¢

where the first signs can be arbitrary and the last sign ¢ is minus or plus
depends upon the sign in (2.10).

In summary, we have shown the existence of a 2 x 2 matrix with
prescribed eigenvalues and singular values, provided the conditions in
(2.1) are met. More specifically, we have shown that the matrix can be
real-valued, if the given eigenvalues are a complex-conjugate pair.

3. A Recursive Algorithm. Assuming that the two sets of num-
bers {\;} and {«;} are arranged in the order as in (1.1) and satisfy the
conditions in (1.2) and (1.3), Horn proves the existence of a matrix with
eigenvalues {)\;} and singular values {o;} by treating the case of zero
singular values separately followed by the mathematical induction. In
this note we want to point out that his induction argument is in fact
implementable as a recursive algorithm.

In order to explain the recursive algorithm more plainly, we briefly
outline Horn’s proof below.

Case 1. Suppose a; > 0 for all © = 1,...,n. Then, from the
condition (1.3), we know that \; # 0 for all i. Let

01 = O,

Assume the minimum value of these o;, denoted by

(3.2) 0:= min o,
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occurs at the index j. By the condition (1.2), it follows that |\| < o;
for all 4. Hence, |A;| < o. Define

(3.3) pi=

By the definition of ¢ and the condition (1.3), we also have a,o <

Qp 0y H?:}l &ﬁ = |MAy|. Tt follows that

(3.4) an < p < || S M| <o <.

The relationship in (3.4) implies that the two conditions in (2.1) are
satisfied by the two pairs of numbers {\;,\,} and {o, p}. From the
discussion in the preceding section, there exist a number p € R and
unitary matrices Uy, Vy € C%*2 such that

o 0 * _ )\1 2
T |

Furthermore, it can be verified that each of the two sets of numbers,

(36) { (5] Z (65} 2 e 2 %
. Al A

Ajy1| > > ||l = p
(37) { Qjy1 > > Qo1 2> Qp,

satisfies the Weyl-Horn conditions (1.2) and (1.3) by itself. Upon apply-
ing the induction hypothesis, there exist unitary matrices Uy, Vi € C7%7,
Us,, Vo € C=0)%(n=3) "and triangular matrices A,, A, such that

[0 x x x|
(0%} 0 N 0 0 )\2 X
0 (6] 0
U1 . . ‘/1* = AIZ )
0 0 «
J 00 A
(3.8)
a0 ... 0 st X o
0 >‘j+2 X
0 Q49 0
Us : , Vy = Ay=
i . >‘n—1 X
0 0 Qay,
0 0 ... 0 p|




In the above, the symbol x stands for some appropriate numbers. Horn
claims that the block diagonal matrix

A O
O A
is unitarily equivalent to the triangular matrix
[ Xy X ... X X i
0 X
: O
)‘j X
0 0 0|0 p| x X X
Aj+1 X
O
i 0 O An—1 ]

[Ny X ... X X 1
0 X
: O
)‘j X
0 0 )\1 1%
0 0 0 [0 X\,] X X X
)‘j+1 X
O
i 0 0 An—1 ]
Case 2. Suppose a3 > ... > q > Qi1 = ...a, = 0 for some k.
It follows from the condition (1.2) that A1 = ... = A, = 0. Let m be

the largest integer for which A,, # 0 but \; = 0 for all © > m. Clearly,
m < k. Define

[Ty [Nl
3.10 B ==
( ) Hizll Q;
It follows from (1.2) that 0 < 3 < «,. Note that this set of numbers,
M > > |An
(3.11) { > . 2> g > S,



satisfies the Weyl-Horn conditions again. By induction hypothesis, there-
fore, there exist unitary matrices Uz, V3 € C"™*™ and an upper triangular
matrix Az such that

a;r 0 ... 0 0 Al X X ... X
0 oy 0 0 X\ X
Us| @ -, V3= Az=
0 Oy —1 0
0 0 0 4| 0 0 A |
Define
[ VA, O O ]
0 0~ 0 0 .. 00 ..0
0 0 0 |y 0
(312) A=| 0 0
0 ... 0 0 a, 0 0 ... 0
0 O o |
with

(3.13) v i=/a2, — (2.

Then it is readily seen that A has eigenvalues {\1,..., A, 0,...,0} and
singular values {ay, ..., q,0,...,0}.

In both cases above, we see that the original inverse problem is re-
duced to inverse problems of smaller sizes that are guaranteed to be solv-
able according to the induction hypothesis. In the first case, the problem
of size n is broken down two subproblems of sizes j and n—j, respectively.
After finding the solutions A; and A, to the smaller problems, the two
subproblems are then affixed together by working on a 2 x 2 submatrix.
The 2 x 2 problem has an explicit solution from the discussion in the
preceding section. More significantly, the eigenvalues and the singular
values for the two subproblems are given explicitly by (3.6) and (3.7),
respectively. Therefore, by repeating the argument, each of the two sub-
problems can further be downsized. In this way, the original problem is
eventually solved by first dividing the problem into subproblems of blocks
2x 2or1x1, and then by conquering these small blocks to build up
the the original size. This divide and conquer process is similar to that
occurred in the radix-2 fast Fourier transform. In the second case, the
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zero eigenvalues are first taken out of consideration. The remaining data
(3.11) constitute a new subproblem that can be solved by the divide and
conquer process discussed in the first case. Finally, the off-diagonal ele-
ment v defined in (3.13) and the structure of A in (3.12) take the original
singular values into account.

In an environment that allows a subprogram to invoke itself recur-
sively, we can exploit this feature by providing a routine that does ex-
actly one step of the divide-and-conquer procedure described above. As
a simple example, in MATLAB syntax, this recursive algorithm can be
conveniently expressed as the program in Table 3.1. More details on
the structure of the matrix under construction will be discussed in the
next section. At this moment, note that the function svd_eig calls it-
self which results in further splitting. In the final return, the program
produces a matrix A that has eigenvalues {)\,..., \,} and singular val-
ues {aq,...,a,}. Once A is constructed, any similarity transformation
QAQ* by an unitary matrix ) will maintain the same eigenvalues and
singular values.

It should be pointed out that in the attached program we choose not
to calculate the unitary matrices mentioned in the discussion. If desired,
these matrices could be computed in a very efficiently way as we shall
see in the next section.

4. The Matrix Structure. It is necessary to make one important
remark concerning the structure of the matrix we intend to construct. In
his inductive proof, Horn assumes that both the intermediate matrices
Ay and A, are upper triangular matrices and that the diagonal entries
are arranged in a certain order. See (3.8) and (3.9). Horn has never been
specific on how these assumptions can be satisfied, though their validity
can be seen from the Schur decomposition theorem. In practice, how-
ever, it turns out that these assumptions cannot be achieved simply by
permutations. It, in fact, involves a quite complicated procedure to re-
arrange the diagonal entries by unitary similarity transformations while
maintaining the upper triangular structure. This procedure of rearrange-
ment is one order more expensive than the divide and conquer algorithm
described above.

One important contribution in our study is that the triangular struc-
ture is entirely unnecessary. The matrix A produced from our algorithm
is generally not triangular. Unlike Horn’s proof, we do not require to
first rearrange the diagonal entries and then perform the unitarily equiv-
alent transformation to the middle 2 x 2 block. Instead, we modify the
first and the last rows and columns of the corresponding block diagonal
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function [A]l=svd_eig(alpha,lambda);
n = length(alpha);

if n == % The 1 by 1 case
A = [lambda(1)];
elseif n == % The 2 by 2 case
[U,V,A] = two_by_two(alpha,lambda);
else % Check zero singular values

tol = n*alpha(1l)*eps;
k = sum(alpha > tol); m = sum(abs(lambda) > tol);
if k == n % Case 1

j =1; s = alpha(1); temp = s;

for i = 2:n-1
temp = temp*alpha(i)/abs(lambda(i));
if temp < 8, j = 1; s = temp; end

end

rho = abs(lambda(1l)*lambda(n))/s;

[U0,V0,A0] = two_by_two([s;rhol], [lambda(l);lambda(n)]);

[A1] = svd_eig(alpha(1l:j),[s;lambda(2:j)1);

[A2] = svd_eig(alpha(j+1:n),[lambda(j+1:n-1);rhol);

A = [Al,zeros(j,n-j);zeros(n-j,j),A2];

Temp = A;
A(1,:)=U0(1,1)*Temp(1,:)+U0(1,2)*Temp(n,:);
A(n,:)=U0(2,1)*Temp(1,:)+U0(2,2) *Temp(n, :);

Temp = A;
A(:,1)=V0(1,1)*Temp(:,1)+V0(1,2)*Temp(:,n);
A(:,n)=V0(2,1)*Temp(:,1)+V0(2,2)*Temp(:,n);

else % Case 2

beta = prod(abs(lambda(1:m)))/prod(alpha(l:m-1));

[U3,V3,A3] = svd_eig([alpha(l:m-1);betal,lambda(l:m));

A = zeros(n); A(1l:m,1:m) = V3’*A3*V3;

for i = m+1:k, A(i,i+1) = alpha(i); end

A(m,m+1) = sqrt(abs(alpha(m)~2-beta”2));

end
end

TABLE 3.1
A MATLAB program for the recursive algorithm.

10




A O
O A
transformation matrices Uy and V. More precisely, let the entries of Uy
and Vj be denoted by Uy = [ugs] and Vi = [vg 5], respectively. Define

matrix l according to entries in the 2 X 2 unitary equivalence

[ Uo,11 0 Up,12
. 5 ) lj1 0
(4.1) U=| 0 I,, 0 l 0 U, ]

Up,21 0 Up,22

Vo,11 0 Uo,12
S ’ Vi 0
(4.2) V= 0 I, 0 l 0V ] ,

L Vo,21 0 Vp,22

where I,,_; stands for the identity matrix of size n — 1. We affix the two
matrices A; and A, together by defining

a 0 N 0
0 (6] 0

(4.3) A=U| _ V*,
0 oy,

It is easy to see that A has the structure

N ® ...’ ® % * w]

& X 0 0 *

O
)\j,1 X

_ X oo XA *

(4 4) A= * 0 0 0 >‘j+1 X X X

0 X )‘j+1 &

O

I 0 * ... «x ¥ ® ® An J

In the above, the symbol X represents unchanged, original entries from
Aj or A;. The symbol ® denotes entries of A; or A, that are modified
by scalar multiplications. Note that if an entry at ® was zero to begin
with, then it remains zero after the scaling. Finally, we use % to represent
possible new entries that were originally zero. It is important to observe
that the zero pattern of x in the first(last) row is exactly the same as that
of ® in the last(first) row. A similarly observation holds for columuns.
Note also that the four corners of A follow from (3.5).
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Clearly, the matrix A has singular values {aq,...,a,}. We need
to show that A has eigenvalues {A,...,\,}. If the procedure works,
formulas (4.1) and (4.2) also suggest an efficient way to compute the
unitary matrices if so desired.

We now examine the structure of A more closely and explain why
our algorithm works. In contrast to (3.8) where A; and A, are upper
triangular matrices, we shall assume in our induction hypothesis that
the unitary matrices U; and V; have produced A;, ¢ = 1,2, with the
following properties:

(P1) Diagonal entries of A; and A, are in the order

O',)\Q,...,)\j,

and
)‘j+17 ) )‘n—la P

respectively.

(P2) Each A; is similar through permutations to a lower triangular ma-
trix whose diagonal entries constitute the same set as the diagonal
entries of A;. (Thus, each A; has precisely its own diagonal entries
as its eigenvalues.) More specifically, each A; has the following
structure:

1. The first row and the last row have the same zero pattern
except that the lower-left corner is always zero.
2. The first column and the last column have the same zero
pattern except that the lower-left corner is always zero.
If we can show that the affixed matrix A, defined in (4.4), has exactly the
same properties, the the induction principle implies that our algorithm
is indeed a variation of Horn’s original proof. Our implementation of
making it operative then becomes quite remarkable.

The general proof can be best argued through the graph theory. We
suggest the book [7] as a general reference. Instead of providing the
heavy machinery involved, we provide a short-cut proof below. Consider
the digraph G; corresponding to A; = [a; &), i = 1,2, where the directed
edge from vertex s to vertex ¢ is marked by the entry a;,. Then the
property (P2) is equivalent to the following statement:

(P2’) The graph G; contains no cycles of length greater than 1.
1’. Whenever there is an edge outgoing from the first vertex,
there is an edge outgoing from the last vertex, and vise versa.
2’. Whenever there is an edge ingoing into the first vertex, there

is an edge ingoing into the last vertex, and vise versa.
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Let P, i = 1,2, be the permutation matrix such that P A; P, is lower
PO
O P
where we identify A\; with the first vertex o in A; and ), with the last
vertex p in Ay. Since simultaneous permutations of rows and columns
introduce isomorphic graphs, we conclude that PT AP is of the form

triangular. Let P := . Label the vertices of A as Aq,..., \,

fA*0...0 0 T
X A* 0
: : O O O
X 0
X X ...X AF
+i4+1.oFH L MO0 0 BB By P
X X ... X X —1 A 0 0 O 0 &
: Do ' A Do O
X X X — X 0 0 0 0 &
X X X — X xA* 0 0 ... 0 &
0 0 0 A 0 ...0 O
0 0 0 X A 0
: : O : : O
0 0... 0 X X A O
@1@1---@1@1 +n+n+n+n)\n
6,0...00 X X ...xXx — A0...00
©,0...00 X X ...X — XA 0
O Do Do S o
e, 0 00 x X X —p X X A O
L S, 0 00 X X ...X —, X X X Ay |

To facilitate the understanding, we have adopted some special symbols
in the above to mark where the new edges connecting graphs G, and G,
to form the graph for A are added:

e \* represents generically any value from the list { X, ..., \;}. Like-
wise, A, represents any value from the list {\;11,..., A1}

e -+, indicates a possible (and the only possible) edge outgoing from
the vertex 1. Consequently, according to (P2.1’), a corresponding
new edge outgoing from the vertex m could occur only at &;.
Similar meaning holds for +, and &,,.

e —; indicates a possible (and the only possible) edge ingoing into
the vertex 1. Consequently, according to (P2.2’), a corresponding
new edge ingoing into the vertex n could occur only at ©;. Similar
meaning holds for —, and &,,.
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It should be clear from the structure of PT AP that the matrix A indeed
also enjoys properties (P1) and (P2). Our proof therefore is complete.
Specifically, we have proved that the rearrangement as is required in
Horn’s proof is not necessary. We have proved that modifying the ”"bor-

der” of the matrix l ?)1 2

matrix with eigenvalues {\y, ..

] as is done in our program will result in a

., A\n} and singular values {a, ..., a,}.

5. A Symbolic Example. The recursive process and the structure
of the resulting matrices are quite complicated. It perhaps will be helpful
if we illustrate the idea by tracing symbolically one possible scenario of
our algorithm in details.

Consider the case n = 6. For clarity, we shall denote the splitting
index j, the corresponding o, and p (See (3.2) and (3.3)) at the ¢-th step
by je, 00 and py, respectively. Let each non-empty box in the diagram
below represents a matrix to be constructed with values at the top row
and the bottom row in each box as the corresponding eigenvalues and
singular values, respectively. For reference, we also mark down on the
right side of the down-pointing arrow the eigenvalues and the singular
values of the associated 2 x 2 matrix that will be used to affix matrices

together.
Suppose, for a certain set of eigenvalues A1, ..., \¢ and singular values
ai, ..., g, that our algorithm results in splittings at j; = 5, j» = 2, and

js = 1. The data available for construction are as follows:

{)\1 DYIED VRS VD VR W

Q1 Gy Q3 G4 Q5 Qg

. AL Ag
=5
J1 ¢ { o1 M
o1 A2 A3 A A5 P1
a1 Qg Qg Q4 Qs Qe
. 01 )\5
=2
& b { 02 P2
o2 Ay A3 A p2
Q1 Qg Q3 Qg Q5
. A3 P2
=1
73 ¢ { 03 pP3
03 Ai o p3
Qg Q4 Q5
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Our algorithm then builds up the 6 x 6 matrix step by step according
to the order depicted in the following diagram. To stress how the 2 x 2
affixing matrix changes the entries, we use the same symbols as in (4.4)
to indicate how an entry is modified.

A ® 0 0 ® =«
0 X O 0 O O
® 0 XN 0 x x*
® 0 X )\4 X *
0 x 0 0 X5 O
L0« 0 0 = X |
[0y x 0 0 x 0]
0 X O 0 0 O
. x 0 X 0 x 0
n=>5 1 X 0 x N X 0
0 x 0 0 X O
L0 0 0 0 0 pp|
or ® 0 0 =
0 X O O O
* 0 )\3 0 X [pl]
* X A ®
0 = 0 0 >N
o x 0 0 0 ]
0 X 0 0 O
Jjo=2 1 0 0 A3 0 x
0 0 x A X
0 0 0 0 po
)\3 0 *
09  *
[0 AQ] M ]
0 0 po
O3 0 0_
j=1 1 0 Ay X
0 0 ps|

[ o3 ] )\4 *

0 ps
Note that each matrix in the box, i.e., either A; or A, constructed in each
step, is not necessarily triangular. A closer examination of each matrix,

however, shows they possess the properties (P1) and (P2) described be-
fore. In particular, each A; can be transformed into blocks of triangular
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matrices by permutations (Though this is still different from what Horn
assumes in his proof.) For example, if we permute a (1,6) permutation,
i.e., if we swap the first and the sixth rows and columns of the top 6 x 6
matrix, we obtain the matrix

X X 0 0 x 0
0 X 0 O 0 O
x 0 A3 0 x X
x 0 x N X X
0 x 0 0 X5 O

L X x 0 0 x A |

whose 5 x 5 principal submatrix has exactly the same structure as that of
the 5x 5 matrix A; constructed in the previous step. Note that properties
(P2.1) and (P2.2) ensure that no other structure along the “border” will
be changed. The x at the (1,5) position seems troublesome. However,
if we further perform the (1,5) permutation, we obtain the matrix

A5 x 0 0 0 0]
0 X 0 O 0 O
x 0 A3 0 x X
x 0 x N X X
X X 0 0 )\6 0

L x x 0 0 x A

whose block triangular structure should be obvious by now.

6. Numerical Experiment. The algorithm described above can be
used to generate test matrices with desired spectral properties. As it is
written now, the algorithm will produce real matrices if all eigenvalues
are real. However, when complex eigenvalues are present, the resulting
matrix will be complex-valued, even if they appear in complex conjugate
pairs.

Example 1. A classical challenge for eigenvalue algorithms is the
8 x 8 Rosser matrix R with integer elements

611 196 —-192 407 -8 =52 —49 29
196 899 113 —-192 71 —43 -8 —44
=192 113 899 196 61 49 8 92
407 —192 196 611 8 44 59  —23
-8 =71 61 8 411 =599 208 208
—-52 —43 49 44 -599 411 208 208
—49 -8 8 59 208 208 99 911
29 -4 92 =23 208 208 911 99
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The matrix is symmetric, but has a double eigenvalue, three nearly equal
eigenvalues, a zero eigenvalue, two dominant eigenvalues of opposite sign
and a small nonzero eigenvalues. From MATLAB, the computed eigen-
values and singular values of R are

[ —1.020049018429997¢+03 [ 1.020049018429997¢-+03

1.020049018429997¢+03 1.020049018429996e+03
1.020000000000000e+03 1.020000000000000e+03
\— 1.019901951359278e+03 o 1.019901951359279¢e+03
1.000000000000001e+03 |’ 1.000000000000000e+03 |’
9.999999999999998e-+02 9.999999999999998e-+02
9.804864072152601e—02 9.804864072162672e—02
4.851119506099622¢—13 | 1.054603342667098e—14

respectively. We notice that the MATLAB estimates the rank of R to be
7 due to the nearly zero singular value. The machine zero corresponding
to a matrix A of size n is defined to be ne||Al|s where the floating point
relative accuracy e is approximately 2.2204 x 10716,

Using our recursive algorithm for the above A and «, we obtain the
following matrix A which, for the convenience of running text, is displayed
in only 5 digits:

1.0200e+03 0 0

—1.0200e403 0
1.0200e+403

oo O
(=Rl
oo O

1.0199e+403 1.4668e—09

0 1.0000e+03 0

0 0 1.0000e+03 0
—1.5257e—05 0 0 9.8049e—02
0 0 0 1.4045e—07

[=ReReloielole]
[=RNele oo lo)
[=NeRelole]
[=Relole o)
[=lejelolelole o)

The computed eigenvalues and singular values of A are

[ —1.020049018429997¢+03 | [ 1.020049018429997¢+03 ]
1.020049018429997e+03 1.020049018429997¢e+03
1.020000000000000e+03 1.020000000000000e+03

- 1.019901951359278e+03 - 1.019901951359279¢e+03
1.000000000000001e+03 |’ 1.000000000000001e+03 |’
9.999999999999998e-+02 9.999999999999998e-+02

9.80486407215721e—02 9.804864072162672¢—02
0 0

respectively. It is interesting to note that the resulting A is not symmet-
ric, yet the eigenvalues and singular values of A agree with those of R up
to the machine accuracy.

Example 2. Wilkinson’s matrices are symmetric and tridiagonal
with pairs of nearly, but not exactly, equal eigenvalues. This is another
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1 Discrepancy in Eigenvalues and Singular Values
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Fia. 6.1. Ly norm of discrepancy in eigenvalues and singular values.

well known class of eigenvalue test matrices. We use the eigenvalues and
singular values of these matrices from size 2 to 21 as the test data. In
Figure 6.1 we report the discrepancy in eigenvalues and singular values
between our constructed matrices and Wilkinson’s matrices. Again, the
discrepancy is in the range of machine accuracy. It is interesting to
represent these 21 x 21 matrices by 3-D mesh surfaces in Figure 6.2. It is
also interesting to note that the matrices constructed by our algorithm
are nearly but not symmetric.

Example 3. The divide-and-conquer feature in our algorithm brings
on fast computation. A closer examination of our algorithm suggests
the overall cost should be in the order of O(n?). Using eigenvalues and
singular values of 200 random matrices from size 2 to 200 as test data,
we gauge the total cost by measuring the flops. The result is plotted in
log-log scale in Figure 6.3. The linearity of that curve as well as its slops
confirms that the cost is approximately O(n?).

7. Conclusion. We have modified Horn’s original proof on the re-
lationship between eigenvalues and singular values of a matrix. With
the aid of programming languages that allow a subprogram to invoke
itself recursively, we have developed a fast algorithm for reconstruct-
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Wilkinson Matrix of Size 21

Constructed Matrix

F1a. 6.2. 3-D mesh representation of 21 x 21 matrices

10°

size of problem

Fia. 6.3. log-log plot of computational flops versus problem sizes
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ing matrices with prescribed eigenvalues and singular values. The cost
of construction is approximately O(n?). The matrix being constructed
usually is not symmetric and is complex-valued, if complex eigenvalues
are present. Numerical experiment on some very challenging problems
suggests that our method is quite robust.

[1] M.

[2] M.

A
A
5] R.
A
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