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Abstract

The inverse problem of constructing a real symmetric Toeplitz matrix based on
two prescribed eigenpairs is considered. Two new results are obtained. First we show
that the dimension of the subspace of Toeplitz matrices with two generically prescribed
eigenvectors is independent of the size of the problem, and in fact is either two, three
or four, depending upon whether the eigenvectors are symmetric or skew-symmetric
and whether n is even or odd. This result is quite notable in that when only one
eigenvector is prescribed the dimension is known to be at least [(n + 1)/2]. Taking
into account the prescribed eigenvalues, we then show how each unit vector in the null
subspace of a certain matrix uniquely determines a Toeplitz matrix that satisfies the
prescribed eigenpairs constraint. The cases where two prescribed eigenpairs uniquely
determine a Toeplitz matrix are explicitly characterized.
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1. Introduction.
A real n X n matrix T = (¢;;) is symmetric and Toeplitz if there exist real scalars
r1,...,Tn such that

tij = Tli—jl+1

for all ¢ and 5. Clearly a symmetric Toeplitz matrix is uniquely determined by the
entries of its first column. Thus we shall denote a symmetric Toeplitz matrix by T'(r)
if its first column is given by the vector r € R™.

Due to their role in important applications like the trigonometric moment problem,
the Szegd theory and the signal processing, many properties of Toeplitz matrices have
been studied over the years. For example, efficient algorithms have been devised to
solve a Toeplitz system of equations in O(n?) time. Brief discussion of algorithms
and more references for solving Toeplitz systems can be found in [7, Section 4.7]. In
this paper, we are more interested in the spectral properties of a symmetric Toeplitz
matrix.

It is easy to see that if Tv = Av and A is an eigenvalue of multiplicity one, then
either Ev = v or Ev = —v where E = (e;;) € R**™ is the exchange matrix defined by

e--—{ 1, ifitj=ntl;

1 0, otherwise.

Accordingly, we shall call such an eigenvector either symmetric or skew-symmetric.
For eigenvalues of multiplicity greater than one, the corresponding eigenspace has an
orthonormal basis which splits as evenly as possible between symmetric and skew-
symmetric eigenvectors [5, Theorem 8]. Thus it is sensible to say that the eigenvectors
of a symmetric Toeplitz matrix can be split into two classes. More specifically, as any
symmetric centrosymmetric matrix [2, Theorem 2|, a symmetric Toeplitz matrix of or-
der n has [n/2] symmetric and [n/2] skew-symmetric eigenvectors. For convenience,
we shall use ot (T') and o~ (T) to denote, respectively, the spectrum of eigenvalues
corresponding to symmetric and skew-symmetric eigenvectors. Other spectral prop-
erties of Toeplitz matrices can be found in [2, 5, 9, 10] and the references contained
therein.

The inverse Toeplitz eigenvalue problem (ITEP) has been an interesting yet dif-
ficult question studied in the literature. The problem is to find a vector » € R™ such
that the Toeplitz matrix T'(r) has a prescribed real spectrum {Aq, ..., A,}. At present,
the ITEP remains unsolved when n > 5 [5]. Partial results and numerical algorithms
for the ITEP can be found in, for example, [3, 6, 8, 11].

In [2, Theorem 3] it is claimed that any real n X n matrix which has a set of n real
orthonormal eigenvectors, each being either symmetric or skew-symmetric, is both
symmetric and centrosymmetric. Apparently it is another interesting and difficult
problem to identify an orthogonal matrix so that its columns are eigenvectors of some
Toeplitz matrix.

In [4] it is proved that being symmetric or skew-symmetric is sufficient for a single
vector to be an eigenvector of a Toeplitz matrix. In fact, let

(1) So(v) := {r € R*T(r)v = 0}

denote the collection of (the first columns of ) all symmetric Toeplitz matrices for
which v is an eigenvector corresponding to the eigenvalue 0. It can be shown that
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So(v) is a linear subspace with dimension [4, Corollary 1]

(2) dim(So(v)) = n — m(v)
where

__J [n/2] if vis symmetric,
®) m(v) = { In/2] ifvis siew-symmetric

is called the index of v. Clearly T(r)v = Av if and only if r — Aw € So(v), where
w = [1,0,...,0]T is the first standard basis vector in R™. Thus the set

(4) S(v):={r € R™|T(r)v = Av for some A € R}

is precisely the direct sum < w > @So(v).

Suppose now {v(l), .. .,v(k)}, k > 1, is a set of real orthonormal vectors, each
being symmetric or skew-symmetric. Then N%_, S(v(i)) contains all symmetric Toeplitz
matrices for which each v; is an eigenvector. Evidently, w € S(v(*)) for all i. So
Nk_, S(v(*) is at least of dimension 1. An interesting question then is

PRrOBLEM 1. Obtain a non-trivial lower bound on the dimension of NF_; S(v(").

Toward this end, we show in this paper that for the case £ = 2, the dimension of

Z, S(v(i)) is almost always independent of of the size of the problem, and in fact is
either two, three or four, depending upon whether the eigenvectors are symmetric or
skew-symmetric.

In view of the ITEP, another interesting inverse problem is

PrOBLEM 2. Gliven a set of real orthonormal vectors, {v(l), .. .,v(k)}, k> 1,
each symmetric or skew-symmetric, and a set of real numbers {A1,..., ¢}, find a
symmetric Toeplitz matriz T (other than a scalar matriz) such that

(5) Tv®D = X\o®, i=1,.. . k.

We note in Problem 2 that 7' is required to be Toeplitz, thus the description of the
given eigenpairs cannot be totally arbitrary. For instance, it is improper to request that
all vectors be symmetric while £ > [n/2]. We recall a conjecture in [5] that a universal
distribution of eigenvalues for Toeplitz matrices should be such that o+ (T) and o= (T)
interlace. Thus a Toeplitz matrix whose spectrum does not satisfy the interlaced
distribution is perhaps more difficult to find [8]. On the other hand, as far as Problem 2
is concerned, there is a possibility that the remaining unspecified eigenpairs could make
up the total spectrum so that the interlaced condition is eventually realized.

For the case k = 2, we show in this paper that in each direction in the subspace
ﬂle S(v(i)) there is one and only one Toeplitz matrix for Problem 2. In particular,
we show that if » is odd and if at least one of the given eigenvectors is symmetric, or
if » is even and one eigenvector is symmetric and the other is skew-symmetric, then
the Toeplitz matrix is uniquely determined.



2. An Example.

As we shall only consider the case & = 2 throughout the paper, it is more conve-
nient to denote, henceforth, the eigenvectors v(1) and v(2) by u and v, respectively.

We begin our study of the set S(u)N S(v) with the special case where n = 3. The
example should shed some insights on higher dimensional case.

Due to the special eigenstructure of symmetric Toeplitz matrices, it is neces-
sary that one of the two given eigenvectors, say u, must be symmetric. Denote
u = [ug,uz,u;]T where 2u;? + u2 = 1. It can also be proved that the skew-symmetric
vector % = [1/4/2,0,—1/+/2]T is a universal eigenvector for every symmetric Toeplitz
matrix of order 3. Thus, given u, we imply from the orthogonality condition that the
second prescribed eigenvector v must be either the second or the third column of the
matrix

1 Us

o m T

(6) Q: U9 0 ’11,1\/5
1 Us

v A

In other words, one symmetric eigenvector completely determines all three orthonor-
mal eigenvectors (up to a £ sign). It follows, from [4], that dim S(u)NS(v) = 2. (Note
that if the orthogonality condition is violated, then trivially S(u)N S(v) =< w >.)

Let A = diag{)1, A2, A3}. We already know QAQT is a centrosymmetric matrix.
It is not difficult to see that QAQT is Toeplitz if and only if

A 1
(7) (3’11,12 - 1))\1 + ?2 + (5 - 3’11,12)>\3 =0.

From (7), the following facts can easily be observed:
LEMMA 2.1. Let 2uq ? + u% = 1. Then:
1. If Ay and A3 are given scalars, there is a unique symmetric Toeplitz matriz T

such that
“ “E Ty o
(8) T Ug U7 \/§ = Ug U7 \/§ 0 )\3
U1 — % U1 — %

2. If u; # £4/1/6 and Ay and X5 are given scalars, there is a unique symmetric
Toeplitz matrizc T such that

1 1
weovs | MV a0
(9) T Ug 0 = Ug 0 .
1 1 0 A
T T

3. If uy = £4/1/6 then there are infinitely many symmetric Toeplitz matrices T
which satisfy (9) if A1 = Aa; however, if Ay # Xa, then (9) does not hold for

any symmetric Toeplitz matriz T.



3. General Consideration.
We now consider the case for general n. When v is an eigenvector, the idea of
rewriting the matrix-vector product [4]

(10) T(r)v= M(v)r

can be very useful. It is easy to see that

LemMA 3.1. The columns of M(v) have the same symmetry as v has. That is,
EM(v) = £ M(v) ¢f and only if Ev = tv.

Thus only the first o(v) rows of M(v) need to be considered. For convenience, let
p:= [n/2] and let N(v) denote the p x n submatrix of the first p rows of M(v). It is
easy to verify that N(v) can be decomposed into blocks:

(11) N(v) = [A(v), H(v),0]+ [0, L(v), 0] + [0,0, U (v)]

where h(v) is a px 1 column vector, H(v) := [h(v), H(v)] = (hi;(v)) is the px p Hankel
matrix

(12) hij(v) == vigja,

L(v) :=[0, L] = ({;;(v)) is the p X p lower triangular matrix

- L Viej41, iflc j < i;
(13) Lj(v) = { 0, otherwise,

and U(v) = (u;;(v)) is the p X (n — p) triangular matrix

v ) Vpritg1 i+ i<n-p+1;
. wii (v) = { 0 otherwise.

We note that the last row of N(v) is identically zero when n is odd and v is skew-
symmetric. The rows of N(u) and N(v) will be used to construct a larger matrix.
Suppose

T(r)u = A,
(15) T(r)v = Xv.

Then the vector r must be such that the linear equations

N(u)(r—Xxw) = 0,
(16) N(v)(r—dw) = 0

are satisfied. If we write
(17) z:=[r1— A2, 71— A1, 7o, .. .rn]T,
then the system (16) is equivalent to

(18) M(u,v)z =0,



where M (u,v) is the (2p) X (n + 1) matrix defined by

. _| 0 h(w) H(u)+L(w) Ulu)
(19) Mwv)=1 py 00 H(o)+ L(v) Ulv)

Given symmetric or skew-symmetric vectors v and v, a solution to (18) can be
used to construct a Toeplitz matrix in the following way:

LEMMA 3.2. Suppose [zo,T1,...,2a]7 is a solution to (18). For arbitrary real
numbers A\ and o, define

T1 = azp+ A,
(20) T, = ax;, fori=2,...,n
and
(21) )\2 = Oé(iEl — CEo) + )\1.

Then u and v are eigenvectors of the Toeplitz matriz T'(r). In other words, S(u)NS(v)
is the direct sum of the subspace spanned by w and the subspace obtained by deleting
the first component from ker(M ).

On the other hand, suppose the two eigenvalues A; and X, are prescribed. Then
the equation (21) implies that the constant a in (20) must be
(22) o= M,

Lo — Z1
provided zg # z1. We conclude, therefore,

LEMMA 3.3. Suppose z is a non-trivial solution of (18) satisfying zg # z1. Then
corresponding to the direction of x, there is a unique solution to Problem 2 when
k=2

The question now is to determine the null space of M(u,v). It is convenient to
use the abbreviated notation M = M(u,v). It turns out that the dimension depends
upon whether n is even or odd and whether the two eigenvectors are symmetric or
skew-symmetric. In any case, we shall show that M has a non-trivial null space. It is
most interesting to note that the dimension does not depend upon the size of n. We
discuss the different cases as follows:

Case 1. n is odd and both eigenvectors are symmetric.

When 7 is odd, the Hankel matrix IZT(v) for a symmetric vector v takes the special
form:

1 (%) Up—1 Up
(%) U3 Up Up—1
(23) H(v) =
Up—1 Up U3 (%)
Up Up—1 (%) 1

The corresponding U(v) becomes

Up—1 Vp—2 ... V3 Up
Up—2 ... 117 O

(24) U(v)=EL(v)=| :
V1 0 e 0

0 .. 0



It is useful to illustrate the basic structure of M with a simple example when both u
and v are symmetric. When n = 5, we have

0 wy Uy U3 Uy U
0 Uy U3 + Uy Ug Uy 0
(25) M _ 0 Uus 2’11,2 2 Uy 0 0
vy 0 Vg V3 Uy M
Vg 0 U3 + 1 Vg 1 0
L U3 0 2’02 2’01 0 0 |

The matrix M in general is a square matrix of order » + 1. The determinant of
M is an algebraic expression involving independent variables vy, .. 3 Upy ULy ey Up. It
would not be too surprising if det(M) # 0 for generic u and v (See the Appendix.)
Nevertheless, under the additional condition that 4 and v are perpendicular to each
other, we will show by elementary row operations that M is in fact rank deficient.
For any symmetric vector v, let the p X p upper triangular matrix G(v) be defined

by

201 2vy ... 2051 1
0 2’01 2’Up_2 Up—1
(26) G):=| : o
0 2’01 (%)

0 0 0 0 1

We also define the 2p X 2p matrix
(27) é:é(u,v)::[_l 0 ],

which in fact is the accumulation of a sequence of elementary row operations. We
remark here that the ordering of w and v is immaterial. If vy = 0, then the roles of u
and v may as well be switched. The extremely rare case when both u; = v; = 0 can
be reduced to a lower dimensional problem. Without loss of generality, therefore, we
may assume u; # 0 and, hence, the matrix é(u, v) is a non-singular matrix. It follows
that the product W := GM has the same rank as M.

We claim that

LEMMA 3.4. Suppose that n is odd and that the two symmetric vectors v and v
are orthogonal. Then the matriz W is rank deficient. In fact,

(28) p+ 1 <rank(W) <n.

Proof. The proof is tedious but straightforward. For s = 1,...,p, the i** compo-
nent of G(u)h(v) is given by

p—1
(29) 2 Z UsVt + Up—s+1Up-

s=1
t—s=1—1



The first component is trivially seen to be

p—1

(30) 2 Z UsVs + UpTp

s=1

which is zero because u and v are perpendicular to each other. For the same reason,
the first component of —G(v)h(u) is zero.

The product G(u)U(v) has the same triangular structure as U(v). On the other
hand, the (i, 5)** component of G(u)U(v) with i 4 j < p is given by

(31) 2 > u
s+t=p—1—3+2
It is important to note that the summation (31) is a symmetric function of u and v.
It follows that the p x (n — p) block
(32) - G(v)U(u)+ G(u)U(v)

is identically zero.
Fori=1,...,pand j =1,...,p— 1, the (4,5)" component of G(u)H (v) is given
by

p—t—3j+1 p—i
(33) 2 Z UV + 2 Z UsVt + Up—it+1Vp—j,
s=1 s=p—1—3+2
t—s=1+7-1 t+s=2p—i—j+1

ifg<p—1+1;0r

p—1
(34) 2 Z UsVg + Up—it1Vp—j,

s=1

t+s=2p—1—3+1

if j >p—i+ 1. The (4,5)* component of G(u)L(v) is given by

p—1
(35) 2 Z UsVt + Up—it+1Vp—j,
s=1
t—s=1—j5—1
if7<7—1;0r
p—1
(36) 2 Z UsVt + Up—it+1Vp—j,
s=j—1+2
t—s=1—j5—1

if j > i—1. Using (33) and (36), it follows that the (1, 5)** component of G(u)(H (v)+
L(v)) is given by

p—J p—1 p—J

(37) 2 Z UV + 2 Z UgVg + 2 Z Uy Vt.
s=1 s=p—7+1 t=1
t—s:j t-|—s:2p—j S—t:j
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The first and the last summations in (37) are symmetric to each other. The second
summation in (37) is a symmetric function of w and v. Over all, (37) is a sym-
metric function of u and v which will be completely canceled by its counterpart in
~G(v)(H(u)+ L(w)). ~

By now we have proved that the (p 4+ 1) row of W is identically zero. If follows
that the null space of M is at least of dimension one.

Using (34), (35) and (36), it is further observed that the (i,p — 1)** component of
G(u)(H(v)+ L(v)) is given by

p

(38) 2 Z UsVt

s=1
t+s=p+2—1
which, once again, is a symmetric function of u and v, and will be completely canceled
by its counterpart in —G(v)(H () + L(u)). The zero structure of W clearly indicates
that (28) is true. O
The following example for the case n = 5 illustrates the typical structure of W:

0 Uy U U3 Ug UL |
0 Ug Uus + Uy Uy Uy 0
_ 0 U3 2us 2us 0 0
(39) W= 0 0 0 0 00

2’!)2’11,1 —|—’U3’U,2 —2’01’11,2 —Va2U3 2’!)3’11,1 - 2’01 Uus 0 00

L U3 U1 —7U1 U3 2 Va2U1 —2’!)1’11,2 0 00 _
Let W denote the lower left (p — 1) x p submatrix of W. That is, W is the matrix
obtained by deleting the first row and the last column of

(40)  [G(u)h(v), =G(v)h(u), =G (v)(H(u) + L(w)) + G(u)(H (v) + L(v))].

The rank of W can be less than n if and only if W is rank deficient, which will
be true if and only if values of u; and v; are such that det(WW?T) = 0. We note
that det(WW7T) is a polynomial in the independent variables u; and v;. We note
also that det(WW?7) is not identically zero (See the Appendix for a proof.) Thus
rank(W) < n if and only if u; and v; come from a codimension one surface. We
conclude, therefore, that for almost all u and v satisfying u7v = 0 the matrix W is of
rank n. Unfortunately, even for the case n = 5 (see (39)), it is fairly complicated to
express the rank deficiency of W in terms of components of v and v. At present we
cannot provide a further characterization of the set where W is rank deficient. Given
the fact that the orthogonality of w and v has already been used to prove the rank
deficiency of W, it is conceivably true that the orthogonality condition cannot be used
again to reduce the rank of W.
In conclusion, we have proved the following theorem:
THEOREM 3.5. Suppose that n is odd and that u and v are two symmetric vectors
satisfying wv = 0. Then
1. The dimension of S(u)N S(v) is at least two.
2. For almost all v and v, the dimension of S(u)N S(v) is exactly two.
8. For almost all uw and v and for any values of A1 and \g, there exists a unique
symmetric Toeplitz matriz T satisfying Tu = Au and Tv = Ayv.
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Case 2. n is odd and both eigenvectors are skew-symmetric.
When 7 is odd, the Hankel matrix H(v) for a skew-symmetric vector v takes the
form:

n Vg cee Up_1 0
Vg V3 0 —Up_1
(41) H(v) =
Vp—1 0 .. —U3 —g
0 —Vp_1 ... —Ua -

The corresponding U(v) becomes

—Vp_1 —Up—2 ... —V3 —U1
—Vp_2 ] 0
(42) U(v) = —EL(v) = : :
-1 0 . 0
0 0 . 0

It follows that the last row of N(v) is identically zero. For the equation (18), it is now
obvious that the kernel of M is of dimension at least two. In fact, we show that

LEMMA 3.6. Suppose that n is odd and that the skew-symmetric vectors u and v
are perpendicular. Then

(43) p < rank(W) <n - 2.

Indeed, for almost all u and v, rank(W) =n — 2.

Proof. The proof is very similar to that of Lemma 3.4. So we simply outline
a recipe for constructing the transformation matrix that does the elimination. The
details of justification are omitted.

Tt suffices to consider the 2(p— 1) X (n+1) submatrix M obtained by deleting the
p** and the 2p*? rows of M. For a skew-symmetric vector v, define the (p—1) x (p—1)
matrix G(v) by

- —V2 ... —Up_2 —VUp-1
0 1 Up—3 Up—2
(44) Gv):==1 i 0
0 V1 )
0 0 0 0 1

Then construct the 2(p — 1) x 2(p — 1) transformation matrix G(u, v) in the same way
as is defined in (27). It can be proved now that the p** row of the product W :=GM
is identically zero. Furthermore, the lower right (p — 1) x (p — 1) submatrix of W is
also identically zero. The assertion follows from these observations. [

As an example, for n = 5, the matrix M takes the form

0 u; wug 0 —Uz —U1
0 upy ug —up —up 0

(45) M= 1 0 (%) 0 —7Uy —U1
(%) 0 1 —7Uy —U1 0



and after the transformation the matrix W looks like

0 Uq U 0 —Uz —UL
o 0 U9 U1 —U9 —U7 0
4 =
( 6) w —U1U1 — Va2Ug V11U + Vo Us 0 0 0 0
U1V —V1Ug 0 ViU — ULVg 0 0

The third row of W is identically zero because uZv = 0.

We conclude this case by the following theorem:

THEOREM 3.7. Suppose that n > b s odd and that u and v are two skew-
symmetric vectors satisfying u'v = 0. Then

1. The dimension of S(u)N S(v) is at least four.

2. For almost all v and v, the dimension of S(u)N S(v) is exactly four.

3. For almost all w and v and for any values of Ay and Ao, the symmetric Toeplitz
matrices T satisfying Tu = Ay and Tv = v form a 2-dimensional manifold.

Proof. By Lemma 3.6, the dimension of ker(W) is almost always three. The first
two assertions then follow from Lemma 3.2. The last assertion follows from Lemma 3.3.
d

Case 3. n is odd, one eigenvector is symmetric and the other is skew-
symmetric.

A symmetric vector is always orthogonal to a skew-symmetric vector regardless
of what the values of the components are. Thus, unlike the previous two cases, the
orthogonality condition uw”v = 0 no longer helps to reduce the rank of M. As M does
contain an identically zero row, we should have the same conclusion as in Theorem 3.5.
That is,

THEOREM 3.8. Suppose that n s odd and that v and v are symmetric and skew-
symmetric vectors, respectively. Then

1. The dimension of S(u)N S(v) is at least two.

2. For almost all v and v, the dimension of S(u)N S(v) is exactly two.

8. For almost all uw and v and for any values of A1 and \g, there exists a unique
symmetric Toeplitz matriz T satisfying Tu = Au and Tv = Ayv.

Case 4. n is even and both eigenvectors are symmetric.

When n is even, the Hankel matrix I;T(v) for a symmetric vector v takes the special
form:

1 V2 ... Up-1 Tp
(%) U3 Up Up
(47) H(v) =
UVp—1 Vp ... V4 U3
Up UVp ... U3 (%)
Once again, we define
1 V2 ... Up-1 Up
0 1 Up—2 TVp-1
(48) Glv):=| i o0
0 1 (%)
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and construct G(u,v) according to (27). If the two symmetric vectors u and v are
orthogonal, then it can be shown that the rank of the n X (n + 1) matrix W := GM
satisfies

(49) p+1<rank(W)<n-1

and for almost all u and v, the dimension of ker(M) is exactly two. So we have
THEOREM 3.9. Suppose that n is even and that u and v are two symmetric vectors
satisfying wv = 0. Then
1. The dimension of S(u)N S(v) is at least three.
2. For almost all u and v, the dimension of S(u)N S(v) is exactly three.
3. For almost all w and v and for any values of Ay and Ao, the symmetric Toeplitz
matrices T satisfying Tu = Mu and Tv = Ayv form a 1-dimensional mansifold.
Case 5. n is even and both eigenvectors are skew-symmetric.
When 7 is even, the Hankel matrix H (v) for a skew-symmetric vector v takes the
special form:

1 (%) Up—1 Up
(%) U3 Up —Up
(50) H(v) =
Up—1 Up —7V4 —7U3
Up —Vp ... —U3 —7Uy

To construct the transformation matrix G(«, v), the matrix G(v) for a skew-symmetric
vector v is defined in exactly the same way as (48). The conclusion is as follows:
THEOREM 3.10. Suppose that n is even and that u and v are two skew-symmetric
vectors satisfying uv = 0. Then
1. The dimension of S(u)N S(v) is at least three.
2. For almost all u and v, the dimension of S(u)N S(v) is exactly three.
3. For almost all w and v and for any values of Ay and Ao, the symmetric Toeplitz
matrices T satisfying Tu = Mu and Tv = Ayv form a 1-dimensional mansifold.
Case 6. n is even, one eigenvector is symmetric and the other is skew-
symmetric.
Just like Case 3, the orthogonality condition does not help to reduce the rank of
M. The n x (n + 1) matrix M in general is of full rank. The conclusion, therefore, is
similar to Theorem 3.8:
THEOREM 3.11. Suppose that n is even and that v and v are symmetric and
skew-symmetric vectors, respectively. Then
1. The dimension of S(u)N S(v) is at least two.
2. For almost all v and v, the dimension of S(u)N S(v) is exactly two.
8. For almost all uw and v and for any values of A1 and \g, there exists a unique
symmetric Toeplitz matriz T satisfying Tu = Au and Tv = Ayv.
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4. Conclusion.

We have shown by symbolic computation that the dimension of the subspace
S(u) N S(v) of Toeplitz matrices with two generically prescribed eigenvectors u and v
is independent of the size of the problem. We have further shown that the dimension
is either two, three or four, depending upon whether the eigenvectors are symmetric
or skew-symmetric. All the cases are justified to the extent that the transformation
matrices that result in the desired elimination are fully described in terms of the
components of u and v. Only one proof (Lemma 3.4) is detailed, but the rest can be
done in a very similar way.

Our result extends that in [4] where only one eigenvector is prescribed. On the
other hand, our discovery that the dimension is independent of the size of the problem
is quite a surprising and remarkable fact.

We also have studied the inverse problem of constructing a Toeplitz matrix from
two prescribed eigenpairs. We have shown that in almost every direction of ker(M),
there is one and only one Toeplitz matrix with the prescribed eigenpairs. In particular,
it is shown that if n is odd and if at least one of the given eigenvectors is symmetric,
or if n is even and one eigenvector is symmetric and the other is skew-symmetric, then
the Toeplitz matrix is unique.

12



5. Appendix.
In the proof of Theorem 3.5 we need to show that det(WW?7) is not identically
zero. This can be done by simply showing that det(WW7T) # 0 for a certain u and v.

In particular, choose

Lo =,
. 0, ifl<i<p;
v 1, if i = p,
o 0, if1<i<np.

Then it is easy to see that the (p — 1) X p submatrix W is given by

0 0 0 O 0 0 27
0 0 0 O 0 2 0
0 0 0 O 2 00
0 0 0 2 0

0 2 0 ... 0 0

L1 0 ... 0 0]

Obviously W is of full rank p — 1.
With the same choice of u and v, it is also easy to see that

T
z = [0,—\/3,0,...,0,\/3]
is a solution to (18). Specifically, we have proved that zo cannot be identical to z; for

all v and v.
Similar arguments can be deduced for the proof of other cases.
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