
ON THE STATISTICAL MEANING OF

TRUNCATED SINGULAR VALUE DECOMPOSITION

MOODY T. CHU∗

Abstract. Empirical data collected in practice usually are not exact. For various reasons
it is often suggested in many applications to replace the original data matrix by some lower
dimensional representation obtained via subspace approximation or truncation. The truncated
singular value decomposition, for example, is one of the most commonly used representations.
This note attempts to shed some light on the statistical meaning of this lower dimensional
representation.
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1. Introduction. An indispensable task in almost every discipline of sciences
is to analyze a certain data to search for relationships between a set of exogenous
and endogenous variables. The exigencies of such a task becomes especially strong
in this era of information and digital technologies as massive amounts of data are
being generated at almost every level of applications.

It is generally acknowledged that most of the information gathering devices
or methods at present have only finite bandwidth. One thus cannot avoid the
fact that the data collected often are not exact. For example, signals received by
antenna arrays often are contaminated by instrumental noises; astronomical im-
ages acquired by telescopes often are blurred by atmospheric turbulence; database
prepared by document indexing often are biased by subjective judgment; and even
empirical data obtained in laboratories often do not satisfy intrinsic physical con-
straints. Before any deductive sciences can further be applied, it is important to
first reconstruct the data matrices so that the inexactness is reduced while certain
feasibility conditions are satisfied.

Furthermore, in many situations the data observed from complex phenomena
represent the integrated result of several interrelated variables acting together.
When these variables are less precisely defined, the actual information contained
in the original data matrix might be overlapping, fuzzy, and no longer that clearly
cut. A reduced system might provide as well the same level of fidelity as the
original system.

One common ground in the various approaches for noise removal, model re-
duction, feasibility reconstruction, and so on, is to replace the original data matrix
by a lower dimensional representation obtained somehow via subspace approxima-
tion or truncation. The truncated singular value decomposition, for example, is
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one commonly used candidate for replacement. Despite the many reported suc-
cesses in application and the many seemingly intuitive arguments to support this
approach, there appears to be a lack of rigorous mathematics to justify exactly
what is really going on behind this low rank approximation. This short note is an
attempt to fill that gap from a statistical point of view.

2. From a Random Variable Point of View. We first consider a general
random (column vector) variable X in Rn with a certain unspecified distribution.
Let E [X ] denote the expected value of X . Typically, cov(X ) := E [(X −E [X ])(X −
E [X ])T ] ∈ Rn×n is defined as the covariance matrix of X . Being symmetric and
positive semi-definite, the deterministic matrix cov(X ) enjoys a spectral decompo-
sition

cov(X ) =
n

∑

j=1

λjpjp
T
j(2.1)

where we also assume that eigenvalues are arranged in the descending order λ1 ≥
λ2 ≥ . . . ≥ λn. Observe that p1

, . . . ,pn form an orthonormal basis for R
n. Express

the random column variable X as

X =
n

∑

j=1

(pT
j X )pj.(2.2)

Note that the columns in the matrix P := [p
1
, . . . ,pn] are deterministic vectors

themselves. The randomness of X therefore must come solely from the randomness
of each coefficient in (2.2). The following observation sheds important insight on
the portion of randomness of X in each of the eigenvector direction.

Theorem 2.1. Let α := P TX . Then α is a random variable whose compo-
nents are mutually stochastically independent. Indeed,

E [α] = P TE [X ],(2.3)

var(α) = diag{λ1, . . . , λn}.(2.4)

Proof. The expected value (2.3) of α is obvious. The covariance matrix of α
is given by

cov(α) = E [(α− E [α])(α− E [α])T ]
= E [(P T (X − E [X ])(X − E [X ])TP )] = diag{λ1, . . . , λn}

where the last equality follows from the definition of (2.1).
Recall that smaller variance means the values of the random variable are more

clustered around the mean. It is fair to say that a random variable with larger
variance is harder to predict than a random variable with smaller variance.
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From Theorem 2.1, we make one important observation. That is, the larger the
eigenvalue λj of cov(X ) is, the larger the variance of the random (scalar) variable
αj is. Consider the fact from (2.2) that the random variable X is made of random
contributions from each of the n directions pj, j = 1, . . . , n. Consider also that
the contribution from each direction is governed independently by the distribution
of the corresponding random variable αj. Thus, the less the variance of αj is,
the less unpredictability of the contribution from the direction pj. As far as the
random nature of X is concerned, it is intuitively correct from a statistical point
of view that those coefficients αj with larger variances should represent a more
integral part in the stochastic nature of X . It is in this context that we may rank
the importance of corresponding eigenvectors pj as essential components for the
variable X according to the magnitude of λj.

If it becomes desirable to approximate the random variable X by another
unbiased yet simpler variable X̂ , we see from Theorem 2.1 that X̂ had better
capture those components corresponding to larger λj in the expression (2.2). We
quantify this notion below that provides the basic idea of truncation.

So that this note is self-contained, we first reprove a useful result that is
classical in estimation theory [1, 2].

Theorem 2.2. Let x ∈ Rn and y ∈ Rr denote two random variables with
mean zero, respectively. Then the coefficient matrix K ∈ Rn×r that gives rise
to the best unbiased linear estimation x̂ = Ky of x in the sense of minimizing
E [‖x− x̂‖2] is

K = E [xyT ](E [yyT ])−1.(2.5)

In this case, each x̂i is the minimum-variance estimate of the corresponding xi,
respectively, for i = 1, . . . , n.

Proof. Let the matrix K be written in rows, i.e., K = [kT
1
, . . .kT

n ]
T . Observe

that

E [‖x− x̂‖2] =
n

∑

i=1

E [(xi − x̂i)
2] =

n
∑

i=1

E [(kT
i y − xi)

2].

Thus it suffices to consider minimizing each individual term g(ki) := E [(yTki −
xi)

2], i = 1, . . . n, in the above summation. (It is in this sense that the term
“minimum-variance” unbiased estimate for each component is used.) The first
order optimality condition for g to be minimized at ki is

∇g(ki) = 2E [(yTki − xi)y] = 0.(2.6)

We may rewrite the necessary condition for i = 1, . . . n collectively as

E [yyT ]KT = E [yxT ].

It follows that K is given by (2.5).
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Corollary 2.3. Assume that x̂ is the minimum-variance estimate of x
under the same setting as in the above theorem. Then

cov(x− x̂) = cov(x)− cov(x̂),(2.7)

E [‖x− x̂‖2] = trace(cov(x− x̂)) = E [xTx]− E [xTKy].(2.8)

Proof. By definition,

cov(x− x̂) = cov(x)− E [xx̂T ]− E [x̂xT ] + cov(x̂).

Observer then by substitution that

E [xx̂T ] = E [x̂xT ] = E [x̂x̂T ] = E [xyT ](E [yyT ])−1E [yxT ].

The equation (2.7) is proved. The residual (2.8) can be calculated from

E [‖x− x̂‖2] =
n

∑

i=1

g(ki) = −
n

∑

i=1

E [(kT
i y − xi)xi]

by using (2.6).
Returning to the problem of approximating the random variable X by an

unbiased yet simpler variable X̂ , consider the case that by a simpler variable X̃ we
mean a random variable limited to a lower dimensional subspace. Our goal then
is to find a proper subspace S and a particular random variable X̃ on S such that
E [‖X − X̃‖2] is minimized.

Observe first that, given any r-dimensional subspace S, there exists a matrix
K ∈ Rn×r such that columns of the matrix product PK, with P given by (2.1),
form a basis for S. Any unbiased random variable X̃ restricted to S can then be
expressed in the form

X̃ = PKβ

where β stands for a certain (column) random variable in Rr. We may further
assume that components in β are mutually independent because, if otherwise, we
may simply do a spectral decomposition of β similarly to (2.1) and Theorem 2.1.
It follows that E [‖X − X̃‖2] = E [‖α−Kβ‖2]. The minimum-variance problem is
now reduced to the problem of findingK and β so that E [‖α−Kβ‖2] is minimized.

From Theorem 2.2, however, we know that at an optimizer the coefficient
matrix K and the variable β are not totally unrelated. Indeed, given β, the
optimal matrix K is completely determined and is given by

K = E [αβT ](E [ββT ])−1.(2.9)
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From (2.8), we further know that to obtain the minimum-variance approximation
of X , it only remains to choose β so that

E [αTKβ] =
〈

E [αβT ](E [ββT ])−1, E [αβT ]
〉

(2.10)

is maximized. This nonlinear optimization problem turns out to have a simple
solution as we shall see from the proof of the following theorem.

Theorem 2.4. Suppose that X is a random variable in Rn with mean zero
and that its covariance matrix has a spectral decomposition given by (2.1). Then
among all unbiased variables restricted to any r-dimensional subspaces in Rn, the
random variable

X̂ :=
r

∑

j=1

(pT
j X )pj(2.11)

is the best linear minimum-variance estimate of X in the sense that E [‖X − X̂‖2]
is minimized.

Proof. We already know that E [‖X − X̃‖2] = E [‖α − Kβ‖2]. From Corol-
lary 2.3, we also know that

E [‖α−Kβ‖2] = trace(cov(α))− trace(cov(Kβ))

is minimized. In fact, in the proof of Theorem 2.2, we have pointed out that the
estimation α̂ = Kβ is a component-wise minimum-variance estimation. That is,
for each i = 1, . . . n, the coefficient matrix K has the effect that

E [(αi − α̂i)
2] = E [α2

i ]− E [α̂2

i ]

is minimized. Recall that E [α2

i ] = λi. Thus, we should somehow select β in such
a way so that the corresponding α̂ = Kβ will have E [α̂2

i ] = λi for as many i’s as
possible. More specifically, since the trace is to sum over the differences λi−E [α̂2

i ]
whereas λ1 ≥ . . . ≥ λn and since we only have r degrees of freedom to determine
β, the best we can hope is to choose β so that the first k eigenvalues λ1, . . . , λr

are matched.
It turns out that if we choose the special case β = [α1, . . . , αr]

T , then

α̂ = [α1, . . . , αr, 0, . . . , 0]
T

and the corresponding PKβ̂ is precisely given by (2.11).
It is important to note that in the above linear minimum-variance estimation,

the variable X is centered at zero. If X is not centered at zero, the expression
for truncation would be much more complicated. Somehow this centering has
been ignored in many practices where low rank approximation is used. Without
the centering, we really would like to raise the flag that the resulting truncated
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data should suffer from the loss of some significant statistical meanings. We shall
comment more on this in the next section.

On the other hand, the following theorem shows that the choice of X̂ not only
makes the diagonal entries of cov(X̂ ) best approximate those of cov(X ), but that
the entire matrix cov(X̂ ) be reasonably close to cov(X ) as well.

Theorem 2.5. Suppose that X is a random variable in Rn with mean zero
and that its covariance matrix has a spectral decomposition given by (2.1). Then
among all unbiased variables restricted to any r-dimensional subspaces in Rn, the
random variable X̂ defined in (2.11) also minimizes ‖cov(X̂ )− cov(X )‖.

Proof. The proof is quite straightforward. It is well known that the best
rank r approximation to the matrix cov(X ) is given by the truncated summation
∑r

i=1
λipip

T
i , which clearly is also the covariance matrix of X̂ .

3. From a Random Sample Point of View. The discussion thus far is
based on the fact that the random variable X is completely known. Such an as-
sumption is not realistic in practice since often the probability distribution function
of the underlying random variable X is not a priori known. One common practice
in application then is to simulate the random variable X by a collection of ` ran-
dom samples. These samples are recorded in a n× ` matrix X. Each column of X
represents one random sample of the underlying random (column vector) variable
X ∈ Rn. It is known that when ` is large enough, many of the stochastic properties
of X can be recouped from X.

The question now is how to retrieve a sample data matrix from X to represent
the minimum-variance approximation X̂ of X . To begin with, we shall assume
that E [X ] = 0 and that the samples X has been centered, i.e., the mean value
of each row is zero. The connection lies in the observations that the covariance
matrix of the samples

R =
XXT

`

converges to cov(X ) by the law of large numbers. Analogous to (2.1), let

R =
n

∑

i=1

µiuiu
T
i(3.1)

be the spectral decomposition ofR with eigenvalues µ1 ≥ . . . ≥ µn and orthonormal
eigenvectors u1, . . . ,un. Then it follows from the observation in Theorem 2.4 that
the best low dimensional minimum-variance estimate X̂ to X should be represented
by the matrix

X̂ :=
r

∑

j=1

uj(u
T
j X).(3.2)

The low dimension estimate X̂ to the (continuous) random variable X is now
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comfortably translated into a low rank approximation X̂ to the (discrete) random
sample matrix X.

Indeed, the singular value decomposition of X

X = UΣV T =
n

∑

i=1

σiuiv
T
i(3.3)

shares the same eigenvectors of R as its left singular vectors, i.e., U = [u1, . . . ,un]
with singular values given by σi =

√
`µi, i = 1, . . . n, respectively. The notion of the

truncated singular value decomposition ofX is simply the partial sum
∑r

i=1
σiuiv

T
i ,

which we now see is precisely X̂ defined in (3.2).
In this sense, the truncated singular value decomposition of a give data matrix

X representing random samples of an unknown random variable X now has a
statistical meaning. That is, the truncated rank r singular value decomposition
represents random samples of the best minimum-variance linear estimate X̂ to X
among all possible r-dimensional subspaces.

4. Conclusion. In many applications, the truncated singular value decompo-
sition of the observed data matrix is used to filter out the noises. In this note,
we try to convey the notion that the truncation singular value decomposition is
in fact the best minimum-variance estimation of the underlying unknown random
variable, be it contaminated by noises or not. Note that in Theorem 2.2 no rela-
tionship between x and y is assumed. Likewise, no relationship between X̂ and X
is assumed prior to the conclusion proved in Theorem 2.4. The notion of truncation
now is manifested through the notion of best minimum-variance estimation.

Although it is obvious in the context of linear algebra that the truncated
rank r singular value decomposition X̂ of a given matrix X minimizes the 2-norm
or Frobenius norm of the difference X − Y among all possible rank r matrices
Y , one must wonder what this low rank approximation means if X is a random
matrix (from any kind of unknown distribution). If each column of X represents
an unpredictable sample of a certain unknown distribution, one must wonder how
much fidelity the corresponding column in the truncated matrix X̂ really represents
and how to measure it. The statistical interpretation of truncated singular value
decomposition discussed in this note should fill that gap. The truncated singular
value decomposition X̂ not only is the best approximation to X in the sense of
norm, but also is the closest approximation to X in the sense of statistics. It
maintains the most significant stochastic portion of the original data matrix X.

Finally, other than the truncated singular value decomposition, many other
types of low rank approximation to the given data matrix X have been proposed.
For example, one of the most contentious issues in the latent semantic indexing
(LSI) for data mining is to find a suitable low rank representation of the orig-
inal term-document indexing matrix. For this issue alone, many parties are in
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fierce competition to patent their special techniques. In this note, we have shown
the significance of those larger singular values and the corresponding left singular
vectors. Generally speaking, any lower rank approximation to an empirical data
matrix X should carry properties similar, if not identical, to the truncated singular
value decomposition, i.e., should contain substantial stochastic information about
the original random variable X . It perhaps is not too judgemental to say that any
low rank approximation (for data mining) without this notion in mind, regardless
how efficient the computation could be, is equivalent to an attempt to see things
through the glass of darkness.
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