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Abstract. Let A € R™*™ denote an arbitrary matrix. If z € R™ and y € R™ are vectors such that
w = y¥ Az # 0, then the matrix B := A — w™'AzyT A has rank exactly one less than the rank of A.
This Wedderburn rank-one reduction formula is easy to prove, yet the idea is so powerful that perhaps
all matrix factorizations can be derived from it. The formula also appears in places like the positive
definite secant updates BFGS and DFP as well as the ABS methods. By repeatedly applying the
formula to reduce ranks, a biconjugation process analogous to the Gram-Schmidt process with oblique
projections can be developed. This process provides a mechanism for constructing factorizations such as
LDM7T, QR and SVD under a common framework of a general biconjugate decomposition VT AU = Q
that is diagonal and nonsingular. Two characterizations of biconjugation provide new insight into the
Lanczos method including its breakdown. One characterization shows that the Lanczos algorithm (and
the conjugate gradient method) is a special case of the rank-one process and in fact these processes can
be identified with the class of biconjugate direction methods so that history is pushed back by about
twenty years.
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1. Introduction. Matrix factorizations or decompositions reign supreme in pro-
viding practical numerical algorithms and theoretical linear algebra insights. Matrix
factorizations are examples of perhaps the most important strategy of numerical analy-
sis: replace a relatively difficult problem with a much easier one, e.g. triangular systems
are easier to solve than full systems. The purpose of this paper is to unify matrix factor-
izations and several fundamental linear algebra processes within a common framework
by exploiting a remarkably simple powerful idea of rank reduction due to Wedderburn.

The emphasis here is on conceptional unification of linear algebra algorithms, not
on practical implementation, algorithmic details or stability. We do have high hopes
that new insights associated with rank reduction and biconjugation will lead to new
algorithms or important modifications to existing ones. We expect to carry out various
associated numerical experiments and encourage other researchers to do likewise.

Wedderburn [18, p.69] observed that rank one matrices of the form w=!AzyTA
when subtracted from A result in a matrix of rank one less than A if w = yTAz.
Successive use of this idea (rank(A) times) will therefore be seen to provide quite general
factorizations of A. This fruitful successive rank-reducing idea along with what we
will call a biconjugation of the z and y vectors gives a paradigm that seems to yield

* Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205. This
research was supported in part by the National Science Foundation under grant DMS-9123448.

! Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206.

! Department of Computer Science, Stanford University, Stanford, CA 94305.

1



any matrix decomposition or factorization for appropriate study. Furthermore, many
of the fundamental processes of numerical linear algebra such as the Gram-Schmidt,
conjugate direction and Lanczos methods are shown to be in the class of the rank-
reducing processes developed here. This development provides a special connection
between these fundamental numerical processes and matrix factorizations.

Throughout this paper the discussion will be restricted to the real-valued matrices
only. The generalization to complex-valued case should be quite obvious.

Let A € R™*™ denote an arbitrary matrix. We start with the fundamental result
of Wedderburn from his 1934 book [18, p.69].

THEOREM 1.1. Ifz € R™ and y € R™ are vectors such that w = yT Az # 0, then
the matriz

(1) B:=A—wlAzyTA

has rank ezactly one less than the rank of A.

A converse of this result is also true. In fact, Householder with reference to Wed-
derburn included the following characterization of rank-one subtractivity as an exercise
in his seminal book [14, Ex.34, p.33].

THEOREM 1.2. Letu € R™ and v € R*. Then the rank of the matriz B =
A — o7 'uv” is less than that of A if and only if there are vectors € € R™ and y € R™
such that u = Az, v = ATy and o = yT Az, in which case rank(B) = rank(A) — 1.

P&l Rézsa was responsible for the publication of his mentor’s, E. Egervary’s [4],
posthumous paper on rank reduction. We infer from this work that Egervary was the
first to prove the entire characterization of Theorem 1.2, though it appears that he was
not aware of Wedderburn’s earlier result. Having realized that (1) is a rank-diminishing
operator and can be repeatedly utilized, Egervary proposed a general finitely terminat-
ing scheme that unifies a variety of processes occurring in the solution of linear equations
[4]. More precisely, let A; := A. So long as Ay # 0, one may apply (1) repeatedly with
nearly limitless flexibility to generate a sequence of matrices {Ax} by using

(2) Ak_|_1 = Ak — wk_lAk:IJkygAk

for any vectors zy € R™ and y;, € R™ for which wy := y,{Akazk # 0. The sequence
determined by (2) must terminate in rank(A) = ~ steps since {rank(A)} decreases by
exactly one at each step. This process will continually be used throughout the sequel
and we will refer to such a process as a rank-reducing process and the A; matrices
will be called Wedderburn matrices for the rank-reducing process. Egervary described
several interesting examples, including Gaussian factorization and the Purcell-Motzkin
method, to illustrate the application of the rank-reducing process. Some of his ideas
resurface in our considerations in a more explicit form.

We may summarize the rank-reducing process in matrix outer-product factorization
form:

(3) A=3Q710T
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where Q := diag{wi,...,wy}, ® := [¢1,...,¢4] € R™*Y and ¥ := [¢)q,...,9,] € ™
with

b = Arzr,
Yy = Afyk.

Obviously, different choices of vectors {z1,...,z,} and {y1,...,y4} will result in differ-
ent factorizations in (3). The factorization represented in (3), therefore, is extremely
general. One of the purposes of this paper will be the study of the connection of (3) to
some well-known decompositions of A.

The rank-reducing process of this paper is related to Stewart’s notion [16] of ma-
trices being A-conjugate. Motivated by conjugate direction methods, Stewart has de-
veloped a general conjugation algorithm from which it is shown that different choices
of the parameters in his algorithm lead to various methods for solving linear systems
and that these methods are closely related to well known matrix factorizations. We will
see that a similar notion of biconjugation with respect to a matrix A arises naturally
from the Wedderburn rank-one reduction formula which again leads to various matrix
factorizations. All of these interesting connections will be explored in this paper.

The rank reduction formula (1) can further be generalized to the case where a
matrix of rank possibly greater than one is subtracted. The following analogue of
rank-one subtractivity along with several equivalent formulations and connections with
generalized inverses has been established by Cline and Funderlic [3].

THEOREM 1.3. Suppose U € R™*k R € R** and V € R"™*. Then

rank(A — UR'VT) = rank(A) — rank(UR'VT)
if and only if there exist X € R™* and Y € R™** such that

U=AX, V=AY and R=YTAX.

The discussion hereafter for the rank-one reduction formula can thus be extended
in a similar way to the block version of rank reduction.

This paper is organized as follows. In §2 we describe how the rank-reducing process
can proceed without explicitly expressing the intermediate Wedderburn matrices. This
postprocessing of the vectors used in a rank-reducing process of a matrix A will be
called a biconjugation process as the (X,Y’) matrices of the rank-reducing process will
yield a biconjugate pair (U, V) that is defined by

(4) VIAU = Q

being diagonal and nonsingular, and (4) is called a biconjugate decomposition of A. It
should be noted that when we use terms such as biconjugation process, biconjugatable
matrices or biconjugate matrices, there is a given matrix A and the terms are relative
to this matrix.



A central result that characterizes a pair of matrices being biconjugatable will be
given which is closely related to fundamental matrix factorizations and biconjugate
direction methods including the Lanczos method. In §3 we will develop a paradigm for
associating matrix factorizations with the biconjugation process of §2. This makes use
of a second characterization of biconjugation that recognizes the class of matrices that
map into given biconjugate matrices; we specifically illustrate the LDM?, Cholesky, QR
and SVD factorizations. The singular value decomposition, i.e. SVD, will illustrate a
rank-reducing process being carried out as a deflation method with optimal numerical
stability. In §4 we argue that the well-known Lanczos process is in fact a special case
of the biconjugation algorithm of §2. We specify the choice of (X,Y’) that produces
the biconjugate directions of the Lanczos algorithm. Furthermore, the biconjugation
characterization of §2 provides insight into Lanczos breakdown with the rank-reducing
process suggesting possible recovery. Each (X,Y) that effects a rank-reducing process
gives rise to a biconjugation process and conversely; all of which follows from a second
characterization of biconjugation. Finally, in §5 we point out that the Wedderburn rank-
one reduction formula of Theorem 1.1 also appears in the ABS method except that the
ABS method emphasizes a different part in the formula. In fact, the rank reduction
formula also appears in the well-known BFGS and DFP secant update methods, of
which an interesting geometric meaning will be discussed in a separate paper.

Historically, Wedderburn is given credit for first publishing how to transform a ma-
trix into a matrix of rank one less, Theorem 1.1, cf. [14, Ex.34, p.33]. Early drafts of
the book of Householder just cited were available in 1960 and it is likely that he, inde-
pendent of Egervary, also discovered the converse. Egervary was the first to introduce
and exploit the rank-reducing process that is used throughout this paper. He used it
to produce, e.g. the LU factorization of a matrix. We only recently became aware of
Egervary’s paper [4] after noticing reference to it in an exercise of Householder’s [14,
Ex.20, p.145]: “Apply the obvious identity

(U1, ... un)(v,. .. ,vn)T = wvl 4+ .. upv?

along with Wedderburn’s theorem [Theorem 1.2 above| to obtain Egervary’s rank-
reducing transformations and thereby derive the methods of triangularization and of
orthogonal triangularization.” Householder did not mention this exercise when (personal
communication) he suggested in 1968 the rank-reducing process as a way to generalize
the SVD by the use of norms other than Euclidean, see the Acknowledgement section.
Stewart [16] saw the connection of conjugate direction methods and a one sided conju-
gation process. Though the biconjugation process of this paper originated in a primitive
and unpublished form earlier [7], the connections to the Gram-Schmidt, conjugate direc-
tions (and hence Lanczos), and ABS processes are apparently new. Stewart’s definition
of a conjugate pair of matrices and his characterization of a matrix conjugated with
respect to another [Theorem 3.1 [16]] suggested our definition of a biconjugated pair of
matrices and the main characterization of biconjugation of this paper, Theorem 2.4.

2. The Biconjugation Process. Thus far, a factorization (3) resulting from the
fundamental rank-reducing process defined by (2) depends explicitly on the successive
4



rank-reduced Wedderburn matrices {Ax}. In this section we show how the same decom-
position can be accomplished without the Wedderburn matrices explicitly appearing. It
turns out that this procedure is analogous to the well-known Gram-Schmidt process.
The purpose of the process is to transform any matrix pair (X,Y") from a rank-reducing
process (2) to (U, V) such that VT AU is diagonal and nonsingular. We will also see
that any (X,Y) that can be so transformed comes from a rank-reducing process. Fur-
thermore, it will be shown by Theorem 2.4 that this process is unique in the sense that
the resulting matrices are unique.

For convenience, we shall denote henceforth the bilinear form y7 Az for any z € R™
and y € R™ by

(5) < z,y >=yl Az.

Note that in general < -,- > is not an inner product since A may not be positive definite
nor even a square matrix, but this seemingly ambiguous notation provides us with some
interesting insights.

Let R(M) denote the range space of a general matrix M. By the definition (2) of
the Wedderburn matrix A,, it is clear that

(6) 1 L R(AE)J
(7) y1 L R(A).
Observe also that for any z € R™ we have
Ayo = Ay ( _ wd |
< Z1,Y1 >

Define u; := z; and v; := y;. One may think of the space R™ as the direct sum
R™ = span{u;} & S(u1,v1)

where S(uy,v1) is the (n — 1) dimensional linear subspace

< z,U1 >
S(ui,v1):=¢z— ———uslz€ R" ;.
< Ui,V >
So the vector
< ZTg,V1 >
Uy =Ty — ———————Uy
< Ui,V >

is simply the projection of z; onto the subspace S(uq,v1) along the vector u;. Similarly,
one may define

< Ui, Y2 >
-

Vo 1= Yo
y < Ui,V >

1

which is the projection of y, onto the (m — 1) dimensional subspace

< ui,w >

< Ui,V >
5
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along the vector v;. In doing so, we naturally have established the relationships:

A’u,g = AgfIIg € R(Ag) C R(Al)
v A = y; Ay € R(A]) C R(AT).

Together with (6) and (7), it follows that

< Ug, 1 >=< U1,V >=10
and hence

Wy = ygAga:g =< Uy, Vg > .

This completes the first step of the biconjugation process described by the following
theorem. The biconjugation process can now be continued by induction to obtain the
following result.

THEOREM 2.1. Suppose rank(A) = v. Let {z1,...,z} and {y1,...,yy} be any
vectors associated with a rank-reducing process (so that yF Agzy # 0 for each k). Then

k-1
< Tg,v; >
8 = J— N .
( ) Wk Tk ; < Uy, V4 >u1,
< Uy Yk >
(9) Ve = Yp — Z —

2
o S U, v >

are well defined for k =1,...,v. Furthermore, it is true that

(10) Aug = Agzi,

(11) A = yi A,

(12) wp = y,?Aka:k =< Ug, Vg >
and that

(13) < Uk, V5 >=< uj, v >=10
for all 3 < k.

Proof. We have already seen the case when & = 2. Suppose now the theorem is
true for all § < k <. Then wg =< ug,vp ># 0. So ugy1 and vgy; are well defined.
From (2), (10) and (11), we have

Apyr = Ay —witAugvl A

k
(14) = A-Y wtAup] A

=1

where the second equality is obtained by recursion. It is now clear by direct substitution

that (10) and (11) hold for & + 1.



It is readily seen that

span{z1,...,z;} = span{ui,...,u;}

span{yl, s 7yj} = span{vl, s 7Uj}

for any 1 < j < k+ 1. Observe from (2) that the column spaces of the Wedderburn
matrices for a rank-reducing process satisfy

R(A1) DR(A2) D ...

Since yr L R(Agt1), it follows that y; L R(Agy1) for all 7 < k& + 1. Therefore,
< Ugy1,v; >= 0 for all § < k4 1. Similarly, one can prove < uj,vg41 >= 0 for all
j < k+ 1 by using the fact that zx L R(Af,;). This proves (13).

The equality (12) now follows from (13) and (10) by rewriting yx4+1 in terms of
U1y, Vkt1- U

Although it appears that the sequence of Wedderburn matrices {Ax} is needed
among the assumptions of Theorem 2.1, we note that the arrays {ux} and {vi} defined
by (8) and (9) make no explicit reference to the Wedderburn matrices. Indeed, so long
as < ug, vk >7# 0, then (8) and (9) can be used to generate ugi; and vgyq directly.

We note also that symbolically there is a considerable resemblance between the
formulas (8) and (9) in Theorem 2.1 and the formulas that arise from the classical
Gram-Schmidt process. The main differences are that the bilinear form < -,- > used in
Theorem 2.1 is not necessarily an inner product and that Theorem 2.1 is dealing with
two arrays of vectors {z1,...,z,} and {y1,...,yy} simultaneously. In other words, the
notion of the orthogonal projection in the Gram-Schmidt process is being replaced by
an oblique projection as is demonstrated in the discussion of uy and vs.

An important implication of Theorem 2.1 is that it offers an alternative way of com-
puting the wy’s and the Agzy, and yi Ax vectors. In particular given any {z1, ...,z } and
{y1, ...,y } satisfying yI Agzs, # 0 for each k, we are able to describe any factorization
(3) of A arising from a rank-reducing process,

[Almh BRI A’Y:E’Y]Q_l[yfAh s 7y3A’Y]7

as AUQ VT A, independent of the Wedderburn matrices, A;. Furthermore, by way of
the following corollary we obtain a remarkable decomposition, VT AU, of A independent
of Wedderburn matrices appearing. Actually Wedderburn matrices are involved in the
sense that the z; and y; vectors (used to produce the u; and v; vectors in (8) and (9))
effect a rank producing process. Theorem 2.4 will cause the Wedderburn matrices to
be further concealed.

COROLLARY 2.2. Suppose A has has rank vy and 1 < k <~. Let Uy := [uq, ..., ug)

and Vi, := [vy,...,v] whereu; andv; are defined in (8) and (9). Let Qy := diag{w,...,wk}.

Then

(15) VI AU = Q.
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Furthermore,

—1y,T
(16) A= AUQ'V] A,
and

—1y,T
(17) M =U,9'VI.

is a semi-inverse [9] of A.

Proof. Identity (15) follows from (13) and (16) from (14). The semi-inverse condi-
tions AMA = A and MAM = M can be checked directly by substitution. 0O

It is interesting to note from (17) that if A is nonsingular, then M = A™! can
be obtained simply by transposing the two matrices U, and V, and by inverting the
diagonal matrix 2, — an analogy to the SVD even though U, and V,, are not nec-
essarily orthogonal. We will follow Stewart’s [17, pp. 29-30] distinction between the
singular value decomposition and singular value factorization by referring to (15) as a
decomposition of A and (16) as a factorization of A.

We now turn our attention to Stewart’s notion of an A-conjugate pair of matrices
[16] which was motivated quite differently from the Wedderburn rank-diminishing idea.
Stewart defines (U, V) to be an A-conjugate pair if VT AU is lower triangular under the
assumptions that A, U,V € R™ ™ are nonsingular. Given nonsingular matrices V, A and
P, Stewart has proposed an algorithm that combines columns of P linearly in a suitable
way to form a matrix U so that U and V are A-conjugate. Stewart called his process
the A-conjugation of P with respect to V. We refer readers to [16] for more details on
his A-conjugation process. The following definition provides a natural transition from
A-conjugation to biconjugation with respect to a matriz A.

DEFINITION 2.1. Let A € R™™, U € R™** and V € R™**. Then (U,V) is a
biconjugate pair (with respect to A) if

(18) Q:=VTAU

1s nonsingular and diagonal. Such a decomposition is called a biconjugate decomposition
of A. Factorizations of the form (16) satisfying the semi-inverse conditions associated
with (17) are called biconjugate factorizations of A.

Definition 2.1 suggests a convenient special notational convention that will be used
throughout the sequel. When we use the notation of (18), Q will always refer to a
nonsingular diagonal matrix with diagonal elements w; and such elements will always
refer to the relevant diagonal elements of such a matrix ).

It is important to note that Theorem 2.1 provides a biconjugation processfor a given
pair of matrices (X,Y") provided that for the Wedderburn matrices, A;, the relations
yJTAjazj # 0 hold for all 1 < 7 < k. Indeed, we may rewrite (8) and (9) in the following
matrix form.

COROLLARY 2.3. If (X4, Y:) € R™F x R™*F effects a rank-reducing process for A,

then there are unique unit upper triangular matrices Rgf) and Rgf) of order k such that

(19) Xi = UpRY), and Yi = ViR,
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where U and Vi are matrices with columns resulting from the biconjugation process of
Theorem 2.1.
Proof. The relations of (19) follow from (8) and (9) since the j** columns of Rgf)

and Rgcy) are expressed as

- -T

< zj,v > < Zj,V5-1 > 1.0 0

| < U1, V1 >’ T < Uj—1,Vj-1 >’ ’ | ’
and

- -T

< U, Y; > < Uj-1,Y5; > 1.0 0

_<’U,1,’Ul>7”‘7<u‘7‘_1,’l}j_1>7 A

respectively. That the upper triangular matrices are unique follows because the ma-
trices U and V in biconjugate decompositions (15) have linearly independent columns.
Likewise from the characterization of rank subtractivity, Theorem 1.3, X} and Y; have
linearly independent columns. 0O

Thus analogous to Stewart’s A-conjugation process [16] we make the following

DEFINITION 2.2. Given a matriz A, then a pair of matrices (X,Y) € R™* x Rmx*
is said to be biconjugatable, and biconjugated into a biconjugate pair of matrices (U, V),
(see Definition 2.1), if there exist unit upper triangular matrices Ry, R, € R¥F* such
that X =UR,, Y =VR,.

Note from (19) that at this point the triangular matrices Rgf) and Rgcy) depend
implicitly on both Vi and Uy simultaneously. We will see, however, that this dependence
is in fact immaterial (Theorem 3.6). More importantly, Corollary 2.3 will be seen to
be part of a characterization of biconjugation, Theorem 3.7, which will show that if
(X,Y) can be biconjugated into (U, V), then these pairs must be linked by unique unit
upper triangular matrices. Furthermore, if (U, V) is a biconjugate pair and (X,Y) is
biconjugatable, it does not follow that (X,Y) can be biconjugated into (U, V). Again
uniqueness of the biconjugation process is the reason.

Recall that for the biconjugation process one has considerable freedom in selecting
the vectors [zy,...,zg] and [y1,...,yx] to be biconjugated. Thus far, an important
assumption for choosing the z; and y,; vectors is that yJTAjazj # 0, a condition depending
upon the Wedderburn matrices A;. The following theorem analogous to Stewart’s [16,
Theorem 3.1] characterization of A-conjugation provides an important necessary and
sufficient condition for biconjugation independent of the Wedderburn A; matrices. This
characterization provides understanding of the relation of biconjugation and some of the
fundamental factorizations of linear algebra, e.g. see Corollary 2.5 and its relation to the
Cholesky factorization of Theorem 3.5. In view of current wide interest in Krylov space
methods, this characterization may provide useful insight into better understanding
breakdown of the Lanczos algorithm as will be suggested by Theorem 4.3.

THEOREM 2.4. Let (X,Y) € R™*F x R™** and A € R™™ be given. Then (X,Y)
can be biconjugated if and only if YT AX has an LDU decomposition. In that event the
U, V and ) of the biconjugate decomposition are unique and the resulting LDU fac-
torization of YT AX is RZQRE, where R, and R, are unique upper triangular matrices
from the Definition 2.2 of biconjugation.
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Proof. Suppose X and Y can be biconjugated. Then, by Definition 2.2, there
exist unit upper triangular matrices R, and R, such that X = UR,, Y = VR, and
VT AU = Q is a nonsingular diagonal matrix. It follows that

YTAX = RJVTAUR, = R, QR,

is the unique unit triangular LDU decomposition of YT AX.

Conversely, suppose YT AX = RIDR, is an LDU decomposition with both R; and
R, unit upper triangular matrices. Then by Definition 2.2 and since Ry and R;' are
unit upper triangular, (X,Y) biconjugates into (XR;', Y R;"). The uniqueness of U,
V and Q follows from the fact that any biconjugate pair resulting from (X,Y") gives
rise to the same unique LDU factorization of YTAX. 0O

In light of the unique nature of biconjugation as brought out by Theorem 2.4, we
recapitulate the rank-reducing process, the biconjugation (algorithm) of Theorem 2.1
and the connection, Corollary 2.3, between biconjugatable matrices and the resulting
biconjugate matrices: We initially provided biconjugatable matrices (X,Y") from the
rank-reducing process. However, from Theorem 2.4 the biconjugation process of Theo-
rem 2.1 can be carried out for any (X,Y) such that YT AX has an LDU factorization.
Moreover, the process of producing a biconjugate pair (U, V) is a unique process in that
U and V are unique. Corollary 2.3 used biconjugatable matrices from the rank-reducing
process to infer the triangular matrices connection with the resulting biconjugate pair
from the biconjugation process of Theorem 2.1. However, Theorem 2.4 shows that as
long as (X,Y) is any biconjugatable pair of matrices, then the resulting biconjugate
pair is unique and the associated upper triangular matrices are unique.

We conclude this section with the following observation which will be used for the
LDU development of the next section.

COROLLARY 2.5. Suppose a given pair of matrices (X,Y) € RV* x R™* can be
biconjugated. Then

(20) det(YTAX) = f[wZ

Proof. By Theorem 2.4 there are unit upper triangular matrices R, and R, such
that YTAX = RTQR,. The determinant of the latter factorization gives (20). O

3. Choices of X and Y. By various choices of matrices in Stewart’s A-conjugation
process [16], several well known matrix decompositions are obtained. In this section,
we illustrate that the biconjugation process and other results from the previous section
can be used to obtain similar results by varying biconjugatable X and Y.

Motivated by Corollary 2.3 which expresses the relationship between biconjugatable
matrices and their resulting biconjugate pair, we begin with upper trapezoidal matrices
where the (7, ) entry is zero whenever 7 > j.

THEOREM 3.1. Suppose A € R™*" is of rank~y and X, and Y, are upper trapezoidal
matrices in R™Y and R™*7, respectively, that are biconjugated into (U,,V,). Then AU,
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and ATV, are lower trapezoidal matrices in R™ Y and R™7, respectively. Thus the
resulting biconjugate factorization (16) gives rise to a trapezoidal LDU factorization of
A.

Proof. Recall that in the biconjugation process of Theorem 2.1 [A1z1,..., Az, =
AU,. We shall first examine the structure of Az, associated with the second Wedder-
burn matrix, A,. Let e; designate the 1** column of an identity matrix of appropriate
order. Then the trapezoidal forms of X and Y imply z; = ae; and y; = Be; for some
nonzero « and . Thus the Wedderburn matrix A, = A; — (efAlel)_lAlelefAl and
therefore the first column and the first row of A, are identically zero. It follows that
the first entry of Asx, is zero.

Similarly, one can show the first & columns and the first £ rows of Az, are identi-
cally zero. The proof can be completed by induction. 0O

It is well known that the Gaussian elimination of a square matrix can be viewed
as a successive rank-reducing process. Egervéary [4] observed that this can in fact be
accomplished by applying his rank-reducing process to the choices X,, =Y, = I, with
the implicit assumption that the process will not break down. Note that the matrices X
and Y in Theorem 3.1 are more general. We now recast Egervary’s Gaussian elimination
observation and specify a unique LDU factorization for a square matrix A. We begin
with the following lemma.

LEMMA 3.2. Lety = rank(A) > k. The matriz pair (Xi,Ys) taken as the appro-
priate respective “identity” matrices in R™* and R™** is biconjugatable if and only if
the k** leading principal minor of A is nonzero. In this case the k** leading principal
minor of A is given by [[%_, w;.

Proof. For k < v, Y, AX} is precisely the k** principal submatrix of A. The
assumption that the k** leading principal minor of A is nonzero implies, from Corol-
lary 2.5, that wg # 0 for all & <. The biconjugation process therefore can be carried
out according to Theorem 2.1. The converse holds since Corollary 2.5 implies the de-
terminant of Y;X AX} is nonzero. [

THEOREM 3.3. Let A € R¥V™. Then (In,I,) is biconjugatable if and only if all
the leading principal minors of A are nonzero. In this case the main diagonals of AU,,
VT A and , are identical and A = V.. TQ, U is the unique LDMT factorization of
A.

Proof. From Lemma 3.2 we know that biconjugation is well defined and yields well
defined biconjugate U, and V,,, and conversely. From Corollary 2.3 we also know that
both U, and V,, are nonsingular upper triangular matrices with unit diagonal entries.
Since from (15) AU, = V,;TQ, and VT A = Q,U;!, the main diagonals of AU,, VT A
and ),, are all the same. O

For the symmetric case, the following theorem is very easy to prove.

THEOREM 3.4. If A € R™" is symmetric and (X, X,) is biconjugatable, then the
resulting bicongugate pair (U, V,) has U, = V,. In this case, (15) is the canonical form
of A with respect to congruence and the columns of U, are conjugate direction vectors.

COROLLARY 3.5. Suppose A € R™™ 1s symmetric and positive definite. Then the
Cholesky factorization of A can be obtained from the biconjugation process applied to

11



(I, I.).

Proof. Given that the leading principal minors of positive definite matrices are
positive, Corollary 2.5 implies w; > 0 for 7 < n, and the j** leading principal minor
of Ais Hizl wy = det(IJTAIj). The pair (I, I,) is biconjugatable from Theorem 3.3,
and from Theorem 3.4 the biconjugate decomposition of A gives a factorization of the
form U;TQU;'. Therefore the Cholesky factor is Q%Un_l and it can be obtained from
AU=U"TQ. O

From the proof of the corollary the Cholesky factor is AU and not U with the latter
being related to the inverse of the Cholesky factor of A. The biconjugation process
here is equivalent to Gram-Schmidt in the inner product < z,y >:= yT Az which was
considered by Fox, Huskey and Wilkinson [6] and later by Hestenes and Stiefel [12] in
their conjugate gradient paper.

The biconjugation process with respect to a given matrix A may be thought of as
a function f acting on the space R™** x R™*k by

(21) F(X,Y) = (U, V),

where U and V are a biconjugate pair of matrices that result from the biconjugation
process determined by Theorem 2.1 and therefore enter into a biconjugate decomposi-
tion (15), VTAU = Q, of A. Corollary 2.3 tells us that if (X,Y) is biconjugated into
(U,V) via (21), then

(22) X =UR;, and Y =VR,,

for unique unit upper triangular matrices R, and R,. A converse holds, and in particular
if at the outset X and Y are a biconjugate pair of matrices, then the biconjugation pro-
cess returns the same X and Y. More generally the complete converse of Corollary 2.3
1s

THEOREM 3.6. If (U, V) € R™* x R™** is a biconjugate pair, and R, and R, are
arbitrary unit upper triangular matrices in RF¥*®, then

(23) (UR;,VRy)

can be biconjugated and the resulting biconjugate pair is ezactly the initial (U, V).

Proof. That the matrices of (23) can be biconjugated follows from Theorem 2.4
since (U, V) is biconjugate pair and therefore RZVTAURE is an LDU factorization of
itself. By the Definition 2.2 of biconjugation the resulting biconjugate pair from (23)
must be of the form (UR;, VR,) where R; and R, are unit upper triangular. Therefore
REVTAURl must be diagonal and nonsingular. It follows that R; = R, = I because
of the uniqueness of LDU factorizations. O

So the definition of biconjugation, Corollary 2.3 and Theorem 3.6 give the next
theorem, a second characterization of biconjugatability, to go along with the LDU char-
acterization of Theorem 2.4. It should be emphasized again that these characterizations

are related simply by YTAX = RZVTAURE = RZQRE.
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THEOREM 3.7. The matriz pair (X,Y) biconjugates into (U,V) if and only if
(U, V) is a biconjugate pair and there are unique unit upper triangular matrices R, and
R, satisfying (22).

Theorem 3.6 provides a paradigm for showing that fundamental decompositions
of linear algebra are biconjugate decompositions, VT AU = Q, of Corollary 2.2. We
illustrate this idea by first considering the QR decomposition.

We shall assume that A = @R has full column rank so that the columns of @ €
R™*™ are orthonormal and R € R™™ is nonsingular. We leave as an exercise for the
reader to consider the rank deficient cases including m < m. The idea for the full
column rank case is to have Theorem 3.6 suggest simple and biconjugatable X and Y.
For example X =Y = I in Theorem 3.3 leads to an LDU factorization. It is tempting
to choose U = R™! so that the biconjugate decomposition would be QTAR™ = I.
Then from Theorem 3.6,

(24) X =R 'R, and Y = QR,.

These give rise to two solvable problems. The first problem is that the equalities of (24)
beg the question of producing @ and R since (24) depends on knowing @ and R ab initio.
This problem is apparently solved by the choice R, = R, = R so that (X,Y) := ([, A)
is independent of knowing ¢} and R. This gives rise to the second problem, a scaling
one, because in Theorem 3.6 R, and R, must be unit upper triangular matrices and
R in general does not have ones on its diagonal. This motivates rewriting the QR
factorization of A as QUR; with ¥ a diagonal matrix such that VR; = R with R;
being unit upper triangular. In place of (24) define

X :=R{'R;, and Y := QUR,,

where R, and R, are arbitrary unit upper triangular matrices as suggested by The-
orem 3.6 and noting that (R;*, QV¥) is indeed a biconjugate pair and thus X and YV’
are biconjugatable by Theorem 3.7. It is thus natural to choose R, = R, = R; so
that the simple choice of (I, A) actually does biconjugate into (R;*, @¥). Furthermore,
AU = AR;' = QU = V and VTA = ¥QTA = V2R, = UR. Thus we may obtain
the QR factorization from V and VTA. As expected R = WR; is the Cholesky factor
of ATA=YTAX = RTUQTA = RTU?R,. Most of these QR factorization results are
summarized in

THEOREM 3.8. Let A have full column rank with a QR factorization, A = QR.
Then (I, A) is biconjugatable and gives the biconjugate pair (Ry*, QV) := (U, V) where
U is a diagonal matriz and U = Ry is the unit upper triangular matric R™1U. Fur-
thermore, VIA=VR, AU =V and VIV = 0% .= Q.

Theorem 3.8 is the culmination of our use of Theorem 3.6 to develop a paradigm
for yielding a fundamental factorization and in this case the QR factorization. Though
Theorem 3.3 did not make use of this paradigm for producing an LDM?7 factorization,
we can do so by defining

X:=MTR,, Y:=LTR,
13



Then it is natural to choose R, = MT and R, = LT which means that if (I,I) is
biconjugatable, it biconjugates into (M~T,L~T). Furthermore, AU = AM-T = LD,
VITA = L7'A = DMT and D takes the role of ) in the biconjugate decomposition
L*AM-T =D.

The rank-reducing process and Theorem 3.6 can be related to the SVD. When the
SVD of a matrix A is written with the number of columns in U and V being equal to
the rank of A, the SVD of a matrix A, VTAU = Q, displays naturally a biconjugate
pair (U, V) and a related nonsingular matrix . From Theorem 3.6 the biconjugation
process returns (U, V) from (X,Y) := (U, V). Thus we have

THEOREM 3.9. Suppose vectors [z1,...,zx] and [y1,...,yx] in the process of bi-
conjugation are, respectively, the right singular vectors and the left singular vectors of
A. Then u; = z; and v; = y; for all 7 < k.

Furthermore, it is well known and easy to show that

(25) A=AUQVTA,

so that the singular value factorization (25) is a biconjugate factorization (16) of A.

Because of Galois theory it is not possible to solve directly general polynomial
equations and thus there is no simple biconjugatable (X,Y) that produces the SVD.
However, there is a natural and numerically optimal rank-reducing process that leads
to the SVD. Moreover this SVD producing rank-reducing process does not require an
additional biconjugation process. The SVD of a matrix A is probably the most numer-
ically appealing of the biconjugate decompositions (15) because as we shall now see,
the singular values provide maximal denominators, w;’s, in the rank-reducing process.
From the viewpoint of numerical stability it is ideal relative to the Euclidean norm at
each stage of the rank-reducing process to choose z; and yi so as to

(26) Maximize  wg = y,?Aka:k =< Uy, Vg >
(27) Subject to  ziazp =1, yiyk = L.

We now demonstrate that the decomposition (15) produced by meeting this particular
requirement in the rank-reducing process is precisely the singular value decomposition
of A.

It can easily be verified by Lagrange multipliers that a necessary condition of a
stationary point for (26) is

(28) Al = opds
(29) ArZr = Gnil

Some more general discussion can be found in [2]. Indeed, the maximal value occurs at

&k = || Ag||2 which is the largest singular value of the Wedderburn matrix Ay and it will

therefore be shown to be the kth singular value wy of A. The corresponding solution g

and Zj, respectively, become the kth left singular vector y; and the kth right singular

vector z; of A. This fact has been used to prove the existence of the singular value

decomposition of A (See, for example, [10, Theorem 2.5.1]). That the singular values
14



of the Wedderburn matrices of this particular rank-reducing process are singular values
of A follows from the following theorem. Thus this rank-reducing process is a singular
value deflation process.

THEOREM 3.10. Let the nonzero singular values of A be ordered so that w; > wy >
... 2wy > 0. If in the rank-reducing process wii1 = ||Ag+1||2, then the corresponding
ZTra1 and Yry1 vectors may be chosen to be the corresponding singular vectors of A, and
the largest singular value of Agy1 is the (k+ 1) largest singular value of A.

Proof. We shall first determine the singular values and vectors of A,. Substituting
(28) and (29) into the definition of the second Wedderburn matrix (2) gives

T
Ag = Al — WU .

But it is well known, e.g. [10, Theorem 2.5.2], that the singular value factorization for
A; := A can be expressed as an outer product expansion

o
— gy L
A= szvzui ,

=1

so that

< T
Ay = Zwiviui )

i=2

Thus 75, T, and 7, obtained from (26) and (27) may be taken to be w,, us and v,,
respectively. The proof can be completed by induction. 0O

4. Relation to the Lanczos Process. The purpose of this section is to relate
the Lanczos process to the biconjugation process of §2. The two biconjugation char-
acterizations of Theorem 2.4 and Theorem 3.7 will be used to discern and portray a
biconjugatable pair, (R, R) that biconjugates into (P, P). By consequence of this pro-
cess R™' AR becomes the classical tridiagonal matrix. This development should provide
additional insight to and understanding of the Lanczos process.

For a general square matrix A, the Lanczos process [15] can be described as follows:

Given two nonorthogonal vectors r; and 7y, define p; := r; and p; := 7;. Then for
k=1,2,..., define the recurrence relations
(30) Ter1 = Tk — pApg
Tkt1 = Tk —akATka

and
(31) Pkt1 = Tk+1 + OkPk
(32) Des1 = Try1 + Oiby
where

=T

T. Tk
(33) ap = —E

Pi Apx

Dr Argqa

(34) * Pk Ap
15



If we define

(35) Py :=Ip1,...,px] and Py = @1y, P,

and

Rk_|_1 = [7‘1,...,7‘k+1], Rk—l—l = [Fly---yFk—I—l];

it can be proved (See, for example, [5]) that
THEOREM 4.1. Assuming that the Lanczos process does not break down, then

(36) PLAP, = O

and Rsz := D, are nonsingular diagonal matrices with (86) (along with (33) and (34)
well defined) defining the biconjugate pair (Py, Py) of (35).

The Lanczos process is perhaps better recognized in matrix form. After the kP
step, we have from (30)

AP, Dy = Ri1Ch

where
Dy = diag{oy,...,on},
1 0 0]
-1 1 0 0
0 -1 1
Cp = € Rlk+1)xk,
0 oo —1 ]

We also obtain from (31) and (32) the conditions of the second characterization of
biconjugation, Theorem 3.7, i.e.

(37) Rk_|_1 == Pk_|_1Bk and Rk—l—l == ?k—l—lBk;
where

[1 -8, 0 0 |

1 —f
(38) By = 1 ¢ Rk (k+1),
0 —Bk

. 0 1 -
It follows that

ARpy1 = AP By

[Rk-|—1 CvD; " By_1, A"'k+1]

[Riy1 Tk, O] + [O, Argi4]
16



where T}, := CkD,ZlBk_l is a “tridiagonal” matrix in Rk+1)xk

The vector 7441 defined in (30) may be thought of as the residual
(4:]_) Te+1 = b— A2k+1
where 2y, is defined by the recurrence relation

(42) ZE+1 = 2k + Pk

with a suitable initial value z; that gives rise to the residual r;. If at a certain stage we
have rgy 1 = 0, then it follows that zgi; solves the linear system Az = b. In this case,
(40) may be written as

(43) ARy = RiT

where T' is the £ x k tridiagonal matrix by deleting the last row of Tj. Likewise, we
may consider 7ppq = b — ATZ, 4 with Zpqy 1= Zp + 0Py

We claim that the Lanczos process is a special case of the biconjugation process of
Theorem 2.1. More precisely, we have

THEOREM 4.2. If Ry and Ry from (87) are well defined in a Lanczos process that
does not break down, then (X,Y) := (Ry, Ry) biconjugates into (P, Py) of (35)

Proof. Theorem 4.1 points out that (P, Py) is a biconjugate pair and the necessary
unit upper triangular relations for biconjugation are immediate from (37). Thus the
conclusion follows from Theorem 3.7. 0O

From (33) and (34) we conclude that the Lanczos process will not break down in
exact arithmetic as long as wy # 0. Suppose rank(A) = 4. Then by Theorem 2.1 one
should be able to continue the Lanczos process for (at most) v steps. Nevertheless,
we note that the subsequent behavior of the Lanczos process is completely predestined
by the first choice of r; and 7;. It is possible, therefore, that the Lanczos process
will break down prematurely because r; and 7, are fixed vectors. In contrast, the
vectors zp and yg in the general rank-reducing and biconjugation process can be more
flexible and are independent of z; and y;. In other words, the biconjugation process
may be carried forward to the next stage by a suitable choice of z; and yi so long as
rank(Az) # 0. In principle the Wedderburn matrix Az can be computed from ( Py, Py)
by using Theorem 1.3. More precisely, we have

Ap = A— AP_,Q;1, P, A

To take advantages of the three-term recursion relationship in the Lanczos process and
the extra flexibility of the biconjugation process, a hybrid method naturally suggests
itself with the choice of X,, = [r1,..., 7k, @kt1,..., %] (and similarly of ¥;,) where we
use the Lanczos process until it nearly breaks down and then we switch to the more
general biconjugation process. In particular, if A is nonsingular, then the solution z*
to the equation Az = b may be expressed, by (17), as

(44) 2=



At the cost of computing (8) and (9), the biconjugation process therefore defines an
iterative method that converges to z* in n steps.

Another result that may prove to be important in understanding breakdowns and
restart strategies of the Lanczos process is

THEOREM 4.3. If the Lanczos process can be carried through to completion, then

(45) R! AR

has LDU factorizations forv=1,...,n.

Proof. Theorem 2.4 characterizes when the biconjugation of (R,, R, ) can be carried
out in terms of (45) having an LDU factorization. We should note that the values of
ai, and By, are well defined from (33) and (34) if (P,, P,) is a biconjugate pair. [

Additionally Theorem 4.3 and the biconjugation characterization of Theorem 2.4
provide us with the LDU factorization, BTQB, of RT AR from (37), i.e.

i w1 _wlﬁl 0 ‘e 0 0 i
—wi1f wy + w7 —wy B,
_ 0 —w wy + wy B2 0
RTAR=BTQB=| e , 1 , . .
0 _wn—lﬁn—l
L 0 [ 0 [ _wn—lﬁn—l Wn —I_ wﬂ—lﬁi—l -

a real symmetric tridiagonal matrix, where the 8’s are defined by (34) and the w’s are the
pT Ap's of Theorem 4.1. In the classical Lanczos development, e.g. [14, pp. 17-18] or [11],
there is a matrix Y7 AX that is expressed as a tridiagonal matrix, T = X *AX, times a
diagonal matrix, Y7 X. In this development the columns of X and Y come from Krylov
sequences associated with A and A7 respectively. In the development here, R"'AR
is tridiagonal as X 'AX is in the classical treatment, but RTAR is automatically
real symmetric tridiagonal. The following corollary is a known consequence of the
Lanczos process and it follows neatly from the development here. It is known that there
are always starting vectors for which the Lanczos process goes through to completion.
Therefore from Theorem 4.3 and the comments that follow we have

COROLLARY 4.4. Given an arbitrary real matriz of order n, there are matrices R
and R such that B AR is real symmetric tridiagonal of order n.

It is well known that the Lanczos method is a biconjugate direction method, i.e.
?zAPk is nonsingular and diagonal. If A is symmetric positive definite and r; = 7y, then
P, = P, and it is well known that the Lanczos process is equivalent to the conjugate
gradient method. More generally let U at the outset determine a set of conjugate
directions, i.e. UTAU = Q is nonsingular and diagonal. Then (33), 2k41 = 2k + oug,
and an equivalent form of (30), i.e. 7x41 = b— Azg11, taken together define the class of
conjugate direction methods of which the conjugate gradient method is a member.

For the Lanczos method the imposition of positive definiteness on A prevents the
Lanczos method from breakdown. It is evident that with appropriate scaling, (43)
suggests an iterative procedure for tridiagonalizing A by orthogonal transformations.
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Theorem 4.2 shows the Lanczos process is a special case of biconjugation and The-
orem 3.6 suggests this is not surprising. Theorem 3.6 implies that the biconjugate
directions associated with a biconjugate direction method, e.g. Lanczos method, can
be obtained from the biconjugate process applied to an infinite number of biconjugat-
able matrices. In addition if a biconjugate pair (U, V') is associated with a biconjugate
direction method, then the associated vectors would effect a rank-reducing process.
Conversely, an (X, Y") associated with a rank-reducing process is biconjugatable. There-
fore (X,Y) determines a biconjugate direction method. Thus the class of biconjugate
direction methods can be identified with the class of matrix pairs (X,Y) that can be
obtained from the fundamental rank-reducing processes (2).

5. Relation to the ABS Method. Given X € R™*", the ABS method [1] is
a class of algorithms aimed at solving the linear system Xz = b. The purpose of this
section is to show the relation of the ABS process to the rank-reducing process. In
particular we point out a linear algebra process for which X is fixed at the outset, Y is
arbitrary and the matrix being rank-reduced is not the focus of attention and in fact is
arbitrary. The ABS process has been derived by analogy of the quasi-Newton methods
under the condition that the approximation z(*1) at the :** iteration solves the first
i equations. Let z7 be the i** row of X and b; the i** component of b. A basic ABS
method can be described as follows:

ALGORITHM 5.1. (Basic ABS Algorithm)

Choose 2(1) € R™ and A; € R™" arbitrarily.

for:=1:m,

T; = a:zrz(i) — b

if A;z; #0,

(46) pi = ATg, (Search Direction)

(47) A = R0 m;—}%pZ (Line Search)

(48) A = A — A:a:iyiTAi (Matrix Update)
else,

if 7, =0, (The system is redundant)

LD 0
A'i—l—l = A
else,
stop (The system is inconsistent )
end
end

end
In (46) and (48) the vectors g; and y; are chosen arbitrarily in R™ except subject to the
conditions that giTAia:i # 0 and
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(49) yl Az = 1.

From (49), it follows that (48) determines a special rank-reducing process defined
by (2). It is worth mentioning that (48) was introduced to mandate that z(**) solves
the first = equations subject to the lowest possible rank change of A;.

An interesting comparison is that the ABS method emphasizes the three free pa-
rameters A;, the vectors g; and y; at the i** stage, while the general rank-reducing
process emphasizes two Wedderburn vectors, free parameters z; and y,. The vector
parameter g; in (46) is independent of the rank-reducing process. On the other hand,
it is interesting to note that the initial matrix A, arbitrary in the ABS method, is
normally fixed and the main focus of attention in a rank-reducing process, whereas the
parameter z;, free in the general rank-reducing process, is fixed to be the 7** row of the
system to be solved in the ABS method.

An algorithm formally associated with the ABS class corresponds to the choices
Ay =1, g; = z; and y; = x;/xF A;z; [1, 13]. But with A; = I, the Wedderburn process
(See Theorem 2.1) becomes precisely the Gram-Schmidt process since the bilinear form
(5) is exactly the conventional inner product in R™. From the definition of z;, the
decomposition (19) becomes XT = UR which, after normalizing the columns of U, is
the QR decomposition of X7, see Theorem 3.8.

6. Summary. We have demonstrated a biconjugation process, based on the Wed-
derburn rank-one reduction formula, that provides a common framework under which
well-known factorizations of matrices can be derived by selecting different values for
the parameters X, and Y,. The following table provides a compendium of the different
cases we have discussed. For simplicity, we have assumed that the pairs (X, Y,) in the
table are biconjugatable. Theorem 2.4 and Theorem 3.7 provide characterizations of

biconjugation.
H A X, Y, ‘ Factor./Alg. ‘ Ref. H
I, from system X, Gram-Schmidt §2&5
mxmn upper‘trapez., upper‘trapez., trapez. LDU | Thm. 3.1
arbitrary arbitrary

nXxn I, I, LDMT Thm. 3.3
nx n,T arbitrary X, Congruence | Thm. 3.4

A=A
nxmn,

SPD I, I, Cholesky Cor. 3.5
nxXn I, A QR Thm. 3.8
mXxXn r. sing. vec. l. sing. vec. SVD Thm. 3.9
nxn residual of A residual of AT Lanczos Thm. 4.2

arbitrary from system arbitrary ABS §5
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