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Abstract� The weighted orthogonal Procrustes problem� an important class of

data matching problems in multivariate data analysis� is reconsidered in this paper� It is

shown that a steepest descent 
ow on the manifold of orthogonal matrices can naturally

be formulated� This formulation has two important implications� that the constrained

regression problem can be solved as an initial value problem by any available numerical

integrator and that the 
rst order and the second order optimality conditions can also

be derived� The proposed approach is illustrated by numerical examples�
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�� Introduction� Recently there has been an interesting new look at existing

numerical algorithms in the area of matrix computation� It has been observed that

there is a connection between the dynamics of a certain di�erential equations and a

certain discrete numerical methods� A short list of these connections can be found in a

recent review by Chu ������� The process of using di�erential equations to realize the

solution of a problem is called a continuation method� This approach often furnishes

more behavioral information about the solution of the underlying problem� The main

contribution of this paper is in the application of one continuous realization process to

solve the so called weighted orthogonal Procrustes problem �WOPP�� In particular� we

shall show that a steepest descent 
ow for the WOPP in the form a matrix di�erential

equation can be derived explicitly� Following this 
ow becomes a read�made numerical

algorithm and will lead us to a desired solution� More signi
cantly� the process makes

it possible to completely characterize the necessary and su�cient optimality conditions

for the WOPP�

A weighted orthogonal Procrustes problem concerns the following optimization�

Minimize kAQC � Bk���

Subject to Q � Rp�p� QTQ � Ip����

where A � Rn�p� C � Rp�m and B � Rn�m are given and 
xed� and Ip is the p � p

identity matrix� The well known orthogonal Procrustes problem �OPP��

Minimize kAQ� Bk���

Subject to Q � Rp�p� QTQ � Iq����
	



obviously is a special case of ��� with m � p and C � Ip� The OPP arises in many areas

of applications� including the simple structure rotations in multidimensional scaling and

exploratory factor analysis �Gower� ����� Trenda
lov� ������ and its optimal solution

Q� enjoys a closed form given by

Q� � V UT ����

provided V and U are the orthogonal matrices involved in the singular value decom�

position of ATB � V �UT �Mulaik� ����� Golub � Van Loan� ������ A closed form

solution for the more general WOPP does not seem possible� Iterative methods for

solving the WOPP have been proposed by Koschat � Swayne ������ and Mooijaart �

Commandeur ����	��

We shall develop a continuous descent 
ow for the WOPP by following ideas dis�

cussed in Chu � Driessel ����	�� The same approach also works for the more general

case when Q in the above is sought to be a rectangular orthonormal matrix� That result

is considerably more abstract and is discussed in a separate paper �Chu � Trenda
lov�

������ In this paper� we concentrate on the case when Q is a square orthogonal matrix

so that we can convey the idea in a more explicit formulation� The most important

feature of our approach is that it o�ers a globally convergent method for 
nding a local

solution of the WOPP�

�� Steepest Descent Flow� We 
rst introduce a topology for the set

O�p� �� fQ � Rp�pjQTQ � Ipg���

�



of all p � p orthogonal matrices� It is known that O�n� forms a smooth manifold of

dimension �p�p � ���� in Rp�p� Indeed� any vector tangent to O�p� at Q � O�p� is

necessarily of the form QK for some skew�symmetric matrix K � Rp�p� Denote

S�p� �� fall symmetric matrices in Rp�pg�

and introduce the Frobenius inner product of two matrices X and Y �

hX� Y i �� trace�XY T ��

It follows that the tangent space TQO�p� and the normal space NQO�p� of O�p� at any

Q � O�p� are given� respectively� by�

TQO�p� � QS�p�����

NQO�p� � QS�p�����

where S�p�� is the orthogonal complement of S�p� with respect to the Frobenius inner

product and hence consists of all skew�symmetric matrices in Rp�p�

For given matrices A � Rn�p� C � Rp�m and Bn�m� consider the function

F �Z� �
�

�
hAZC � B�AZC � Bi���

de
ned for all Z � Rp�p� Apparently� the WOPP is equivalent to the minimization of

F �Z� over the feasible set O�p�� This is a standard constrained optimization problem�

but we shall show below that we can obtain the information about the projected gra�

dient and the projected Hessian without using the conventional Lagrangian multipliers

technique�






We 
rst calculate the gradient rF �Z� of the objective function F �Z� to be�

rF �Z� � AT �AZC �B�CT ���	�

Suppose the projection g�Q� of the gradient rF �Q� at a point Q � O�p� onto the

tangent space TQO�p� can be computed explicitly� Then the di�erential equation

dQ

dt
� �g�Q�����

naturally de
nes a 
ow Q�t� on the feasible manifold O�p�� Along the 
ow Q�t� the

function value F �Q�t� is decreasing most rapidly relative to any other direction� Indeed�

we have

dF �Q�t��

dt
� hrF �Q�t����g�Q�t��i

� �kg�Q�t��k�����

due to the fact that g�Q�t�� is the orthogonal projection of rF �Q�t�� onto TQ�t�O�p�� It

is important to note from ���� that the value of F �Q�t�� decreases strictly until g�Q�t��

becomes zero� indicating a local minimum has been reached� This descent property is

universal regardless where the 
ow starts� The 
ow is guaranteed to converge globally�

To obtain this projected gradient g�Q�� observe that

Rp�p � TQO�p��NQO�p� � QS�p�� �QS�p������

Therefore� any matrix X � Rp�p has an unique orthogonal decomposition�

X � Q
�
�

�
�QTX �XTQ�

�
�Q

�
�

�
�QTX �XTQ��

�

�



as the sum of elements from TQO�p� and NQO�p�� In particular� the projection g�Q�

of rF �Q� onto the tangent space TQO�p� has the form�

g�Q� �
Q

�

�
QTAT �AQC �B�CT � C�AQC � B�TAQ

�
����

We therefore obtain the di�erential equation

dQ

dt
�
Q

�

�
C�AQC � B�TAQ�QTAT �AQC � B�CT

�
����

that de
nes a steepest descent 
ow on the manifold O�p� for the objective function F

in ���� In the case of OPP� the di�erential equation reduces to a much simpler form�

dQ

dt
�
Q

�
�QTATB � BTAQ������

Starting with any point in O�p�� say Q�	� � I� we may follow the 
ow de
ned by ����

by any available initial value problem solver� The 
ow eventually will converge to a

local solution for the WOPP� This is the ready�made numerical algorithm referred to

above for the WOPP�

�� Optimality Conditions� The explicit formulation of the projected gradient

���� provides additional information about the 
rst order optimality condition for a

stationary point�

Theorem ���� A necessary condition for Q � O�p� to be a stationary point of the

WOPP is that the matrix C�AQC �B�TAQ is symmetric�

Proof� Obviously Q is a stationary point only if g�Q� � 	� The assertion then

follows from �����

�



Corollary ���� A necessary condition for Q � O�p� to be a stationary point of

the OPP is that the matrix BTAQ � Rp�p be symmetric�

We also can derive a second order optimality condition to further classify the sta�

tionary points� For completion� we 
rst outline below a technique for obtaining the

projected Hessian� More detailed development of this idea can be found in �Chu �

Driessel� ���	�� Suppose we are given the following equality constrained optimization

problem�

Minimize f�x�����

Subject to c�x� � 	�����

where x � Rn� f � Rn �� R and c � Rn �� Rk with k � n are su�ciently smooth

functions� Suppose the constraint c�s� � �c��x�� � � � ck�x��
T is regular in the sense that

vectors rci�x�� i � �� � � � � k� are linearly independent� Then the feasible set

M �� fx � Rnjc�x� � 	g�

forms an �n � k��dimensional smooth submanifold in Rn� We may express the vector

rf�x� as the sum of its projection p�x� onto the tangent space TxM of M at x and a

linear combination of vectors from the normal space� i�e�� we may write

p�x� � rf�x��
kX

i��

�i�x�rci�x�����

for some appropriate scalar functions �i�x�� Suppose p�x� is smooth in x� Then for

every x� v � Rn� we have

vTp��x�v � vT �r�f�x��
kX
i��

��x�r�ci�x��v � vT �
kX
i��

rci�x��r�i�x��
T �v���	�

�



In particular� if x � M and v � TxM� then ��	� is reduced to

vTp��x�v � vT �r�f�x��
kX

i��

�i�x�r
�ci�x��v����

since v � rci�x�� We note from ���� that the condition vTp��x�v � 	 for every v � TxM

is precisely the well known second order necessary optimality condition for the problem

����� The above technique works only if the projected gradient p�x� is explicitly known�

which is our case� The advantage is that it signi
cantly cuts short the work of what

would be if going through the classical notion of Lagrangian multipliers�

We now apply the above technique to calculate the projected Hessian� We claim

that

Theorem ���� The action of the projected Hessian of F at a stationary point

Q � O�p� on a tangent vector QK where K is skew�symmetric is given by

hg��Q�QK�QKi �
D
C�AQC � B�TAQ�K�

E
�
D
QTATAQKCCT � K

E
�����

Proof� From ����� observe that the Fr�echet derivative of g at Q on a general H is

given by

g��Q�H ��
H

�

�
QTAT �AQC �B�CT � C�AQC �B�TAQ

�

�
Q

�

�
HTAT �AQC �B�CT �QTATAHCCT

�CCTHTATAQ� C�AQC � B�TAH
�
�

At a stationary point� by Theorem ���� the quantity in the 
rst big parentheses in the

above is zero� The Hessian action on a tangent vector H � QK can be calculated as
�



follows�

hg��Q�QK�QKi �

�
KTQTAT �AQC �B�CT �

�
KTQTAT �AQC �B�CT

�T
�

� K

�

�

�
QTATAQKCCT �

�
QTATAQKCCT

�T
�

� K

�

�
D
KTQTAT �AQC �B�CT � K

E
�
D
QTATAQKCCT � K

E
�

The assertion follows from the adjoint property hXY�Zi � hY�XTZi and the fact that

KT � �K�

The following characterization is a standard result in optimization theory� See� for

example� �Gill� Murray� � Wright ������� �����

Corollary ���� A second order su�cient �necessary� condition for a stationary

point Q � O�p� to be a minimizer the WOPP is that

D
C�AQC � B�TAQ�K�

E
�
D
QTATAQKCCT � K

E
� ���	����

for all nonzero K � S�p���

Let the singular value decomposition of the skew�symmetric matrix K be denoted

by

K � U�W T �����

where U�W � O�p�� and � � diagf��� � � � � �pg contains singular values� It follows that

K� � �U��UT����

which in fact is the spectral decomposition of K�� We know from Theorem ��� that

C�AQC � B�TAQ is necessarily symmetric at any stationary point Q� Let

C�AQC � B�TAQ � V �V T �����
��



and similarly�

ATA � T�T T

CCT � S�ST

denote� respectively� the spectral decomposition of the corresponding matrix� Note that

all entries in � � diagf��� � � � � �pg and � � diagf��� � � � � �qg are nonnegative� Using

����� we can rewrite

hg��Q�QK�QKi � �
D
V �V T � U��UT

E
� h�R�� Ri

� �
pX

i��

�i

�
pX

t��

p�it�
�
t

�
�

pX
j��

�j

�
qX

s��

r�js�s

�
����

where P � �pit� �� V TU and R � �rjs� �� T TQKS� We can make the following claim�

Theorem ���� Suppose Q � O�p� is a stationary point and suppose C�AQC �

B�TAQ �� 	� Then a su�cient condition for Q to be a solution for the WOPP is that

the matrix C�AQC �B�TAQ be negative semi�de�nite�

Proof� The negative semi�de
niteness of C�AQC �B�TAQ implies that �i � 	 for

all i and that at least one �i is negative� Observe that
Pp

t�� p
�
it�

�
t � 	 for all t unless

K � 	� Observer also that every factor in the second term of ���� is nonnegative� It

follows that hg��Q�QK�QKi � 	 for any nonzero skew�symmetric matrix K�

For the OPP �where C � Ip�� the projected Hessian ���� is reduced to

hg��Q�QK�QKi � �
D
BTAQ�K�

E
�����

The necessary condition in the following result is known in the literature �Gower� �����

and �ten Berge � Knol� ������ but we now prove that it is also su�cient�
��



Corollary ���� Suppose BTA �� 	� Then a second order necessary and su�cient

condition for a stationary point Q � O�p� to be a solution of the OPP is that the matrix

BTAQ be positive semi�de�nite�

Proof� Recall from Corollary ��� that at a stationary point Q the matrix BTAQ is

necessarily symmetric� Without causing ambiguity� we use the same notation as in ����

to denote the spectral decomposition

BTAQ � V �V T �

Then from ���� and ���� we 
nd that

hg��Q�QK�QKi �
pX

i��

�i

�
pX

t��

p�it�
�
t

�
����

with P � �pit� � V TU � Observe that P is an arbitrary orthogonal matrix and that�

by choosing K appropriately� �i can be made arbitrarily small� In order to have

hg��Q�QK�QKi � 	 for all nonzero skew�symmetric K� it is necessarily �i � 	 for all i�

On the other hand� BTAQ must have at least one positive eigenvalue since otherwise

BTA � 	� That one positive eigenvalues is su�cient to guarantee hg��Q�QK�QKi � 	

since the second sum in ���� is positive for all i�

We remark here that� in contrast to Corollary ���� we fall short to claim that

the negative semi�de
niteness of C�AQC � B�TAQ is also a necessary condition in

Theorem ���� The di�culty is due to the two terms in ���� that are of the same order

O�kKk��� At this point we simply cannot provide a rigorous argument to show that

�i � 	 for all i is necessary to guarantee hg��Q�QK�QKi � 	 for all nonzero skew�

symmetric K� although it is so tempting to think this is true� The matter of fact is
��



that we can argue the opposite by considering the special case m � p and C � Ip�

We claim that the su�cient condition in Theorem ��� is more restrictive than that in

Corollary ���� It therefore cannot be a necessary condition� To see our point� observe

that

�AQ� B�TAQ 	 	
� QTATAQ 	 BTAQ

where we have used the partial ordering 	 to indicate X 	 Y if and only if X � Y is

negative semi�de
nite� Since 	 	 QTATAQ is obvious� �AQ � B�TAQ 	 	 certainly

implies 	 	 BTAQ� but not the converse�

�� Numerical Experiment� In this section� we report some of our numerical ex�

periments with the application of ���� to the WOPP� The computation is carried out

by MATLAB ���a on an ALPHA �			��		LX workstation� We choose to use ode���

and ode��s from the MATLAB ODE SUITE �Shampine � Reichelt� ����� as the in�

tegrators for the initial value problem� These codes are available from the network�

The code ode��� is a PECE implementation of Adams�Bashforth�Moulton methods

for non�sti� systems� The code ode��s is a quasi�constant step size implementation

of the Klopfenstein�Shampine family of the numerical di�erential formulas for sti� sys�

tems� More details of these codes can be found in the document prepared by Shampine

� Reichelt ������� Our reason for using theses codes is simply for convenience and

illustration� especially when the equation ���� involves only matrix computations� Any

other ODE solvers can certainly be used instead�

In our experiments� the tolerance for both absolute error and relative error is set

�	



at �	���� This criterion is used to control the accuracy in following the solution path�

The high accuracy we required here has little to do with the dynamics of the underlying

vector 
eld� and perhaps is not needed for practical applications in data analysis� It

is used only for illustration to accurately follow the 
ow� Lower accuracy requirement

in the calculation certainly can save some CPU time� but not signi
cantly since our

calculation is fast already� We also discover that ode��s is more expensive but faster

�due to larger step size taken� than ode��� while the latter usually performs reasonably

well� The output values at time interval of �	 are examined� The integration terminates

automatically when the relative improvement of F �Q� between two consecutive output

points is less than �	���� indicating local minimizer has been found� This stopping

criterion can be modi
ed if desires to do so�

We should make one more comment concerning the implementation� Note that in

theory the 
ow de
ned by ���� should automatically stay on the manifold O�p�� In

numerical calculation� however� round�o� errors and truncations errors can easily throw

the computed Q�t� o� the manifold of constraint� This can be remedied by an additional

non�linear projection scheme suggested by Gear ������� Suppose Q is an approximate

solution to ���� satisfying

QTQ � I �O�hr�

where r represents the order of the numerical method� Let Q �  QR be the unique QR

decomposition of Q with diag�R� � 	� Then

 Q � Q�O�hr���	�

��



and  Q � O�p�� The condition diag�R� � 	 is important to ensure the transition of Q�t�

is smooth in t� In our code� the matrix Q on the right�hand side of ���� is replaced by

the corresponding  Q�

We have experimented with many tests where the problem data are generated

randomly� Because of the global convergence property of our method� all tests have

similar dynamical behavior� The following example represent a typical run although

the length it takes to reach convergence may vary from data to data� So as to 
t the

data comfortably in the running text� we display all numbers only with 
ve digits� All

codes used in this experiment are available upon request�

Consider the case where

A �

�
																			


	����� 	���	� 	����� 	�����

	����� 	����� 	����� 	���	�

	����� 	����� 	����� 	�����

	��	�� 	����� 	����� 	�	���

	����� 	��	�� 	�	�	� 	���	�

�
�������������������


C �

�
														


	����� 	�	��� 	�����

	���	� 	����� 	�����

	����� 	����� 	�����

	����	 	����� 	�����

�
��������������


�

�




Consider also the random permutation matrix

Q� �

�
														


	 	 � 	

	 � 	 	

� 	 	 	

	 	 	 �

�
��������������


�

We de
ne B �� AQ�C so that the underlying WOPP has a global solution at Q��

Suppose the 
ow ���� starts with the random orthogonal matrix

Q�	� �

�
														


	����� 	���		 	����� �	�����

	����� 	����� �	��	�� �	�����

	����� �	��	�	 �	��	�� �	�����

	����� 	���		 	�	��� 	�����

�
��������������


�

Figure � records the history of the changes of the objective value �F �Q�t�� � kAQ�t�C�

Bk where Q�t� is determined by integrating the di�erential equation ����� Clearly� the

global solution is obtained in this case�

Also recorded in Figure � is the history of the function

!�Q�t�� �� kIp �Q�t�TQ�t�k����

that measures the deviation of Q�t� from the manifold of constraint O�p�� It is seen

that Q�t� is well kept within the local tolerance�

Note that due to the nonlinear nature of the WOPP� the initial value determines the

destination the descent 
ow converges to� Suppose the 
ow starts with this orthogonal

��



matrix

Q�	� �

�
														


	 � 	 	

	 	 � 	

	 	 	 �

� 	 	 	

�
��������������


�

We 
nd that the 
ow converges to the orthogonal matrix

Q� �

�
														


	��	�� 	����� �	����� 	�����

	����� 	���	� 	����� �	�����

�	����� 	����� 	����� 	�����

	����� �	��	�� 	����� 	�����

�
��������������


that is only a local solution to the WOPP� The test results are presented in Figure ��

De
ne the matrix

W� �� C�AQ�C � B�TAQ� �

�
														


	�	��� 	�	��	 	�	��� 	�	���

	�	��	 	�	��� 	�	��� 	�	�	�

	�	��� 	�	��� 	�	��� 	�	���

	�	��� 	�	�	� 	�	��� 	�	���

�
��������������


�

According to our theory� Theorem ���� W� should be symmetric� We check that kW �

W Tk � ������� �	��� indicating a severe loss of symmetry during the integration� It

is interesting to note that the computed eigenvalues of W� are

n
������� �	��� �������� �	��� ������� �	��� ������� �	���

o
�

The last eigenvalue perhaps is a machine zero� but the middle two eigenvalues have

the ambiguity of being either round�o� approximations of the zero or truly numbers
��



with small magnitude� If the latter� then this example would be a case where at a

local minimizer Q� the corresponding W� need not be negative semi�de
nite� But given

the fact that W� itself might carry an error of the order �	��� we simply cannot be

conclusive�

��
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