MA 242	Final Exam	Name:
May 5, 1997		SS #:
Show All Work		Seat #:

- 1. (10 pts) Find an equation of the plane that contains the points (1, 0, -1) and (2, 1, 3) and is orthogonal to 2x - y + 3z = 6.7x + 5y - 3z = 10
- 2. (10 pts) Find parametric equations of the line that passes through the point (1, -1, 1), is orthogonal to the line $x = \frac{1}{3}t, y = \frac{1}{2}t, z = t$, and is parallel to the plane x + y z = 0. $\mathbf{x} = \mathbf{1} \frac{3}{2}\mathbf{t}, \ \mathbf{y} = -\mathbf{1} + \frac{4}{3}\mathbf{t}, \ \mathbf{z} = \mathbf{1} \frac{1}{6}\mathbf{t}$
- 3. (10 pts) Decompose the vector $\vec{b} = [2, 3, -1]$ into a sum $\vec{b}_1 + \vec{b}_2$, where \vec{b}_1 is parallel to $\vec{a} = [0, 4, 2]$ and \vec{b}_2 is orthogonal to \vec{a} . $\vec{b}_1 = [0, 2, 1], \ \vec{b}_2 = [2, 1, -2]$
- 4. (10 pts) Find the equation of the tangent plane to the graph of $f(x, y) = \ln(x^2 + y^2)$ at the point P(0, 1, 0).
- 5. (5 pts each) Suppose a shot is launched from 6.5 ft above the ground at an angle of $\pi/4$ radians, and is landed with a horizontal distance of 69.75 ft. Find
 - (a) The initial speed.

- $s = 69.75 * \sqrt(2) / rac{\sqrt{76.25}}{4} pprox 45.18551921$
- $t_{\rm height} = s/(32\sqrt(2) \approx 0.9984683447, \ height \approx 22.45102456$ (b) The maximum height. (c) The time of flight.
- The time of flight. $\mathbf{t_{flight}} = \frac{\sqrt{76.25}}{4} \approx 2.183031150$ (Hint: The equation of motion is $x(t) = x'(0)t + x(0), \ y(t) = -16t^2 + y'(0)t + y(0).$)
- 6. (10 pts) The curve $y = \cos x$ from x = 0 to $x = \frac{\pi}{2}$ is revolved about the x-axis. Derive the equation of the $v^{\hat{2}} + z^{\hat{2}} = \cos x$ surface.
- 7. (10 pts each) Find the derivatives:
 - (a) $\frac{\partial f}{\partial u}$ where $f(x, y) = e^{xy}(\cos xy + \sin xy)$, $x(u, v) = e^{u+v}$ and y(u, v) = uv.
 - (b) $\frac{df}{dt}$ where $f(x, y, z) = e^z \cos xy$, $x(t) = \sin t$, $y(t) = t^2 + 1$ and $z(t) = e^{t^2}$.
- 8. (10 pts) For the function $f(x,y) = 6x^2 2x^3 + 3y^2 + 6xy$, find all critical points and determine any relative extrema or saddle points. (0,0), localmax; (1,-1), saddle
- 9. (10 pts each) Set up, but do not evaluate, the integral for the following tasks.
 - (a) Find the volume of the solid that is inside the cylinder $r = \sin \theta$, above the paraboloid $z = x^2 + y^2 4$, and below the *xy*-plane. $\int_0^{\pi} \int_0^{\sin \theta} \int_{4-r^2}^{0} \mathbf{r} d\mathbf{z} d\mathbf{r} d\theta$
 - (b) Find the volume of the solid bounded by $z = \sqrt{x^2 + y^2}$, $z = \sqrt{3x^2 + 3y^2}$ and $x^2 + y^2 + z^2 = 9$ $\int_0^{2\pi} \int_{\pi/4}^{\pi/3} \int_0^3 \rho \sin^2 \phi d\rho d\phi d\theta$
 - (c) Rewrite the integral $\int_0^1 \int_{-\sqrt{1-z}}^{\sqrt{1-z}} \int_0^{\sqrt{1-y^2-z}} y \, dx \, dy \, dz$ in the order $dz \, dx \, dy$. $\int_0^1 \int_0^{\sqrt{1-y^2}} \int_0^{1-x^2-y^2} y \, dz \, dx \, dy$ (d) The work done by the force $\vec{F}(x, y, z) = y \sin x\vec{i} + ye^x\vec{j}$ along the cure $\vec{r}(t) = t\vec{i} + \cos t\vec{j} + \vec{k}$, for $0 \le t \le \pi/2$.
- 10. (10 pts each) For the integral

$$\int_{-1}^{2} \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} \, dy \, dx \, dz$$

- (a) Sketch the solid of integration.
- (b) Evaluate the integral.

11. (10 pts) Find the volume of the solid with boundaries $z = \sqrt{x^2 + y^2}$, $x^2 + y^2 = 4$, $x^2 + y^2 = 9$, and z = 0.

- 12. (10 pts) Name and sketch the quadratic surface $x^2 4y^2 9z^2 = 36$.
- 13. (15 pts) Show that the vector field $\vec{F}(x, y, z) = 2xy\vec{i} + (x^2 + \sin z)\vec{j} + (y\cos z + 2)\vec{k}$ is conservative, and find its potential function.
- 14. (10 pts) Use Green's Theorem to find the area enclosed by the curve $x = \cos t$, $y = \sin t \cos t$, for $-\pi \le t \le \pi$.

do it by yourself

2v - z = 2

- a section of a cylinder
- change to cylindrical, $\frac{3\pi}{4}(e-1)$