Name: \qquad
\qquad
Show All Work
Row \#: \qquad

1. (10 pts) Find the equation of the plane that passes through the three points $(0,3,0)$, $(0,2,1)$, and $(-3,0,4)$.

$$
-x-3 y+9-3 z=0
$$

2. (10 pts) Find an equation for the plane containing the line in the $x y$-plane defined by $y=3 x+1$, and the point $(1,0,3) . \quad-\mathbf{3 x}-\mathbf{1}+\mathbf{y}+\frac{4 \mathbf{z}}{\mathbf{3}}=\mathbf{0}$
3. (10 pts each) Identify the surfaces of the following equations. Sketch the surfaces and give their appropriate names:
(a) $x^{2}-y^{2}+z=1$. hyperbolic paraboloid (shifted one unit in z direction)
(b) $x=y^{2}+z^{2}$. elliptic paraboloid (open to the positive x direction)
(c) $x^{2}-y^{2}+z^{2}=0$.
(d) $x^{2}-y^{2}-z^{2}=1 . \quad$ elliptic hyperboloid with two sheets (open to the x direction)
(e) $2 x+3 y+z=6$.
plane
4. (10 pts) Describe in your own words why we want to consider level curves or contour diagrams. Use the function $f(x, y)=y-x^{2}$ to illustrate your points.
5. (10 pts) Decompose the vector $\vec{b}=[2,3,-1]$ into a sum $\vec{b}_{1}+\vec{b}_{2}$, where \vec{b}_{1} is parallel to $\vec{a}=[0,4,2]$ and \vec{b}_{2} is orthogonal to $\vec{a} . \quad \overrightarrow{\mathbf{b}}_{\mathbf{1}}=\left[\mathbf{0}, \frac{\mathbf{5 6}}{\mathbf{2 0}}, \frac{\mathbf{2 8}}{\mathbf{2 0}}\right], \overrightarrow{\mathbf{b}}_{\mathbf{2}}=\left[\mathbf{2}, \frac{\mathbf{4}}{\mathbf{2 0}}, \frac{\mathbf{8}}{\mathbf{2 0}}\right]$
6. (10 pts) Calculate the angle $B A C$ at vertex A of the triangle with vertices $A=$ $(2,2,2), B=(4,2,1)$, and $C=(2,3,1)$. $\arccos \frac{1}{\sqrt{10}}$
