Name: \qquad
February 21, 1997
Show All Work

SS \#: \qquad
Row \#: \qquad

1. (8 pts each) Find the derivatives. (No need to simplify your answers.)
(a) $\frac{\partial g}{\partial x}$ where $g(x, y)=\ln \left(y e^{x y}\right)$. $\quad y$
(b) $\frac{\partial z}{\partial v}$ where $z=\sin \left(x+y^{2}\right), x=u^{2}+v^{2}$ and $y=u v \cdot \cos \left(\mathbf{u}^{2}+\mathbf{v}^{2}+\mathbf{u}^{2} \mathbf{v}^{\mathbf{2}}\right)\left(\mathbf{2} \mathbf{v}+\mathbf{2} \mathbf{u}^{\mathbf{2}} \mathbf{v}\right)$
(c) $\frac{d z}{d t}$ where $z=(x+y) e^{y}, x=\ln t$ and $y=\frac{1}{t^{2}}$. $\left(\mathbf{t}^{-\mathbf{1}}-\frac{\mathbf{2}}{\mathrm{t}^{3}}\right) \mathbf{e}^{\mathbf{t}^{-\mathbf{2}}}-\left(\mathbf{2} \ln (\mathbf{t})+\frac{\mathbf{2}}{\mathbf{t}^{2}}\right) \mathbf{e}^{\mathbf{t}^{-\mathbf{2}} \mathbf{t}^{-\mathbf{3}}}$
(d) $\frac{\partial^{2} z}{\partial x \partial y}$ where $z=\tan ^{-1}\left(\frac{x}{y}\right) . \quad-\mathbf{y}^{-2}\left(\mathbf{1}+\frac{\mathbf{x}^{2}}{\mathbf{y}^{2}}\right)^{-1}+\mathbf{2} \mathbf{x}^{2} \mathbf{y}^{-4}\left(\mathbf{1}+\frac{\mathbf{x}^{2}}{\mathrm{y}^{2}}\right)^{-2}$
(e) $\frac{d y}{d x}$ where $\sin (x y)+x y^{2}=3$.
$-\frac{\cos (\mathbf{x y}) \mathbf{y}+\mathbf{y}^{2}}{\cos (\mathbf{x y}) \mathbf{x}+\mathbf{2 x y}}$
2. Given the function $f(x, y)=x^{2}-y^{3}$,
(a) (10 pts) Find the directional derivative at the point $(1,2)$ in the direction making an angle $\theta=\frac{2 \pi}{3}$ with the x-axis. $\quad \overrightarrow{\mathbf{u}}=\left\langle-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle, \quad \mathbf{D}_{\overrightarrow{\mathbf{u}}} \mathbf{f}(\mathbf{1}, \mathbf{2})=-\mathbf{1}-\mathbf{2} \sqrt{\mathbf{3}}$
(b) (5 pts) Find the largest directional derivative.
3. Given two planes $2 x-3 y+5 z=2$ and $4 x+y-3 z=7$,
(a) (5 pts) Explain why these two planes intersect.

Planes are not parallel because their normals are not.
(b) (5 pts) Find a vector parallel to the intersection of the two planes.
(c) $(5 \mathrm{pts})$ Find the equation of the plane that passes through the point $(1,2,-1)$ and is perpendicular to the line of the intersection of the planes. $\mathbf{2}(\mathrm{x}-\mathbf{1})+\mathbf{1 3}(\mathrm{y}-$ 2) $+7(\mathrm{z}+1)=0$
4. Given the points $P=(0,1,0), Q=(-1,1,2), R=(2,1,-1)$, find
(a) $(10 \mathrm{pts})$ The area of the triangle $P Q R$.
(b) (10 pts) The equation for a plane that contains P, Q, and R.
$\mathrm{y}-1=\mathbf{0}$
5. (10 pts) Find an equation of the tangent plane to the surface $z=\frac{1}{2}\left(x^{2}+4 y^{2}\right)$ at the point (2, 1, 4).

$$
\mathrm{z}=4+2(\mathrm{x}-2)+4(\mathrm{y}-1)
$$

