MA 242	Test $\# 2$	Name:
February 21, 1997		SS #:
Show All Work		Row #:

- 1. (8 pts each) Find the derivatives. (No need to simplify your answers.)
 - (a) $\frac{\partial g}{\partial x}$ where $g(x, y) = \ln(ye^{xy})$. У (b) $\frac{\partial z}{\partial v}$ where $z = \sin(x+y^2)$, $x = u^2 + v^2$ and y = uv. $\cos(\mathbf{u^2 + v^2 + u^2v^2}) (\mathbf{2v + 2u^2v})$
 - (c) $\frac{dz}{dt}$ where $z = (x+y)e^y$, $x = \ln t$ and $y = \frac{1}{t^2}$. $\left(\mathbf{t^{-1}} \frac{2}{t^3}\right) \mathbf{e^{t^{-2}}} \left(2 \ln(\mathbf{t}) + \frac{2}{t^2}\right) \mathbf{e^{t^{-2}}t^{-3}}$
 - $-y^{-2} \left(1+\tfrac{x^2}{y^2}\right)^{-1} + 2\,x^2 y^{-4} \left(1+\tfrac{x^2}{y^2}\right)^{-2}$ (d) $\frac{\partial^2 z}{\partial x \partial y}$ where $z = \tan^{-1}(\frac{x}{y})$. $-\frac{\cos{(\mathbf{x}\mathbf{y})\mathbf{y}+\mathbf{y}^2}}{\cos{(\mathbf{x}\mathbf{y})\mathbf{x}+2\mathbf{x}\mathbf{y}}}$ (e) $\frac{dy}{dx}$ where $\sin(xy) + xy^2 = 3$.
- 2. Given the function $f(x, y) = x^2 y^3$,
 - (a) (10 pts) Find the directional derivative at the point (1, 2) in the direction making an angle $\theta = \frac{2\pi}{3}$ with the *x*-axis. $ec{\mathbf{u}}=\langle -rac{\mathbf{1}}{2},rac{\sqrt{3}}{2}
 angle, \ \ \mathbf{D}_{ec{\mathbf{u}}}\mathbf{f}(\mathbf{1},\mathbf{2})=-\mathbf{1}-2\sqrt{3}$ $\sqrt{20}$
 - (b) (5 pts) Find the largest directional derivative.
- 3. Given two planes 2x 3y + 5z = 2 and 4x + y 3z = 7,
 - (a) (5 pts) Explain why these two planes intersect. Planes are not parallel because their normals are not.
 - (b) (5 pts) Find a vector parallel to the intersection of the two planes. (4, 26, 14)
 - (c) (5 pts) Find the equation of the plane that passes through the point (1, 2, -1) and is perpendicular to the line of the intersection of the planes. 2(x-1) + 13(y -(2) + 7(z + 1) = 0
- 4. Given the points P = (0, 1, 0), Q = (-1, 1, 2), R = (2, 1, -1), find
 - (a) (10 pts) The area of the triangle PQR.
 - (b) (10 pts) The equation for a plane that contains P, Q, and R. y - 1 = 0

 $\frac{\sqrt{9}}{2}$

5. (10 pts) Find an equation of the tangent plane to the surface $z = \frac{1}{2}(x^2 + 4y^2)$ at the z = 4 + 2(x - 2) + 4(y - 1)point (2, 1, 4).