$\qquad$
$\qquad$
$\qquad$

1. (10 pts each) For the function $f(x, y)=x^{2}+y^{4}-y^{2}-2 x y$,
(a) Find all the critical points.
$(\mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}),(-\mathbf{1},-\mathbf{1})$.
(b) Classify properties of these critical points.
$(\mathbf{0}, \mathbf{0})$ is a saddle point; the other two are maximizers.
2. (10 pts each) Concerning the objective function $f(x, y)=x^{2}+y$ with $x, y$ satisfying the constraint $x^{2}-y^{2}=1$,
(a) Use Lagrange multipliers to find all the critical points.

$$
\left(\frac{\sqrt{5}}{2},-\frac{1}{2}\right),\left(-\frac{\sqrt{5}}{2},-\frac{1}{2}\right) \text { with } \lambda=1
$$

(b) Use level curves of $f$ to identify the maximizer(s) and the minimizer(s) of $f$ on the constraint.

As levels are increasing when curves moves upward, these two points are minimizers.
3. Consider the three-sided pyramid whose base is the $x y$-plane and whose three sides are the vertical plans $y=0$, and $y-x=4$ and the slanted plane $2 x+y+z=4$.
(a) (10 pts) Sketch the solid. Identify the edges. Done in class. Problem \#21 on page 243.
(b) (10 pts) Set up the integral for the volume of the pyramid.

$$
\int_{0}^{4} \int_{y-4}^{(4-y) / 2} 4-2 x-y d x d y
$$

(c) $(5 \mathrm{pts})$ Evaluate the volume.
4. Perform the following tasks as required:
(a) (10 pts) Evaluate $\int_{0}^{3} \int_{y^{2}}^{9} y \sin x^{2} d x d y$ by reversing the order of integration.

$$
\int_{0}^{3} \int_{0}^{\sqrt{x}} y \sin x^{2} d y d x=\frac{1-\cos 81}{4}
$$

(b) (10 pts) Sketch the region of integration for the triple integral

$$
\int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{0} \int_{\sqrt{x^{2}+y^{2}}}^{3} f(x, y, z) d z d y d x
$$

5. An ice cream cone con be modeled by the region bounded by the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
(a) (10 pts) Set up the integral for the volume in polar coordinates.
(b) (5 pts) Find its volume.

$$
\begin{array}{r}
\int_{0}^{2 \pi} \int_{0}^{2}\left(\sqrt{8-r^{2}}-r\right) r d r d \theta \\
\frac{32}{3}(\sqrt{2}-1) \pi
\end{array}
$$

