1. (The distance to the nearest singular matrix) Let P denote the set of singular matrices in $R^{n \times n}$. Let A be a fixed nonsingular matrix. Let $\|\cdot\|$ denote an arbitrary vector norm and $\|A\|$ the induced matrix norm. Follow the procedures below to show that the minimum distance from the matrix A to the set P is given by

$$
\begin{equation*}
\operatorname{dist}(A, P)=\left\|A^{-1}\right\|^{-1} \tag{1}
\end{equation*}
$$

(a) Let B be a singular matrix. Show that

$$
\begin{equation*}
\|A-B\| \geq\left\|A^{-1}\right\|^{-1} \tag{2}
\end{equation*}
$$

(b) Introducing the dual norm:

$$
\begin{equation*}
\left\|y^{T}\right\|_{D}:=\sup _{x \neq 0} \frac{y^{T} x}{\|x\|} \tag{3}
\end{equation*}
$$

show that there exist vectors x and y such that

$$
\begin{equation*}
\|x\|=\left\|y^{T}\right\|_{D}=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{T} A^{-1} x=\left\|A^{-1}\right\| \tag{5}
\end{equation*}
$$

(c) Define

$$
\begin{equation*}
\delta A:=-\left\|A^{-1}\right\|^{-1} x y^{T} \tag{6}
\end{equation*}
$$

Show that $A+\delta A$ is singular and that $\|\delta A\|=\left\|A^{-1}\right\|^{-1}$.
2. (Backward error analysis for triangular systems)
(a) Show that if a lower triangular system

$$
\begin{equation*}
L x=b \tag{7}
\end{equation*}
$$

is solved in floating-arithmetic, then there exists a lower triangular matrix δL such that the computed solution \bar{x} satisfies the system

$$
\begin{equation*}
(L+\delta L) \bar{x}=b . \tag{8}
\end{equation*}
$$

(b) Give an estimate of $\|\delta L\|$.
3. (Matrix inversion by rank annihilation)
(a) Let u and v be column vectors and A a nonsingular matrix. Verify that

$$
\begin{equation*}
\left(A+u v^{T}\right)^{-1}=A^{-1}-\frac{\left(A^{-1} u\right)\left(v^{T} A^{-1}\right)}{1+v^{T} A^{-1} u} \tag{9}
\end{equation*}
$$

(b) Let

$$
\begin{equation*}
B=D+\sum_{i=1}^{m} u_{i} v_{i}^{T} \tag{10}
\end{equation*}
$$

where D is a nonsingular diagonal matrix. Define

$$
\begin{equation*}
C_{k}:=\left(\sum_{i=1}^{k} u_{I} v_{i}^{T}+D\right)^{-1} . \tag{11}
\end{equation*}
$$

Use the results from part(a) to prove that

$$
\begin{equation*}
C_{k+1}=C_{k}-\frac{\left(C_{k} u_{k+1}\right)\left(v_{k+1}^{T} C_{k}\right)}{1+v_{k+1}^{T} C k u_{k+1}} \tag{12}
\end{equation*}
$$

(c) Use the result of part(b) to deduce an algorithm for calculating B^{-1} with B as given in (10).

