1.) Let A be an invertible real $n \times n$ matrix. Given $b \in R^{n}$, let x be the exact solution of the linear system $A x=b$. Assume this system is also solved by Gaussian elimination ($L U$-decomposition) with finite precision arithmetic which gives an approximate solution \bar{x}. Let $r=A \bar{x}-b$. Let C be an approximation to the inverse of A and assume that $\delta=\|I-C A\|<1$. Here, $\|\cdot\|$ denotes a vector norm on R^{n} and the associated induced matrix norm.
(a.) Prove that

$$
\frac{\|C r\|}{1+\delta} \leq\|x-\bar{x}\| \leq \frac{\|C r\|}{1-\delta}
$$

(b.) Show that if the factors of the $L U$-decomposition of A are available, then computing $C r$ requires $O\left(n^{2}\right)$ multiplications.
2.) Consider the iterative method

$$
\begin{equation*}
u^{(n+1)}=G u^{(n)}+y \tag{1}
\end{equation*}
$$

and the related iterative method

$$
\begin{equation*}
u^{(n+1)}=\gamma\left[G u^{(n)}+y\right]+(1-\gamma) u^{(n)} \tag{2}
\end{equation*}
$$

for the solution of a linear system $A x=b$. Assume that the iteration matrix G is symmetric and that its eigenvalues satisfy

$$
\begin{equation*}
-c=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \leq 0 \tag{3}
\end{equation*}
$$

for some positive constant c.
(a.) For what values of c will the method (1) converge to the solution of the linear system?
(b.) Determine values of γ for which method (2) converges to the solution of the system for all values of $c>0$.
(c.) Determine γ^{*}, the optimal value of γ for which method (2) has the highest rate of convergence.
(d.) Using the value of γ^{*} found above in method (2) compare the rates of convergence of the two methods assuming that the constant c is such that both methods will converge.
3.) Let A be the real $n \times n$ matrix

$$
A=\left(\begin{array}{rrrrrr}
4 & -1 & & & & \\
-1 & 4 & -1 & & & \\
& -1 & 4 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 4 & -1 \\
& & & & -1 & 4
\end{array}\right)
$$

(a.) Find an upper bound on $K_{2}(A)$, the condition number of A with respect to the matrix norm induced by the Euclidean vector norm.
(b.) Let J denote the iteration matrix in the Jacobi iterative method for solving the linear system $A x=b$. Find an upper bound for the spectral radius of J which shows $\rho(J)<1$, and hence the Jacobi method will converge.
(c.) Determine the least number of Jacobi iterations so that the error of any initial geuss will be reduced by a factor of 10^{-5}. Compute the total amount of multiplications required by this number of Jacobi iterations for the solution of $A x=b$.
(d.) With respect to work and error, compare the Jacobi iterative method to Gaussian elimination for the solution of the tridiagonal system $A x=b$.

