Answer at least one of the first two questions and a total of 4 problems.

1. Let A be a real $n \times n$ matrix.
(a) Show that A is symmetric and positive definite if and only if there exists a nonsingular lower triangular matrix L such that

$$
A=L L^{T}
$$

(b) Show that if the diagonal elements of L are taken to be positive, then the matrix L is unique.
(c) Assume that the components of $A=\left(a_{i j}\right)$ satisfy $\left|a_{i j}\right| \leq 8$ for $i, j=1, \ldots, n$. Show that the components of $L=\left(l_{i j}\right)$ satisfy $\left|l_{i j}\right| \leq 4$.
2. (a) Define what is meant by floating-point arithmetic.
(b) Show that if a lower triangular system

$$
L x=b
$$

is solved in floating-point arithmetic, then there exists a lower triangular matrix δL such that the computed solution \bar{x} sat isfies the system

$$
(L+\delta L) \bar{x}=b .
$$

(c) Give an estimate of $\|\delta L\|$. (You may choose any norm you want.)
3. Let A be the real $n \times n$ matrix

$$
A=\left(\begin{array}{rrrrrr}
4 & -1 & & & & \\
-1 & 4 & -1 & & & \\
& -1 & 4 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 4 & -1 \\
& & & & -1 & 4
\end{array}\right)
$$

(a) State and prove any form of Gerschgorin Circle Theorem which defines a set that contains all the eigenvalues of a matrix.
(b) Using the Gerschgorin Circle Theorem, determine bounds on the spectrum of A and an upper bound on $K_{2}(A)$, the condition number of A with respect to the matrix norm induced by the Euclidean vector norm.
(c) Is this a well-conditioned matrix ? Give specific reasons to support your answer.
(d) Which of the following methods will converge to the solution of the linear system $A x=b$ for any arbitrary initial guess: Jacobi, Gauss-Seidel, SOR, Conjugate Gradient method. Give reasons to support your answers.
4. Solve the eigenvalue problem for tridiagonal matrix

$$
A=\left(\begin{array}{rrrrrr}
a & b & & & & \\
c & a & b & & & \\
& c & a & b & & \\
& & \ddots & \ddots & \ddots & \\
& & & c & a & b \\
& & & & c & a
\end{array}\right), b c>0
$$

according to the following steps:
(a) Assuming $v_{0}=v_{n+1}=0$, show that the eigenvalue problem $A v=\lambda v$ with $v=\left[v_{1}, \ldots, v_{n}\right]^{T}$ is equivalent to solving the finite difference equations

$$
c v_{j-1}+(a-\lambda) v_{j}+b v_{j+1}=0
$$

for $j=1, \ldots, n$.
(b) Assuming $v_{j}=m^{j}$, show that m solves the quadratic equation

$$
\begin{equation*}
b m^{2}+(a-\lambda) m+c=0 \tag{1}
\end{equation*}
$$

(c) Let m_{1} and m_{2} denote the distinct roots of (1). Then by principle of superposition, it follows that $v_{j}=\alpha m_{1}^{j}+\beta m_{2}^{j}$ for some constants α and β. Using the fact that $v_{0}=v_{n+1}=0$, show that $m_{1}=\left(\frac{c}{b}\right)^{1 / 2} \exp \left(\frac{s \pi i}{n+1}\right)$ and $m_{2}=\left(\frac{c}{b}\right)^{1 / 2} \exp \left(\frac{-s \pi i}{n+1}\right)$ for $s=1, \ldots, n$.
(d) Show that the eigenvalues of A are given by

$$
\lambda_{s}=a+2 \sqrt{b c} \cos \left(\frac{s \pi}{n+1}\right)
$$

5. In the following, P is a real $n \times n$ matrix while w and y are vectors in R^{n}.
(a) Suppose P is of the form

$$
\begin{equation*}
P=I-\alpha w w^{T} \tag{2}
\end{equation*}
$$

where w is a unit vector $\left(w^{T} w=1\right)$. Determine the value of α so that P is an orthogonal matrix.
(b) Given a vector y, determine the vector w and the value of k in order to have

$$
P y=(k, 0,0, \ldots, 0)^{T}
$$

where P is an orthogonal matrix of the form (2).
(c) Describe an algorithm that uses the above transformation to solve a linear system of equations $A x=b$.
6. Consider the iterative method

$$
\begin{equation*}
u^{(n+1)}=G u^{(n)}+y \tag{3}
\end{equation*}
$$

and the related iterative method

$$
\begin{equation*}
u^{(n+1)}=\gamma\left[G u^{(n)}+y\right]+(1-\gamma) u^{(n)} \tag{4}
\end{equation*}
$$

for the solution of a linear system $A x=b$. Assume that the iteration matrix G is symmetric and that its eigenvalues satisfy

$$
-c=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \leq 0
$$

for some positive constant c.
(a) For what values of c will the method (3) converge to the solution of the linear system?
(b) Determine values of γ for which method (4) converges to the solution of the system for all values of $c>0$.
(c) Determine γ^{*}, the optimal value of γ for which method (4) has the highest rate of convergence.
(d) Using the value of γ^{*} found above in method (4) compare the rates of convergence of the two methods assuming that the constant c is such that both methods will converge.
7. Consider the least squares approximation of a given real $n \times n$ matrix A by a multiple of a symmetric matrix of rank one. That is,

$$
\begin{align*}
\text { Minimize } & f(x, c)=\left\|A-c x x^{T}\right\|^{2} \\
\text { subject to } & x \in R^{n}, x^{T} x=1 \text { and } c \in R \tag{5}
\end{align*}
$$

where $\|\cdot\|$ means the Frobenius norm

$$
\|A\|=\left(\sum_{i, j} a_{i j}^{2}\right)^{1 / 2}
$$

(a) Using the fact that the inner product $\langle A, B\rangle=\operatorname{trace}\left(A B^{T}\right)$ generates the Frobenius norm, show that for a given normalized x, the objective function $f(x, \cdot)$ is minimized by $c=<A, x x^{T}>$.
(b) Show that the least squares problem (5) is equivalent to

$$
\begin{array}{cl}
\text { Maximize } & g(x)=\left|<A, x x^{T}>\right| \\
\text { subject to } & x \in R^{n} \text { and } x^{T} x=1
\end{array}
$$

(c) Show that if A is symmetric and positive definite, then the optimal solution is that $c^{*}=$ the largest eigenvalue of A, and $x^{*}=$ the normalized eigenvector corresponding to c^{*}.
8. Consider the two-point boundary value problem

$$
\begin{align*}
-\left(K(x, u) u_{x}\right)_{x} & =f(x) \\
u(0) & =0=u(1) \tag{6}
\end{align*}
$$

(a) State a finite difference method for solving (6).
(b) State Newton's method for the problem in (a). Be sure to explicitly state the Jacobian.
(c) Let $F: R^{n} \longrightarrow R^{n}$ and $F\left(x^{*}\right)=0$. Assume that F is continuously differentiable in a neighborhood of x^{*} and that $F^{\prime}\left(x^{*}\right)$ is nonsingular. Prove that Newton's method converges if the starting point is sufficiently close to x^{*}.

