
Part A Exam Numerical Analysis January 6 1993

Important: There are three categories of problems. Answer one and only one problem from
each category.

A1. Let A be an invertible real n × n matrix. Given b ∈ Rn, let x be the exact solution of the linear
system Ax = b. Assume this system is also solved by Gaussian elimination (LU -decomposition) with
finite-precision arithmetic which gives an approximate solution x̄. Let r = Ax̄ − b. Let C be an
approximation to the inverse of A and assume that δ = ‖I − CA‖ < 1. Here, ‖ · ‖ denotes a vector
norm on Rn and the associated induced matrix norm.

(a) Prove that
‖Cr‖
1 + δ

≤ ‖x− x̄‖ ≤ ‖Cr‖
1− δ

.

(b) Show that if the factors of the LU -decomposition of A are available, then computing Cr requires
O(n2) multiplications.

A2. Consider the following situation:

(a) Find the LU -decomposition of the matrix

A =


1 2 3 4
1 4 9 16
1 8 27 64
1 16 81 256

 .

and use this decomposition to solve the system of equation Ax = b with b = [3, 1,−15,−107]T .

(b) Suppose we want to solve a linear system of equations, but after having computed the LU -
decomposition, we discover that one column in the original matrix is wrong. How can the
decomposition nevertheless be used to find the correct solution? Formulate a corresponding
algorithm.

(c) Apply your algorithm to the above linear system where the first column of A is to be replaced
by [0, 0, 6, 36]T .

B1. Given A ∈ Rm×n, let A = UΣV T denote the singular value decomposition of A. Then A+ := V Σ̃UT

is known as the pseudo-inverse of A where Σ̃ := [τµδµν ] ∈ Rn×m and

τµ :=
{

σ−1
µ , if σµ 6= 0

0, if σµ = 0

is known as the pseudo-inverse of A.

(a) Compute a singular value decomposition for the matrix

A =

 1 1√
2 0

0
√

2

 .

(b) Let A = [a11, a12] ∈ R1×2. Compute A+.

(c) Let A ∈ Rm×n. Show:
A+ = (AT A)+AT = AT (AAT )+.



B2. Suppose y is defined by the formula

y =

√
z +

√
z +

√
z + . . .

for z ∈ R+.

(a) Find an iterative method for computing the number y.
(b) Determine for which choices of the starting values the iteration will converge. Justify your

answers.
(c) Compute y.

B3. Let A be an n×n symmetric and positive definite matrix whose eigenvalues all lie in the sets (.1, .2),
(2.9, 3.1), and (99.9, 100). Give an estimate on the number of conjugate gradient iterations k needed
so that

‖xk −A−1b‖ ≤ .1‖x0 −A−1b‖.
Justify your estimate.

C1. A matrix with the property that the sums of the absolute values of the entries in each row are equal
is called row-equilibrated.

(a) Show that every nonsingular matrix can be transformed into a row-equilibrated matrix by pre-
multiplying by a diagonal matrix.

(b) Show that if A is a row-equilibrated matrix, then

cond∞(A) ≤ cond∞(DA)

for every nonsingular diagonal matrix D; i.e., equilibration improved the condition of the matrix.
(c) Let A(r) be the 1 × 1 matrix {r}. For r 6= 0 let k(r) denote the condition number of A(r) (in

any norm). Compute dk(r)/dr for r 6= 0.

C2. Assume A is a real symmetric N × N matrix with eigenvectors x1, x2, ..., xN with corresponding
eigenvalues λ1, λ2, ..., λN and that the eigenvalues satisfy

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λN |.

Starting with an initial guess q(0) for which ‖q(0)‖2 = 1, we define the sequence {q(j)}j≥0 by

q(j+1) =
1

Cj+1
Aq(j)

where the scale factors Cj are chosen so that ‖q(j)‖2 = 1.

(a) Prove that the vectors q(j) converge as j →∞ to a certain multiple of the eigenvector x1 of the
matrix A.

(b) Suppose we also define a sequence of scalars {µj}j≥0 by the Raleigh quotient

µj =
q(j)T Aq(j)

q(j)T q(j)
.

Show that the scalars µj converge as j → ∞ to the eigenvalue λ1. Also show that the rate of
convergence of the scalars µj to the eigenvalue λ1 is in general twice as fast as the convergence
of the vectors q(j) to a multiple of x1.

C3. Let A be an n×n symmetric and positive definite matrix with exactly m distinct eigenvalues. (n ≥ m,
obviously!) Show that the conjugate gradient method will find a solution to Ax = b in at most m
iterations.


