Direction: There are two categories of problems. Do three problems, taking at least one from each category.

A1. Concerning the Gaussian elimination method for solving $A x=b$,
(a) Prove that if A is a positive definite matrix, then after a step of Gaussian elimination the reduced matrix A_{1} in $A \rightarrow\left(\begin{array}{cc}a_{11} & \star \\ 0 & A_{1}\end{array}\right)$ must be positive definite.
(b) Prove that if A is strictly column diagonally dominant, i.e., for each k,

$$
\left|a_{k k}\right|>\sum_{j \neq k}\left|a_{j k}\right|
$$

then no row interchanges need to take place.
A2. Suppose A is a symmetric positive definite $N \times N$ matrix and $b \in R^{N}$.
(a) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be the CG and the GMRES iterates, respectively, for the solution of $A x=b$ with $x_{0}=0$. Is $x_{n}=y_{n}$ for all n ? Why or why not?
(b) Give conditions on the eigenvalues of A that guarantee that the iteration

$$
x_{n+1}=x_{n}-\left(b-A x_{n}\right) / 3
$$

will converge to $A^{-1} b$.
(c) Show that the the iteration

$$
x_{n+1}=x_{n}-h\left(b-A x_{n+1}\right)
$$

converges for all $h>0$ and compute the limit.
A3. Concerning the eigenvalue computation,
(a) Compute one $Q R$ step in the $Q R$ algorithm for the matrix

$$
A=\left[\begin{array}{ll}
2 & \epsilon \\
\epsilon & 1
\end{array}\right]
$$

with shift constant $\mu=1$ and without shift at all. Comparing the two resulting isospectral matrices, the one with shift $\mu=1$ is closer to a diagonal matrix. Explain why?
(b) Let A be a real $n \times n$ symmetric matrix. For any nonzero $x \in R^{n}$, the Rayleigh quotient $\rho(x)$ of x is defined to be

$$
\rho(x):=\frac{\langle A x, x\rangle}{\langle x, x\rangle}
$$

where $\langle\cdot, \cdot\rangle$ denote the usual Euclidean inner product in R^{n}. It is easy to see that the Rayleigh quotient evaluated at an eigenvector is exactly the corresponding eigenvalue. Show that, however, if a given x is an $O(\epsilon)$ approximation to an eigenvector, the $\rho(x)$ is an $O\left(\epsilon^{2}\right)$ approximation to the corresponding eigenvalue.

B1. Consider the numerical integration of a smooth function $f(x)$ over a finite interval $[a, b]$.
(a) Describe how a general Newton-Cotes quadrature can be formulated from the n-th degree Lagrange interpolating polynomial P_{n} of f.
(b) For $n=1$ and 2 , describe explicitly the Newton-Cotes quadratures. What is the respective degree of precision of these formulas?
(c) Discuss the fundamental difference between the Newton-Cotes quadrature and the Gaussian quadrature.
B2. Concerning the Fast Fourier Transform,
(a) Suppose entries of $x=\left[x_{0}, x_{1}, \ldots, x_{N-1}\right]^{T}$ represent discrete samples of a continuous function $f(t)$ at points $t_{k}=2 \pi k / N, k=0,1, \ldots, N-1$. What is the connection between the trigonometric interpolation of f at $\left(t_{k}, x_{k}\right), k=0,1, \ldots, N-1$ and the discrete Fourier transform $y=F_{N} x$ where $F_{N}=\left[f_{p q}\right]$ is the Frobenius matrix with

$$
\begin{aligned}
f_{p q} & :=\omega_{N}^{p q} \\
\omega_{N} & :=e^{-2 \pi i / N}
\end{aligned}
$$

and $i=\sqrt{-1}$?
(b) Use the example $N=16$ to explain how the radix- 2 splitting idea can be employed to speed up the calculation of the product $y=F_{16} x$.
B3. Concerning the Runge-Kutta methods for ordinary differential equations,
(a) From a Butcher array

where

$$
\begin{aligned}
a & =\left[a_{1}, a_{2}, \ldots, a_{s}\right]^{T} \\
c & =\left[c_{1}, c_{2}, \ldots, c_{s}\right]^{T} \\
B & =\left[b_{i j}\right] \in R^{r \times r}
\end{aligned}
$$

describe how a general s-stage Runge-Kutta method is complete specified.
(b) Find conditions for a generic 2-stage explicit Runge-Kutta method to be of order two. Determine all such methods.
(c) What can you say about the stability of these methods?

