
Numerical Analysis, August 1997

Direction: There are two categories of problems. Do three problems,
taking at least one from each category.

A1. Concerning the Gaussian elimination method for solving Ax = b,
(a) Prove that if A is a positive definite matrix, then after a step of Gaussian

elimination the reduced matrix A1 in A →
(

a11 ?
0 A1

)
must be positive

definite.
(b) Prove that if A is strictly column diagonally dominant, i.e., for each k,

|akk| >
∑
j 6=k

|ajk|,

then no row interchanges need to take place.
A2. Suppose A is a symmetric positive definite N ×N matrix and b ∈ RN .

(a) Let {xn} and {yn} be the CG and the GMRES iterates, respectively, for
the solution of Ax = b with x0 = 0. Is xn = yn for all n? Why or why
not?

(b) Give conditions on the eigenvalues of A that guarantee that the iteration

xn+1 = xn − (b−Axn)/3

will converge to A−1b.
(c) Show that the the iteration

xn+1 = xn − h(b−Axn+1)

converges for all h > 0 and compute the limit.
A3. Concerning the eigenvalue computation,

(a) Compute one QR step in the QR algorithm for the matrix

A =
[

2 ε
ε 1

]
with shift constant µ = 1 and without shift at all. Comparing the two
resulting isospectral matrices, the one with shift µ = 1 is closer to a
diagonal matrix. Explain why?

(b) Let A be a real n × n symmetric matrix. For any nonzero x ∈ Rn, the
Rayleigh quotient ρ(x) of x is defined to be

ρ(x) :=
〈Ax, x〉
〈x, x〉

where 〈·, ·〉 denote the usual Euclidean inner product in Rn. It is easy to
see that the Rayleigh quotient evaluated at an eigenvector is exactly the
corresponding eigenvalue. Show that, however, if a given x is an O(ε)
approximation to an eigenvector, the ρ(x) is an O(ε2) approximation to
the corresponding eigenvalue.
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B1. Consider the numerical integration of a smooth function f(x) over a finite
interval [a, b].
(a) Describe how a general Newton-Cotes quadrature can be formulated

from the n-th degree Lagrange interpolating polynomial Pn of f .
(b) For n = 1 and 2, describe explicitly the Newton-Cotes quadratures.

What is the respective degree of precision of these formulas?
(c) Discuss the fundamental difference between the Newton-Cotes quadra-

ture and the Gaussian quadrature.
B2. Concerning the Fast Fourier Transform,

(a) Suppose entries of x = [x0, x1, . . . , xN−1]T represent discrete samples of
a continuous function f(t) at points tk = 2πk/N , k = 0, 1, . . . , N − 1.
What is the connection between the trigonometric interpolation of f at
(tk, xk), k = 0, 1, . . . , N − 1 and the discrete Fourier transform y = FNx
where FN = [fpq] is the Frobenius matrix with

fpq := ωpq
N

ωN := e−2πi/N

and i =
√
−1?

(b) Use the example N = 16 to explain how the radix-2 splitting idea can
be employed to speed up the calculation of the product y = F16x.

B3. Concerning the Runge-Kutta methods for ordinary differential equations,
(a) From a Butcher array

a B
cT

where

a = [a1, a2, . . . , as]T

c = [c1, c2, . . . , cs]T

B = [bij ] ∈ Rr×r

describe how a general s-stage Runge-Kutta method is complete speci-
fied.

(b) Find conditions for a generic 2-stage explicit Runge-Kutta method to be
of order two. Determine all such methods.

(c) What can you say about the stability of these methods?
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