Direction: There are three categories of problems. Answer one and only one problem from each category.

Category A

A1. 1. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and let $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Solve the least squares problem

$$\min_{x \in R^2} \|Ax - b\|_2.$$

2. Let $A_{\epsilon} = \begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix}$, $\epsilon > 0$ and b as above. Solve the least squares problem

$$\min_{x\in B^2} \|A_{\epsilon}x - b\|_2.$$

What happens when $\epsilon \to 0$? Compared with the previous problem, does your observation contradict any result seen before? Explain.

- 3. Explain briefly how to solve least square problems using the SVD. How would you deal numerically with the above "discontinuity", assuming for instance ϵ results from round-off errors?
- 4. Let $B = U\Sigma V^T$ denote the reduced SVD of a $m \times n$ matrix B. Suppose $\Sigma = diag(\sigma_1, \ldots, \sigma_n)$. Define $B_k = Udiag(\sigma_1, \ldots, \sigma_k, 0, \ldots, 0)V^T$ for $k \leq n$. What is the rank of B_k ? Show that $||B - B_k||_2 = \sigma_{k+1}$.
- A2. The following questions concern the eigenvalue computation:
 - 1. The matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 1 \\ 1.5 & 1 & 1.5 \\ 2 & 0.5 & 1.5 \end{array} \right]$$

has eigenvalue $\lambda = 4$ with corresponding eigenvector $x = [1, 1, 1]^T$. Construct a Householder matrix H such that

$$HAH^{T} = \begin{bmatrix} 4 & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix}$$

and determine the remaining eigenvalues.

- 2. Show that the Hessenberg form of a matrix is preserved by the QR algorithm.
- 3. Assume that B is a real symmetric $n \times n$ matrix with eigenvalue λ of multiplicity n-1 and a further eigenvalue $\mu \neq \lambda$. Show that $B = \lambda I + (\mu \lambda)xx^T$, where $x^Tx = 1$ and that by at most n-1 Jacobi transformations B becomes diagonal. (*Hint: Jacobi transformation refers to an orthogonal similarity transformation by plan rotations.*)

Category B

B1. The Laguerre polynomials $\{L_n(x)\}_{n=0}^{\infty}$ are orthogonal with the inner product

$$(f,g) = \int_0^\infty e^{-x} f(x)g(x) \, dx.$$

- 1. Given $L_0(x) \equiv 1$, find $L_1(x)$ and $L_2(x)$ (hint; $\int_0^\infty e^{-x} x^n dx = n!$).
- 2. Let f be a function defined on $[0,\infty)$. We seek an approximation of f of the form $p_n(x) = \sum_{k=0}^n a_k L_n(x)$ such that

$$\int_0^\infty e^{-x} (f(x) - p_n(x))^2 \, dx$$

is minimized. Describe the corresponding normal equations and solve them, i.e., give the expression of the coefficients a_k , k = 0, ..., n. (The function f is supposed to be such that all the above integrals make sense).

- 3. We want to approximate $\int_0^\infty e^{-x} f(x) dx$ using Gaussian quadrature. We ask for the cases $f(x) = 1, x, x^2$ and x^3 to be integrated exactly. Set up the equations for the nodes and weights. Solve those equations. Hint: the nodes are closely related to the roots of one of the $L_n(x)$'s.
- 4. Comment on the numerical merits, or the lack thereof, of the two previous approximations methods.
- B2. The following questions concern iterative methods for nonlinear systems:
 - 1. Show that

$$x_{n+1} := \frac{x_n(x_n^2 + 3a)}{3x_n^2 + a}, \quad n = 0, 1, \dots$$

is a method of order three for computing the square root of a positive number a.

2. Show that for a nonsingular $n \times n$ matrix A the sequence

$$A_{n+1} := A_n [2I - AA_n], \quad n = 0, 1, \dots$$

converges quadratically to the inverse A^{-1} , provided that $||I - AA_0|| < 1$.

3. The eigenvalue problem $Ax = \lambda x$ for an $n \times n$ matrix A is equivalent to the equation f(z) = 0, where $f: \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}^n \times \mathbb{R}$ is defined by

$$f: \left(\begin{array}{c} x\\ \lambda \end{array}\right) \longrightarrow \left(\begin{array}{c} Ax - \lambda x\\ x^T x - 1 \end{array}\right).$$

Write down Newton's method for this equation.

Category C

- C1. 1. Give the description of a general Runge-Kutta method.
 - 2. Give the description of a general explicit Runge-Kutta method.
 - 3. What is meant by A-stability?
 - 4. Are there any explicit A-stable explicit Runge-Kutta method? If yes, give one, if no, explain.
 - 5. Give an example of an A-stable method.
- **C2.** Let $u_1, \ldots, u_n \in C[a, b]$ be linearly independent and let $x_1, \ldots, x_n \in [a, b]$ be distinct. For given values $y_1, \ldots, y_n \in R$, consider the interpolation problem of finding a function $u \in \mathcal{U}_n := \operatorname{span}\{u_1, \ldots, u_n\}$ with the property

$$u(x_j) = y_j, \quad j = 1, \dots n.$$

- 1. Show that the following three properties are equivalent:
 - (a) The interpolation problem is uniquely solvable for each given set of values $y_1, \ldots, y_n \in R$.
 - (b) Each function $u \in \mathcal{U}_n$ with zeros $u(x_j) = 0$ for $j = 1, \ldots, n$ vanishes identically.
 - (c) The $n \times n$ matrix with entries $u_k(x_j)$ for j, k = 1, ..., n is nonsingular.
- 2. Excluding the standard basis of polynomials $1, x, x^2, \ldots$, give two distinct sets $\{u_1, \ldots, u_n\}$ of functions that have the above properties. Justify your answer.