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Take Home Message

I Finding how a given number is made up by prime numbers —
Arithmetic factorization.

8549054778584472648864899 = (23,631,3923,7901)(4,3,2,1).

I Finding how an observed data is composed of simple factors —
Matrix factorization.

Y = AF .
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Course Plan of This Module
(9 lessons)

1. Overview (1 lesson)
2. Basic Model (3 lessons)

• Homework

3. Singular Value Decomposition (2 lessons)
4. Computational Issues (1 lesson)

• Homework

5. Link Analysis (2 lessons)
• Project
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Information Retrieval

Data mining is about extracting interesting information from raw data.
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What constitutes “information"?

I Patterns of appearance.
I Association rules between sets of items.
I Clustering of the data points.
I Concepts or categories.
I Principal components or factors.
I . . .
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What should be counted as “interesting"?

I Confidence and support.
I Information content.
I Unexpectedness.
I Actionability — The ability to suggest concrete and profitable

decision-making.
I . . .
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Data Analysis

I An indispensable task in almost every discipline of science.
I Search for relationships between a set of externally caused and

internal variables.
I Especially important in this era of information and digital

technologies.
• Massive amounts of data are generated at almost all levels of

applications.
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Inexact Data

I Data are collected from complex phenomena.
I Represent the integrated result of several interrelated variables.
I Variables are often less precisely defined.
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Goal

I Interpretation.
• Distinguish which variable is related to which and how the variables

are related.
I Simplification.

• Reduce the complexity and dimensionality.
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EPA Date on Air Pollution

1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Carbon Monoxide 129444 116756 117434 117013 106438 99119 101797 99307 99790 103713 94057 101294 101459 96872 97441
Lead 221 160 74 23 5 5 4 4 4 4 4 4 4 4 4

Nitrogen Oxides 20928 22632 24384 23197 23892 24170 24338 24732 25115 25474 25052 26053 26353 26020 25393
Volatile Organic 30982 26080 26336 24428 22513 21052 21249 11862 21100 21682 20919 19464 19732 18614 18145

PM10 13165 7677 7109 41397 40963 27881 27486 27249 27502 28756 25931 25690 25900 26040 23679
Sulfur Dioxide 31161 28011 25906 23658 23294 23678 23045 22814 22475 21875 19188 18859 19366 19491 18867

PM2.5 7429 7317 7254 7654 7012 6909 7267 7065 6773 6773
Ammonia 4355 4412 4483 4553 4628 4662 4754 4851 4929 4963

Table: Annual pollutants estimates (in thousand short tons).

I Who should be blamed for emitting these pollutants?
I How much responsibility should each guilty party bear?
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Pixels on Irises

Figure: Intensity image of an iris

I Each iris is a 120× 160 pixel grey-scale matrix.
I Can any intrinsic parts that make up these poses be identified?
I Can individual’s biometric identification (fingerprint) be specified?
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Basic Techniques

I Factor analysis:
• Identify and test constructs, or factors, to explain the

interrelationships among variables.
• Each construct itself is a complex image, idea, or theory formed from

a number of simpler elements.

I Cluster analysis:
• Organize information about cases to form relatively homogenous

groups, or clusters.
• Group members should be highly internally homogenous and highly

externally heterogenous.

I Two sides of the same coin!
• Need a decision on how many factors/clusters to keep.
• Need a measurement of similarity or dissimilarity.
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Data Collection

I Making observation, gathering and pre-processing data :
• Let Y = [yij ] ∈ Rn×` denote the matrix of observed data.

• Assume ` entities and n variable.
• yij = standard score of entity j on variable i (raw scores are

normalized to have mean 0 and standard deviation 1).

I Correlation matrix of all n variables:

R :=
1
`

YY>. (1)
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Linear Model
I Assume that yij is a linearly weighted score of entity j on m

factors.
Y = AF . (2)

I A = [aik ] ∈ Rn×m (loading matrix).
• aik = the influence of factor k on variable i .

I F = [fkj ] ∈ Rm×` (scoring matrix).
• fkj = the response of entity j to factor k .



y1j
...

. . . yij . . .
...

ynj

=



a1k
...

ai1 . . . aik . . . aim
...

ank


︸ ︷︷ ︸

influence of factors



f1j
...

. . . fkj . . .
...

fmj




response to factors
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College Admission Criteria Analysis

I Y = grades of ` college students (entities) on n fixed subjects
(variables) at the end of their freshman year.



Subject/Student Akira Kaya Kenji Taji ...

Calculus 62 73 85 90
Chemistry 90 75 63 40

Physics 70 70 81 80
History 66 82 88 71 . . .

...
...

...


n×`
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Predictable Performance?

I Has the college selected students with the best potential?
• Academic performance may depend on a number of factors.

• What to be considered as admission criteria?
• Family social status, finance, high school GPA, cultural background,

and so on.

I Upon entering the college, students are asked to fill out
questionnaires inquiring these factors of his/her background.
• Individual responses are translated into scores and placed in the

corresponding column of the scoring matrix F .
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Compose the Criteria

I What is not clear to the educators/administrators,
• How to choose the factors to compose the questionnaires?
• How to weight each chosen factor to reflect the effect (loadings) on

each particular subject?
I Even less information in practice,

• No a priori knowledge about the number m.
• No foresight about the character of underlying factors in A.
• Do not even know the factor scores in F .
• Only the data matrix Y is observable.

I Explaining the complex phenomena observed in Y , with the help
of a minimal number of factors extracted from the data matrix, is
the primary and most important goal of factor analysis.
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Receptor Model

I A technique used by the air pollution research community.
I Based on the conservation law of mass.

• Employ mass balance analysis to identify and apportion sources of
airborne particulate matter in the atmosphere.

• The relationships between p sources which contribute m chemical
species to n samples lead to a mass balance equation.
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Mass Balance Equation

yij =

p∑
k=1

aik fkj .

I yij = the elemental concentration of the i th chemical measured in
the j th sample.

I aik = the gravimetric concentration of the i th chemical in the k th
source.

I fkj = the airborne mass concentration that the k th source has
contributed to the j th sample.
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What to Look for?

I A typical scenario:
• Only values of yij are observable.
• Neither the sources are known nor the compositions of the local

particulate emissions are measured.
I Critical questions:

• Estimate the number p.
• Determine the compositions aik , and the contributions fkj of the

sources.
I Nonnegativity requirement:

• The source compositions aik and the source contributions fkj , being
mass concentrations, must all be nonnegative.
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Image Articulation

I Forward problem:
• Image articulation libraries are made up of images showing a

composite object in many articulations and poses.
• Straightforward application.

I Inverse problem:
• Identify and classify intrinsic “parts” that make up the object being

imaged by multiple observations.
• Hard, may not be possible.
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Mathematical Representation

yj =

p∑
k=1

ak fkj ,

I yj = m pixel values of one image.
I ak = one basis part in Rm.
I [f1j , . . . , fpj ]

> = biometric identification of the j th image.
I Nonnegativity requirement:

• Basic parts, being images themselves, are necessarily
nonnegative.

• Superposition coefficients, being present of absent, are also
necessarily nonnegative.
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Factor Extraction

I Two additional assumptions:
• All sets of factors being considered are uncorrelated.
• Scores in F for each factor are normalized.

1
`

FF> = Im. (3)

I Correlation matrix R is directly related to loading matrix A,

R =
1
`

(AF )(AF )> = AA>. (4)

I Factor extraction of Y ⇔ Matrix factorization of R.
• Would like to use as few factors as possible.
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Interpretation of Loading Matrix A

I ai∗ = influence from factors in current list on variable i .
• ‖ai∗‖ = the communality of variable i .

• Small ‖ai∗‖ ⇒ Variable i is of little consequence to current factors.

I a∗k = correlations of variables with k th factor.
• ‖a∗k‖ = the significance of factor k .

• Variables with high loadings are more “like" the factor.
• Variables with lows loadings are unlike the factor.
• Smaill ‖a∗k‖ ⇒ Factor k is negligible.
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Tasks to Do in Factor Analysis

I Rewrite loadings of variables over some newly selected factors.
• Fewer factors.
• Manifest more clearly correlation between variables and factors.

I Represent the loading of each variable (row of A) as a single
point in the factor space Rm.
• What if these points cluster around a certain direction?
• How to find the clustering direction?
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What Is Going On?

I Determine new factors as columns of the orthogonal matrix

V := [v1, . . . ,vm] ∈ Rm×m. (5)

• Factor loadings with respect to V ≡ Change of basis.

Y = AF = (AV )︸ ︷︷ ︸
B

(V T F )︸ ︷︷ ︸
G

.

• R = AAT = BB> is independent of factors selected.
• Prefer to concentrate significance of factors on “fewer" columns of B.
• Lower rank approximation of R.

I Retrieve B directly without reference to any particular loading
matrix A.
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Swimmer Database

I A set of black-and-while stick figures satisfying the so called
separable factorial articulation criteria.

I Each figure consists of a “torso" of 12 pixels in the center and
four “limbs" of six pixels that can be in any one of four positions.

I With limbs in all possible positions, there are a total of 256
figures of dimension 32× 32 pixels.

I Can the parts be recovered?
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Eighty Swimmers
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Seventeen Parts
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Pollutant Decomposition

I Assume four principal sectors across the national economy.
1. Fuel combustion
2. Industrial Processes:

• Chemical and allied product manufacturing
• Metals processing
• Petroleum and related industries
• Other industrial processes
• Solvent utilization
• Storage and transport
• Waste disposal and recycling

3. Transportation
4. Miscellaneous

I Each subsector contributes certain degree of pollution.
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Scenario I: Who Is Doing What Damages?
1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Fuel 41754 40544 43512 41661 40659 39815 39605 40051 38926 38447 36138 36018 35507 34885 34187
Industrial 48222 32364 29615 22389 21909 21120 20900 21102 21438 21467 21190 17469 17988 17868 20460

Transportation 125637 121674 117527 119116 107978 100877 106571 105114 106328 108125 99642 106069 104748 103523 100783
Miscellaneous 10289 6733 10589 46550 46560 45877 42572 40438 41501 45105 39752 43829 46487 42467 39836

I Assume total emissions F from each sector is available.
I Determine a nonnegative matrix A of size 8× 4 that solves the

optimization problem:

minimize 1
2‖Y − AF‖2

F , (6)

subject to A ≥ 0, and
∑8

i=1 aij = 1, j = 1, . . .4.

• Each column of A represents the best fitting percentage distribution
of pollutants from the emission of the corresponding sector.

• This is a convex programming problem and the global minimizer is
unique.
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Comparing NMF and Averaging Results

I Using existing software, such as FMINCON in MATLAB, to find the
best fitting distribution Aopt to Problem (6).

I The average distribution Aavg would have to be obtained by
extensive efforts in gathering itemized pollutant emissions of
each sector per year.
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Fuel Industrial Transportation Miscellaneous

Carbon Monoxide 0.1535 0.3116 0.7667 0.3223
Lead 0.0001 0.0002 0.0002 0

Nitrogen Oxides 0.2754 0.0417 0.1177 0.0113
Volatile Organic 0.0265 0.4314 0.0908 0.0347

PM10 0.0368 0.0768 0.0074 0.4911
Sulfur Dioxide 0.4923 0.0996 0.0112 0.0012

PM2.5 0.0148 0.0272 0.0043 0.0761
Ammonia 0.0007 0.0115 0.0016 0.0634

Table: Average distribution of pollutants from sectors.

Fuel Industrial Transportation Miscellaneous

Carbon Monoxide 0.1925 0.3400 0.8226 0.0090
Lead 0 0.0000 0 0.0000

Nitrogen Oxides 0.0631 0 0.1503 0.1524
Volatile Organic 0.3270 0.2759 0.0272 0

PM10 0.0000 0.1070 0.0000 0.6198
Sulfur Dioxide 0.4174 0.2771 0.0000 0

PM2.5 0.0000 0.0000 0 0.1326
Ammonia 0.0000 0 0 0.0862

Table: Optimal distribution of pollutants from sectors with fixed emission
estimates.
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Serious Discrepancies

I In Aopt that 32.70% emissions from the fuel burning contribute to
the volatile organic compounds whereas Aavg counts only 2.65%.

I In Aopt that only 6.31% emissions from the fuel goes to the
nitrogen oxides whereas Aavg count 27.54%.

I Estimates from the best fitting Aopt is inconsistent with the
scientific truth. Why?



MA325 Data Mining Homework 1 February 17, 2021

We discussed in this module a simple linear model mimicking how a centralized data matrix could be factorized
in order to retrieve important information. This homework asks you to think about some data in our mundane
lives where interesting information can be mined.

1. Describe two possible data sets where ”interesting information” might be mined. It will be most fitting
if the linear model we described can be applied. If your data sets are for a different model, you need to
brief describe what the model is about.

(a) (20 pts) If the data sets are available over the network but are too large to be downloaded, list
their complete URL’s. Make sure that you give credits to the original sources by giving references,
if the data set is not your own.

(b) (20 pts) Provide a short description for each data set. For example, if your data is a matrix, then
describe what each dimension or entry represents. You may use a shortened/reduced data set to
demonstrate your point.

(c) (10 pts) Describe what information you want to retrieve. For example, in the linear model, what
factors are you looking for.

2. What to submit:

• Typeset your report. You may prepare your report in whatever format, but your report should be
in a PDF file for submission.

• Your report should be submitted electronically. Further information will be given later.

3. Some possible repositories:

• https://www.nature.com/sdata/policies/repositories

• https://archive.ics.uci.edu/ml/datasets.php

• http://oad.simmons.edu/oadwiki/Data repositories



Introduction Basic Model SVD Computational Issues Link Analysis Conclusion

Singular Value Decomposition

I Any matrix A ∈ Rm×n enjoys a singular value decomposition
(SVD)

A = UΣV>

where
• U ∈ Rm×m and V ∈ Rn×n are orthogonal.
• Σ ∈ Rm×n is diagonal.

I This is an important matrix factorization known before
mathematical theory was complete and across many fields.
• Often is the first computational step in many numerical algorithms.
• Also is the first conceptual step in many theoretical studies.
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Variational Property

I Given A ∈ Rm×n (m ≥ n), the image of the unit sphere in Rn

under A is a hpyerellipse (of dimension n) in Rm.
• ui ∈ Rm = unit directions of the principal semiaxes of the

hyperellipse = left singular vectors of A.
• vi ∈ Rn = unit directions of the preimage of ui = right singular

vectors of A.
• σi = length of the principal semiaxes of the hyperellipse = singular

values of A.
I Rewrite the relationship as:

Avi = σiui . (7)

• It is clear that all i , i = 1, . . . , n are mutually orthogonal.
• It can be shown that all vi , i = 1, . . . n are also mutually orthogonal.
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Relation to Eigenvalues

I Recall that AT A ∈ Rn×n is symmetric and positive semi-definite.
• AT A has a complete set of eigenvectors.
• All eigenvalues of AT A are nonnegative.
• Denote the positive eigenvalues of AT A by σ2

1 ≥ . . . ≥ σ2
r > 0.

• It can be proved that r = rank(A).

• Denote the normalized (and orthogonal) eigenvector of AT A
associated with σ2

i by vi

I Some important observations:
• The two matrices AT A and AAT have the same positive

eigenvalues.
• Avi is an eigenvector of AAT associated with eigenvalue σ2

i .
• The vector ui := Avi/σi is a normalized eigenvector of AAT .
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Completion
I Let V := [v1, . . . , vn] ∈ Rn×n whose columns vi are orthonormal

eigenvectors of AT A.
I Define U := [u1, . . . ,um] ∈ Rm×m where

• For j = 1, . . . , r , uj := Avj/σj , and
• For j = r + 1, . . . ,m, {ur+1, . . . , um} are orthonormal eigenvectors

corresponding to the zero eigenvalue of AAT .
I Define Σ := diag{σ1, . . . , σr}.
I With U, Σ and V given above, it must be true that

A = U
[

Σ 0
0 0

]
V T . (8)

• Write U = [U1,U2], V = [V1,V2].
• Observe that

UT AV =

[
UT

1

UT
2

]
A[V1,V2] =

[
UT

1 AV1 U1AV2

UT
2 AV1 UT

2 AV2

]
.

• Note that AV2 = 0, UT
2 AV1 = UT

2 U1Σ = 0 and UT
1 AV1 = Σ by the

choice of U.
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Decompose a Random Variable

I Let X ∈ Rn denote a random column vector.

cov(X ) := E [(X − E [X ])(X − E [X ])>] =
n∑

j=1

λjuju>j .

• +u1, . . . ,un are deterministic and orthonormal in Rn.
I The random column vector X can be expressed as

X =
n∑

j=1

(uT
j X )uj .

• Each coefficient αj := X T u j itself is a random variable.
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Random Coefficients

E [α] = UTE [X ],

cov(α) = diag{λ1, . . . , λn}.

I The randomness of X is due to the randomness of α.
I Variance measures the unpredictability of a random variable.
I Random coefficients αj are mutually stochastically independent.
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Ranking the Randomness

I Larger eigenvalue λj ⇒ Larger variance of αj ⇒ More
randomness in the direction uj .

I Rank the importance of corresponding eigenvectors uj as
essential components for the variable X according to the
magnitude of λj .
• If truncation is necessary, those eigenvectors corresponding to

smaller variances should be thrown away first.
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Low Dimensional Approximation

I Best approximate X by a unbiased variable X̃ .
• X̃ is limited to an m-dimensional subspace with m < n.
• E[‖X − X̂‖2] is minimized.

I Among all unbiased variables restricted to any m-dimensional
subspaces in Rn,

X̂ :=
r∑

j=1

(uT
j X )uj (9)

is the best linear minimum-variance estimate of X .
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Truncation in Sample Space

I Collect ` random samples of X .
• Samples are recorded in a n × ` matrix X .
• Law of large numbers⇒ Can recoup stochastic properties of X

from X with large enough `.
I How to retrieve a sample data matrix from X to represent the

minimum-variance approximation X̂ of X?
• Spectral decomposition of sample covariance:

R =
XX>

`
=

n∑
i=1

µiuiu>i . (10)

• Projection of X to X̂ ⇒

X̂ :=
r∑

j=1

(u>j X )uj . (11)
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Truncated SVD

I Low dimension estimate X̂ to (continuous) random variable X ⇒
Low rank approximation X̂ to (discrete) random sample matrix X .

I The singular value decomposition of X :

X = UΣV> =
n∑

i=1

σiuiv>i (12)

• Eigenvectors of R = Left singular vectors U = [u1, . . . ,un].
• Singular values σi =

√
`µi in the same ordering as eigenvalues µi .

• TSVD of X =
∑m

i=1(σiv>i )ui .
I The TSVD of a give data matrix X representing random samples

of an unknown random variable X has a statistical meaning.
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Computational Challenges

I Must mine through very large scale of data.
• Matrix factorization becomes increasingly difficult.

I Data set changes dynamically.
• Adding or deleting information requires updating or downdating

current factorization.
I No obvious way to determine optimal rank m.
I Additional constraints on data for feasibility and interpretability.

• Nonnegativity.
• Algebraic variety.
• Binary.

I Need structured low rank approximation.
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Continuous Acquisition

I An inevitable task.
• Robots crawl the web.
• Software automation.

I Most search engines prepare database continually.
• Index documents.
• Mine and retrieve information.
• Store the data in an organized way for quick reference when

needed.
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Ranking Retrieved Information

I A query usually can bring up deluging information.
• Must be sorted again to reveal the most relevant pages.

I Link analysis help to tackle this ranking problem.
• Eigenvector computation.
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Power Iteration

I Given a matrix A ∈ Cn×n,
• Begin with an arbitrary x(0) ∈ Cn.
• Generate the sequence {x(k)} until convergence by

w(k) := Ax(k−1);

x(k) :=
w(k)

‖w(k)‖∞
.

I The normalization is for the purpose of avoiding overflow or
underflow.
• Any norm can be used for the normalization. The sup-norm is

particularly convenient.
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Delayed Normalization

I The normalization needs not be done at every step because

x(k) = Ax(k−1)

‖Ax(k−1)‖∞
=

A
(

w(k−1)

‖w(k−1)‖∞

)
‖A
(

w(k−1)

‖w(k−1)‖∞

)
‖∞

= A2x(k−2)

‖A2x(k−2)‖∞
=

Ak x(0)

‖Ak x(0)‖∞
.
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Dominant Eigenpair

I Assume A is diagonalizable
• Eigenvalues are arranged as |λ1| > |λ2| ≥ . . . ≥ |λn|.
• Corresponding eigenvectors are x1, . . . xn.

I Write x (0) =
∑n

i=1 αixi .
• Note that

Ax (0) =
n∑

i=1

αiλixi

Ak x (0) =
n∑

i=1

αiλ
k
i xi = λk

1

(
α1x1 +

n∑
i=2

αi

(
λi

λ1

)k

xi

)
.

• Assume α1 6= 0. (This is guaranteed if x (0) is selected randomly.)
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Convergence

I As k →∞, the vector Ak x (0) behaves like α1λ
k
1x1 in the sense

that contributions from x2, . . . xn becomes less and less
significant.

• Normalization makes x (k) → α1λ
k
1

|α1λ
k
1 |

x1
‖x1‖∞

.

• The sequence {x (k)} converges to an eigenvector associated with
the eigenvalue λ1.

• Also, w (k+1) = Ax (k) → λ1x (k). So w(k+1))j

x(k)
j

→ λ1.

I The rate of convergence of power method depends on the ratio
λ2
λ1

.
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HITS Algorithm

I Given a query, assume that n Web pages have been matched
through some search mechanism.

I For each page Pi ,
• Ii = set of pages linking into Pi .

• ai = authority score.
• Oi = set of pages linking out of Pi .

• hi = hub score.

I Starting with h(0)
i = 1

n , the pages compete for their authorities
and hub reputations.

a(k)
i =

∑
j:Pj∈Ii

h(k−1)
j , h(k)

i =
∑

j:Pj∈Oi

a(k)
j . (13)
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Score Evolution

I L = the adjacency matrix.

Lij =

{
1 if Pj ∈ Oi ,
0 otherwise.

• Successive refinement.

a(k) = L>h(k−1), h(k) = La(k). (14)

• Recursion.

a(k) = (L>L)a(k−1), h(k) = (LL>)h(k−1). (15)

I With appropriate normalization, this algorithm amounts to the
power method.
• Computes the dominant eigenvector.
• The limit points provide a ranking of importance for each page.
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PageRank
I For each page Pi ,

• |Oi | = number of out lines from Pi .
• ri = page rank.

r (k)i :=
∑

j:Pj∈Ii

r (k−1)
j

|Oj |
. (16)

I H = the modified adjacency matrix.

Hij =

{ 1
|Oi | if Pj ∈ Oi ,

0 otherwise.

• H is row stochastic?!
• Probability distribution (row) vector r(k) = [r (k)1 , . . . r (k)n ].
• Random walk on the hyperlinks.

r(k) = r(k−1)H. (17)
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Google Matrix

I Technical issues:
• Dead end page⇒ Oi is empty.
• Cyclic traps⇒ No convergence.

I Modify hyperlink matrix H to

G = α

(
H +

a1>

n

)
︸ ︷︷ ︸

remove dangles

+(1− α)
11>

n︸︷︷︸
enforce irreducibility

, (18)

• α ∈ [0, 1] is a parameter.
I G is row stochastic, irreducible and aperiodic.

• The stationary distribution vector r = rG exists and is unique.
I r provides a ranking of importance for each page.
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Computation

I Google matrix G has indexed billions of pages and the size is
constantly growing.
• Iterative method is perhaps the only choice of method.
• Power method converges at the rate of its second largest

eigenvalue |λ2|.
|λ2| = α.

I It has been said that Google uses α = .85.
• PageRank is within 10−4 accuracy by 50 iterations, regardless the

size of the matrix.
I Link structure over the web is extremely dynamical.

• The PageRank needs update periodically.
• The mechanism of effectively updating an old PageRank is still an

ongoing research endeavor.
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Modifications

I PageRank is a useful tool in many Web search technologies and
beyond.
• Spam detection.
• Crawler configuration.
• Trust networks.

I PageRank can also been modified to correspond to different
configurations.
• HostRank: Compress webpages within a specific domain into one

host, form a hostgraph, and apply the PageRank model to the
smaller hostgraph.
• Reduce both the number of iterations and the work per iteration =⇒

acceleration.
• Global PageRank ≈ Local PageRank × HostRank.

• Assign different link weights for internal or external linkages.
I (Question) How would these alternatives be described

mathematically and how would they change the results?
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PageRank Linear System

I The ultimate goal of the random walk on the hyperlinks is to solve

r = rG

where r is a row vector and ‖r‖1 = 1.
I Abbreviate v := 1

n , denote r> = x and rewrite the system as(
αH> + αva> + (1− α)v1>

)
x = x,

(I − αH>︸ ︷︷ ︸
R

− αva>︸ ︷︷ ︸
rank one

)x = (1− α)v.
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Sherman-Morrison Formula

Theorem
Suppose A ∈ Rn×n is invertible and u,v ∈ Rn are column vectors.
Then

1. A + uv> is invertible if and only if 1 + v>A−1u 6= 0.
2. The inverse of the rank-1 updated matrix is given by

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
. (19)

(Remark:) The proof is straightforward, but to get the formula for the
first time is not. How to be the first discoverer?
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Back to the PageRank Linear System

I R = I − αH> is invertible because α < 1.
I Identify −αva> as the rank-1 update and obtain

(R − αva>)−1 = R−1 +
R−1va>R−1

1
α + a>R−1v

.

I The PageRank vector x should be given by

x = (1− α)

(
R−1 +

R−1va>R−1

1
α + a>R−1v

)
v.
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A Simplified System

(I − αH>)y = v.

I Do a rearrangement:

x = (1− α)

(
1 +

a>y
1
α + a>y

)
y.

I Suffices to solve for y only. Then obtain x by

x =
y
‖y‖1

.

• Take advantage of the sparsity of H itself.
• Many effective iterative methods available for tackling large sparse

linear systems.
• Updating and downdating remain challenging.
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Exploiting the Dangles

I Most pages are dangles, causing zero rows in H.
I If H has many zeros rows, then further reduction is possible.

• Separate dangling from non-dangling pages.[
I − αH>1 0
−αH>2 I

] [
y1

y2

]
=

[
v1

v2

]
.

• Solve for y1 first from

(I − αHT
1 )y1 = v1.

• Then y2 = v2 + αH>2 y1.
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Conclusion

I Have shown only the tip of the iceberg.
I Applied linear algebra plays a fundamental role in data mining.
I This is a world changing application.
I Many open areas for further study.
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