| Review of Calculus Linear Least Squares | Nonniear Least Squares | 2-D GPS Setup | 3-D GPS Mechanism |
|-----------------------------------------|------------------------|---------------|-------------------|
| 0000000 0000<br>00000 000               | 00<br>00               | 00000         | 00                |

# Nonlinear Least Squares with Its Application to GPS Technology

Moody T. Chu

North Carolina State University

MA325 @ North Carolina State University

(ロ) (同) (三) (三) (三) (○) (○)

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup 00000 0000000 3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Take Home Message

- Many sophisticated modern applications are based on simple mathematical theory.
- Many complicated mathematical concepts are based on elementary geometry and calculus.
- ► The global position system (GPS) is one such an example.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# **Course Plan of This Module**

- 1. Review of Calculus (2 hour)
- 2. Linear Least Squares Problems (2 hours)
  - Homework
- 3. Nonlinear Least Squares Problems (1 hours)
- 4. 2-D Set up (2 hours)
  - Homework
- 5. 3-D Set up (2 hours)
  - Project

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

# **Outline**

#### **Review of Calculus**

Optimization Constrained Optimization

#### Linear Least Squares

Data Fitting Mathematics Behind Numerical Techniques

#### **Nonlinear Least Squares**

Mathematical Setup Gauss-Newton Method

#### 2-D GPS Setup

Observation Along a Straight Line Measurement by Distance

#### **3-D GPS Mechanism**

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

# Outline

#### **Review of Calculus**

Optimization Constrained Optimization

#### **Linear Least Squares**

Data Fitting Mathematics Behind Numerical Techniques

#### Nonlinear Least Squares

Mathematical Setup Gauss-Newton Method

#### 2-D GPS Setup

Observation Along a Straight Line Measurement by Distance

#### **3-D GPS Mechanism**

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Outline

#### **Review of Calculus**

Optimization Constrained Optimization

#### **Linear Least Squares**

Data Fitting Mathematics Behind Numerical Techniques

#### **Nonlinear Least Squares**

Mathematical Setup Gauss-Newton Method

#### 2-D GPS Setup

Observation Along a Straight Line Measurement by Distance

#### **3-D GPS Mechanism**

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Outline

#### **Review of Calculus**

Optimization Constrained Optimization

#### **Linear Least Squares**

Data Fitting Mathematics Behind Numerical Techniques

#### **Nonlinear Least Squares**

Mathematical Setup Gauss-Newton Method

#### 2-D GPS Setup

Observation Along a Straight Line Measurement by Distance

#### **3-D GPS Mechanism**

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Outline

#### **Review of Calculus**

Optimization Constrained Optimization

#### **Linear Least Squares**

Data Fitting Mathematics Behind Numerical Techniques

#### **Nonlinear Least Squares**

Mathematical Setup Gauss-Newton Method

#### 2-D GPS Setup

Observation Along a Straight Line Measurement by Distance

#### **3-D GPS Mechanism**

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### Gradient

Given a scalar function

$$f: \mathbb{R}^n \longrightarrow \mathbb{R},$$

define the gradient of  $\eta$  by

.

$$\nabla f := \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right].$$

#### Significance:

- Points in the direction where the function *f*(**x**) ascends most rapidly.
- Attainable maximum rate of change is precisely  $\|\nabla f(\mathbf{x})\|$ .

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# **First Order Optimality Condition**

Suppose  $f : \mathbb{R}^n \longrightarrow \mathbb{R}$  is a smooth function over an open domain. Then

The functional value f(x) reaches an extreme value, either maximum or minimum, at a point x ∈ ℝ<sup>n</sup> only if

 $\nabla f(\mathbf{x}) = \mathbf{0}.$ 

► The extreme is only a relative (local) extreme.



**(口)** 

3-D GPS Mechanism

# Second Order Optimality Condition

- Need a way to tell the concavity.
- ► In Calculus III, for the case n = 2, we have learned the basic rules:
  - · Compute the second derivative, the so called Hessian matrix,

$$H_f(x,y) = \left[ \begin{array}{cc} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{array} \right].$$

- If  $f_{xx}f_{yy} f_{xy}f_{yx} < 0$ , then it is a saddle.
- If  $f_{xx}f_{yy} f_{xy}f_{yx} > 0$  and  $f_{xx} > 0$ , then it is a minimum (cup).
- If  $f_{xx}f_{yy} f_{xy}f_{yx} > 0$  and  $f_{xx} < 0$ , then it is a maximum (cap).
- If any of these is zero, then go to graduate school.
- What is going on here?
- How to generalize this concept to more than two variables?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Symmetric and Positive Definite Matrix

• A matrix  $A \in \mathbb{R}^{n \times n}$  is said to be *positive definite* if and only if

#### $\mathbf{x}^{\top} A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$ .

- A is said to be *positive semi-definite* if ">" is replaced by "≥".
- There are multiple equivalent conditions for determining whether a matrix A is symmetric and positive definite.
  - All eigenvalues of A are positive.
  - All principal minors have positive determinant.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup 00000 0000000 3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# **Negative Definite Matrix**

- How to define a negative definite matrix?
- What are some conditions for determining whether a matrix A is symmetric and negative definite?
- Where does the symmetry of a Hessian matrix come from?

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### The Real Second Order Optimality Condition

- If x is a critical point and is a local minimum for a smooth function f, then its Hessian H<sub>f</sub>(x) is necessarily positive semi-definite.
- If x is a critical point and if its Hessian H<sub>f</sub>(x) is positive definite, then x is a local minimum.
  - What is the difference?
- What can be said about a local maximum?

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# **Constrained Optimization**

- In real world, we cannot do whatever we want to do.
- Even we are interested in maximizing the gain or minimizing the loss, often we are subject to some constraints.
- The challenge is how to handle this type of constrained optimization?

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

### **Roserbrock Function**

min 
$$100(y - x^2)^2 + (1 - x)^2$$
,  
subject to  $x^2 + y^2 \le 1$ .



Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

A D F A 同 F A E F A E F A Q A

# Method of Lagrange Multiplier

Suppose that the optimization problem is

 $\begin{array}{ll} \min & f(x,y),\\ \text{subject to} & g(x,y) = c. \end{array}$ 

- Introduce a new variable  $\lambda$ , called a Lagrange multiplier.
- Define the Lagrange function, called Lagrangian, defined by

$$\Lambda(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$$
(1)

The critical point must satisfy

$$\nabla\Lambda=0.$$



Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

### **Geometric Meaning**



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

### **An Example**

Find the dimensions of the box with largest volume if the total surface area is *A*.

Setup:

$$\begin{array}{ll} \text{max} & xyz,\\ \text{subject to} & 2xy+2xz+2yz=A. \end{array}$$

Lagrangian:

$$\Lambda(x,y,z) = xyz - \lambda(xy + xz + yz - \frac{A}{2}).$$

Necessary condition:

$$\begin{cases} yz = \lambda(y+z), \\ xz = \lambda(x+z), \\ xy = \lambda(x+y), \\ xy + xz + yz = \frac{A}{2}. \end{cases}$$

• Need to solve the above system of equations for  $(x, y, z, \lambda)$ .

Hint: Multiply the first equation by x and the second equation by y.
 Make an argument from here.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

# **Parameter Estimation**

Parameter estimation is an important technique used for modeling in many areas of disciplines.

 To mimic a complicated physical phenomenon, we sometimes can create a model via a relationship such as

$$y = f(z; x_1, \ldots, x_n). \tag{2}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- *f* is a prescribed model determined up to values of *x*<sub>1</sub>,..., *x*<sub>n</sub>.
- $x_1, \ldots, x_n$  are the parameters.
- z is the control variable or input.
- y is the expected response or output to z.
- For more sophisticated models, both input z and output y can be vectors.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# **Using Observations**

- Perform *m* experiments and collected *m* observed quantities  $(z_i, y_i), i = 1, ..., m$ .
  - Typically  $(m \ge n)$ .
  - Why?
- Due to measurement errors (called noise), (z<sub>i</sub>, y<sub>i</sub>) may not satisfy (2) exactly.
- ▶ Seek to adjust the parameters *x*<sub>1</sub>,..., *x*<sub>n</sub> so that the expression

$$g(x_1,\ldots,x_n) := \sum_{i=1}^m \|y_i - f(z_i;x_1,\ldots,x_n)\|^2$$
(3)

is minimized.

▶ When the norm used in (3) is either the 2-norm or the Frobenius norm, we say we have a *least squares problem*.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# **Polynomial Fitting**

Suppose an (n-1)-th degree polynomial

$$f(z; x_1, \ldots, x_n) = x_1 z^{n-1} + \ldots + x_{n-1} z + x_n.$$
 (4)

is to fit *m* points in the plane.

Ideally, want to solve the system

$$\begin{bmatrix} z_1^{n-1} & z_1^{n-2} & \dots & z_1 & 1 \\ z_2^{n-1} & & & & \\ \vdots & & & & & \\ z_m^{n-1} & z_m^{n-1} & \dots & z_m & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
(5)

for the coefficients  $(x_1, \ldots, x_n)$ .

• The system (5) is overdetermined, so generally there is no solution.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

# **General Linear Least Squares Problem**

Want to solve the optimization problem

$$\min_{\mathbf{c}\in\mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2^2 \tag{6}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

where  $A \in \mathbb{R}^{m \times n}$ ,  $\mathbf{b} \in \mathbb{R}^m$  are known quantities.

"Linear" in the sense that the expected response y depends linearly on the parameters x.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### **Normal Equation**

Can write the objective function as

$$g(\mathbf{x}) = \frac{1}{2}(A\mathbf{x} - \mathbf{b})^{\top}(A\mathbf{x} - \mathbf{b}).$$

The first order condition becomes

$$abla g(\mathbf{x}) = \mathbf{A}^{ op} \mathbf{A} \mathbf{x} - \mathbf{A}^{ op} \mathbf{b} = \mathbf{0}.$$

• Prefer 
$$A\mathbf{x} = \mathbf{b}$$
; now  $A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$ .

| of Calculus | Linear Least Squares | Nonlinear Least Squares | 2-D GPS Setup | 3-D GPS Mechanism |
|-------------|----------------------|-------------------------|---------------|-------------------|
| 000         | 0000<br>000          | 00                      | 00000         | 00                |

### **Geometry behind Linear Least Squares**

- Let the columns of A ∈ ℝ<sup>m×n</sup> be denoted as A = [a<sub>1</sub>,..., a<sub>n</sub>] where each a<sub>i</sub> ∈ ℝ<sup>m</sup>.
- The product Ax can be written as

$$A\mathbf{x} = \sum_{i=1}^n x_i \mathbf{a}_i,$$

- Ax is a linear combination of columns of A and hence is an element in the range space of A.
- Solving the equation Ax = b is equivalent to finding an appropriate combination of columns of A that makes up the vector b.
  - A necessary condition for Ax = b to have a solution is that b ∈ R(A).
  - What to do when  $\mathbf{b} \notin R(A)$ ?



The best we can hope for is to find a combination so that the residual b – Ax is minimized.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- The residual **b** A**x** must be perpendicular to R(A).
  - How to quantify this geometry?

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

# **Mathematical Setup**

From the assumed model  $y = f(z; x_1, ..., x_n)$ , define a residual

$$r_i = r_i(x_1,\ldots,x_n) := y_i - f(z_i;x_1,\ldots,x_n)$$

for each observed data  $(z_i, y_i), i = 1, \ldots, m$ .

Intend to minimize the overall residual

$$g(x_1,\ldots,x_n) := \sum_{i=1}^m \|r_i\|_2^2.$$

Rewrite the notion as an unconstrained optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x})$$

where

$$F(\mathbf{x}) := \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2$$
(7)

and

$$\mathbf{r}(\mathbf{x}) := [r_1(\mathbf{x}), \dots, r_m(\mathbf{x})]^\top$$
.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# **First Optimality Condition**

- The necessary condition for **x** to be a critical point is that  $\nabla F(\mathbf{x}) = \mathbf{0}$ .
- We calculate the gradient of F to be

$$\nabla F(\mathbf{x}) = J(\mathbf{x})^T t(\mathbf{x}) \tag{8}$$

where

$$J(\mathbf{x}) := \frac{\partial \mathbf{r}}{\partial \mathbf{x}} := \begin{bmatrix} \frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} & \cdots & \frac{\partial r_1}{\partial x_n} \\ \vdots & & & \\ \frac{\partial r_m}{\partial x_1} & \frac{\partial r_m}{\partial x_2} & \cdots & \frac{\partial r_m}{\partial x_n} \end{bmatrix}$$

is the  $m \times n$  Jacobian matrix of f.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup 00000 0000000 3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# **Finding Critical Points**

- ▶ Note that  $\nabla F : \mathbb{R}^n \to \mathbb{R}^n$  in nonlinear in general.
- Need an algorithm to solve the equation  $\nabla F(\mathbf{x}) = 0$ .
  - The Newton-Ralphson method is generally too expensive.
  - Special techniques are available for this type of problems.
  - See Isqnonlin in MATLAB.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### **A MATLAB Demonstration**

Want to minimize the function

$$\sum_{k=1}^{10} \underbrace{\left(2 + 2k - e^{kx_1} - e^{kx_2}\right)}_{r_k(\mathbf{x})}^2$$

%% function example\_lsqnonlin

end

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3-D GPS Mechanism

# **Basic Ideas of GPS**

- Consider the scenario:
  - Three observers, located along a straight line, measure the angle of their line-of-sight to a certain object.
  - Assume that the angles are measured counterclockwise from the east (normal to the baseline of observers).
  - Due to various reasons, such as atmosphere turbulence, their observations are obscured.



Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### **Information Retrieval**

- The three measured angles θ<sub>i</sub>, i = 1, 2, 3, are more or less correct but carry some small uncertainties.
- It is desired to estimate the true position of the object.
- How to correct the problem?

| leview of Calculus Linea | ar Least Squares N | Ionlinear Least Squares | 2-D GPS Setup | 3-D GPS Mechanism |
|--------------------------|--------------------|-------------------------|---------------|-------------------|
|                          |                    | 00                      | 00000         | 00                |

# **Necessary Conditions on the True Solution**



$$\frac{\mathbf{y}-\mathbf{y}_i}{\mathbf{x}} = \tan \eta_i, \quad i=1,2,3.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup 000●0 000000 3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# **Build up Something Workable**

▶ Get rid of *y*:

 $y = y_1 + x \tan \eta_1 = y_2 + x \tan \eta_2 = y_3 + x \tan \eta_3.$ 

► Get rid of *x*:

$$\frac{y_2 - y_1}{\tan \eta_1 - \tan \eta_2} = \frac{y_3 - y_2}{\tan \eta_2 - \tan \eta_3}.$$

The constraint:

$$(y_2 - y_1)(\tan \eta_2 - \tan \eta_3) = (y_3 - y_2)(\tan \eta_1 - \tan \eta_2).$$

• Why is this significant?

| Review of | of Ca | lculus |  |
|-----------|-------|--------|--|
| 00000     | 00    |        |  |
| 00000     |       |        |  |

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

A D F A 同 F A E F A E F A Q A

### **Constrained Least Squares**

min 
$$f(\eta_1, \eta_2, \eta_3) := \sum_{i=1}^3 (\theta_i - \eta_i)^2$$
,

subject to  $(y_2 - y_1)(\tan \eta_2 - \tan \eta_3) = (y_3 - y_2)(\tan \eta_1 - \tan \eta_2)$ .

- How to handle this type of optimization problem?
- Homework: Using Lagrange multiplier theory, show that the optimal angles are given by

$$\begin{aligned} \eta_1 &= \theta_1 + \omega (y_2 - y_3) \sec^2 \eta_1, \\ \eta_2 &= \theta_2 + \omega (y_3 - y_1) \sec^2 \eta_2, \\ \eta_3 &= \theta_3 + \omega (y_1 - y_2) \sec^2 \eta_3, \end{aligned}$$

where  $\omega$  is a constant that ensures the lines of sight define a single point of intersection.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Improvement of Techonology

- Must the measurement be done by angles?
  - What are pros and cons in doing measurement by angles?
- Must the observers be lined up?
  - What will happen if more observers (*m* > 3) are providing information?
- ► The newer technology allows us to measure long distances.
  - (L)ight (a)mplification by (s)timulated (e)mission of (r)adiation.
  - Electronic signals.
  - Satellite.
  - GPS.

| Review | of | Calculus |
|--------|----|----------|
| 00000  | 00 | 0        |
| 00000  | C  |          |

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup ○○○○○ ○●○○○○○ 3-D GPS Mechanism

# **Observation Around a Point**

#### Consider the scenario:

- Four observers, located at known positions in the plane, measure the distance of their line-of-sight to a certain object.
- · For various reasons, the measurements do not add up.
- Where is the correct position of (*x*, *y*)?



| eview of Calculus | Linear Least Squares | Nonlinear Least Squares | 2-D GPS Setup<br>○○○○<br>○○●○○○○ | 3-D GPS Mechanism |
|-------------------|----------------------|-------------------------|----------------------------------|-------------------|
|                   |                      | Setup                   |                                  |                   |

Define the residuals:

$$r_i(x,y) = \sqrt{(x-x_i)^2 + (y-y_i)^2 - R_i}, \quad i = 1, 2, 3, 4.$$

Want to minimize the overall residual

$$F(\mathbf{x}) := \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2$$

Need to solve the first order optimality condition:

$$\begin{bmatrix} \frac{x-x_1}{S_1} & \frac{x-x_2}{S_2} & \frac{x-x_3}{S_3} & \frac{x-x_4}{S_4} \\ \frac{y-y_1}{S_1} & \frac{y-y_2}{S_2} & \frac{y-y_3}{S_3} & \frac{y-y_4}{S_4} \end{bmatrix} \begin{bmatrix} r_1(x,y) \\ r_2(x,y) \\ r_3(x,y) \\ r_4(x,y) \end{bmatrix} = 0.$$

• 
$$S_i := \sqrt{(x - x_i)^2 + (y - y_i)^2}$$
.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### **A Blessed Curse**

- Suppose
  - The observers are the satellites.
  - A signal traveling at speed *c* is sent between the satellite and the receiver.
  - The distance *R<sub>i</sub>* is calculated by measuring the transmission time *t<sub>i</sub>*. Ideally,

$$R_i = ct_i$$
.

The clock in the typical low-cost receiver, i.e., the GPS, has relatively poor precision. It carries an *unknown* latency *d*. So, in reality,

$$R_i = c(t_i - d)$$

- *d* is part of the calculation.
- How precise the time measurement of the atomic clocks must be to keep the precision of distance to within 3 meter?

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### Reformulation

Define the residuals:

$$r_i(x, y, d) = \sqrt{(x - x_i)^2 + (y - y_i)^2} - c(t_i - d), \quad i = 1, 2, 3, 4$$

Need to solve the first order optimality condition:

$$\begin{bmatrix} \frac{x-x_1}{S_1} & \frac{x-x_2}{S_2} & \frac{x-x_3}{S_3} & \frac{x-x_4}{S_4} \\ \frac{y-y_1}{S_1} & \frac{y-y_2}{S_2} & \frac{y-y_3}{S_3} & \frac{y-y_4}{S_4} \\ c & c & c & c \end{bmatrix} \begin{bmatrix} r_1(x,y,d) \\ r_2(x,y,d) \\ r_3(x,y,d) \\ r_4(x,y,d) \end{bmatrix} = 0.$$

- . How many solutions are there in the system?.
  - Why is this question important?

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup ○○○○○ ○○○○○●○ 3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# How Many Satellites?

- Suppose that
  - The object is moving around a circle (the earth) center at the origin with radius *r*.
  - The satellites are moving around the earth at a height of *R* from the center.
- Assume that
  - Satellites are programmed to automatically avoid collision.
  - The object can occur at arbitrary point on the circle.
- To fully cover any point on the earth at any given time by four satellites, how many satellites in total are needed in the orbit?

| Review of Calculus | Linear Least Squares | Nonlinear Least Squares | 2-D GPS Setup | 3-D GPS Mechanism |
|--------------------|----------------------|-------------------------|---------------|-------------------|
| 0000000            | 0000                 | 00                      | 00000         | 00                |
|                    | 000                  | 00                      | 000000        | 00                |



◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism ●○ ○○

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# **General GPS Description**

- Currently, there are 24 satellites carrying atomic clocks.
- Orbit at an altitude of 20, 200 km.
- Four satellites in each of six planes, slanted at 55° with respect to the poles, make two revolutions per day.
- At any time, from any point on earth, five to eight satellites are in the direct line of sight.
- Transmit synchronized signals from predetermined positions in space.
- ► The receivers (GPS) on earth will pick up the signals.
- ► Do the mathematics to determine the accurate (x, y, z) coordinates of the receiver.

| Review of Calculus | Linear Least Squares | Nonlinear Least Squares | 2-D GPS Setup | 3-D GPS Mechanism |
|--------------------|----------------------|-------------------------|---------------|-------------------|
| 000000             | 0000                 | 00                      | 00000         | 0.                |
| 00000              | 000                  | 00                      | 0000000       | 00                |



- from Wikipedia

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# **Navigation Equation**

Define the residuals:

$$r_i(x, y, z, d) = \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2} - c(t_i - d).$$

Four equations in four unknowns.

- Subtracting the first equation from the last three leads to three linear equations in (*x*, *y*, *z*).
- By Gaussian elimination, a single solution (x, y, z) is found.
- Obtain a quadratic equation in *d* upon substitution.
- At most two real solutions can be found.

Linear Least Squares

Nonlinear Least Squares

2-D GPS Setup

3-D GPS Mechanism ○○ ○●

# **Other Concerns**

There are other technical issues when GPS is deployed.

- Conditioning of the navigation equation.
- Transmission speed might be less than the speed of light
  - Need to pass through 100 km ionosphere and 10 km troposphere while subjecting to electromagnetic fields.
  - Might encounter obstacles or atmospheric degradation.
- Can overcome the issues by adding more satellites.
  - No longer a square problem.
  - Need fast nonlinear least squares techniques.
- Who is maintaining the GBS?
  - civilian GPS (CPS) versus military GPS (PPS)
    - two frequencies + ionosphere correction.
  - DoD, \$1.3B, US taxpayers' money.
  - Galileo, EU, €5.0B, 30 satellites by 2019.
  - GLONESS, Russian, 24 satellites.
  - BeiDou, China, 35 satellites by 2020.
  - QZSS, Japan, 7 satellites by 2023, high precision (6 cm)
  - NAVIC, India, 7 by 2018.