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Take Home Message

I Many sophisticated modern applications are based on simple
mathematical theory.

I Many complicated mathematical concepts are based on
elementary geometry and calculus.

I The global position system (GPS) is one such an example.
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Course Plan of This Module

1. Review of Calculus (2 hour)
2. Linear Least Squares Problems (2 hours)

• Homework

3. Nonlinear Least Squares Problems (1 hours)
4. 2-D Set up (2 hours)

• Homework

5. 3-D Set up (2 hours)
• Project
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Gradient

I Given a scalar function

f : Rn −→ R,

define the gradient of η by

∇f :=

[
∂f
∂x1

, . . . ,
∂f
∂xn

]
.

I Significance:
• Points in the direction where the function f (x) ascends most rapidly.
• Attainable maximum rate of change is precisely ‖∇f (x)‖.
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First Order Optimality Condition

Suppose f : Rn −→ R is a smooth function over an open domain.
Then

I The functional value f (x) reaches an extreme value, either
maximum or minimum, at a point x ∈ Rn only if

∇f (x) = 0.

I The extreme is only a relative (local) extreme.
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f (x , y) = 3(1−x)2e−x2−(y+1)2−10( x
5−x3−y5)e(−x2−y2)− 1

3 e−(x+1)2−y2
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Second Order Optimality Condition

I Need a way to tell the concavity.
I In Calculus III, for the case n = 2, we have learned the basic

rules:
• Compute the second derivative, the so called Hessian matrix,

Hf (x , y) =
[

fxx fxy

fyx fyy

]
.

• If fxx fyy − fxy fyx < 0, then it is a saddle.
• If fxx fyy − fxy fyx > 0 and fxx > 0, then it is a minimum (cup).
• If fxx fyy − fxy fyx > 0 and fxx < 0, then it is a maximum (cap).
• If any of these is zero, then go to graduate school.

I What is going on here?
I How to generalize this concept to more than two variables?
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Symmetric and Positive Definite Matrix

I A matrix A ∈ Rn×n is said to be positive definite if and only if

x>Ax > 0 for all x 6= 0.

• A is said to be positive semi-definite if “>" is replaced by “≥".
I There are multiple equivalent conditions for determining whether

a matrix A is symmetric and positive definite.
• All eigenvalues of A are positive.
• All principal minors have positive determinant.
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Negative Definite Matrix

I How to define a negative definite matrix?
I What are some conditions for determining whether a matrix A is

symmetric and negative definite?
I Where does the symmetry of a Hessian matrix come from?



Review of Calculus Linear Least Squares Nonlinear Least Squares 2-D GPS Setup 3-D GPS Mechanism

The Real Second Order Optimality Condition

I If x is a critical point and is a local minimum for a smooth function
f , then its Hessian Hf (x) is necessarily positive semi-definite.

I If x is a critical point and if its Hessian Hf (x) is positive definite,
then x is a local minimum.

• What is the difference?
I What can be said about a local maximum?
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Constrained Optimization

I In real world, we cannot do whatever we want to do.
I Even we are interested in maximizing the gain or minimizing the

loss, often we are subject to some constraints.
I The challenge is how to handle this type of constrained

optimization?
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Roserbrock Function

min 100(y − x2)2 + (1− x)2,
subject to x2 + y2 ≤ 1.
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Method of Lagrange Multiplier

Suppose that the optimization problem is

min f (x , y),
subject to g(x , y) = c.

I Introduce a new variable λ, called a Lagrange multiplier.
I Define the Lagrange function, called Lagrangian, defined by

Λ(x , y , λ) = f (x , y)− λ(g(x , y)− c) (1)

I The critical point must satisfy

∇Λ = 0.

I Why?
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Geometric Meaning

feasible set g(x,y) = c

level curves of f(x,y) = d

level curves of f(x,y) = c
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An Example
Find the dimensions of the box with largest volume if the total surface
area is A.

I Setup:

max xyz,
subject to 2xy + 2xz + 2yz = A.

I Lagrangian:

Λ(x , y , z) = xyz − λ(xy + xz + yz − A
2

).

I Necessary condition:
yz = λ(y + z),
xz = λ(x + z),
xy = λ(x + y),

xy + xz + yz = A
2 .

I Need to solve the above system of equations for (x , y , z, λ).
• Hint: Multiply the first equation by x and the second equation by y .

Make an argument from here.
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Parameter Estimation

Parameter estimation is an important technique used for modeling in
many areas of disciplines.

I To mimic a complicated physical phenomenon, we sometimes
can create a model via a relationship such as

y = f (z; x1, . . . , xn). (2)

• f is a prescribed model determined up to values of x1, . . . , xn.
• x1, . . . , xn are the parameters.
• z is the control variable or input.
• y is the expected response or output to z.

I For more sophisticated models, both input z and output y can be
vectors.
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Using Observations

I Perform m experiments and collected m observed quantities
(zi , yi ), i = 1, . . . ,m.

• Typically (m ≥ n).
• Why?

I Due to measurement errors (called noise), (zi , yi ) may not satisfy
(2) exactly.

I Seek to adjust the parameters x1, . . . , xn so that the expression

g(x1, . . . , xn) :=
m∑

i=1

‖yi − f (zi ; x1, . . . , xn)‖2 (3)

is minimized.
I When the norm used in (3) is either the 2−norm or the Frobenius

norm, we say we have a least squares problem .
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Polynomial Fitting

I Suppose an (n − 1)-th degree polynomial

f (z; x1, . . . , xn) = x1zn−1 + . . .+ xn−1z + xn. (4)

is to fit m points in the plane.
I Ideally, want to solve the system

zn−1
1 zn−2

1 . . . z1 1
zn−1

2
...

zn−1
m zn−1

m . . . zm 1




x1
x2
...

xn

 =


y1
y2
...

ym

 (5)

for the coefficients (x1, . . . , xn).
• The system (5) is overdetermined, so generally there is no solution.
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General Linear Least Squares Problem

I Want to solve the optimization problem

min
x∈Rn
‖Ax− b‖2

2 (6)

where A ∈ Rm×n, b ∈ Rm are known quantities.
I “Linear" in the sense that the expected response y depends

linearly on the parameters x.
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Normal Equation

I Can write the objective function as

g(x) =
1
2

(Ax− b)>(Ax− b).

I The first order condition becomes

∇g(x) = A>Ax− A>b = 0.

• Prefer Ax = b; now A>Ax = A>b.
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Geometry behind Linear Least Squares

I Let the columns of A ∈ Rm×n be denoted as A = [a1, . . . ,an]
where each ai ∈ Rm.

I The product Ax can be written as

Ax =
n∑

i=1

xiai ,

• Ax is a linear combination of columns of A and hence is an element
in the range space of A.

I Solving the equation Ax = b is equivalent to finding an
appropriate combination of columns of A that makes up the
vector b.

• A necessary condition for Ax = b to have a solution is that
b ∈ R(A).

• What to do when b /∈ R(A)?
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b

Ax

Range space of A

I The best we can hope for is to find a combination so that the
residual b− Ax is minimized.

I The residual b− Ax must be perpendicular to R(A).
• How to quantify this geometry?
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Mathematical Setup
I From the assumed model y = f (z; x1, . . . , xn), define a residual

ri = ri (x1, . . . , xn) := yi − f (zi ; x1, . . . , xn)

for each observed data (zi , yi ), i = 1, . . . ,m.
I Intend to minimize the overall residual

g(x1, . . . , xn) :=
m∑

i=1

‖ri‖2
2.

I Rewrite the notion as an unconstrained optimization problem

min
x∈Rn

F (x)

where
F (x) :=

1
2
‖r(x)‖2

2 (7)

and
r(x) := [r1(x), . . . , rm(x)]>.
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First Optimality Condition

I The necessary condition for x to be a critical point is that
∇F (x) = 0.

I We calculate the gradient of F to be

∇F (x) = J(x)T t(x) (8)

where

J(x) :=
∂r
∂x

:=


∂r1
∂x1

∂r1
∂x2

. . . ∂r1
∂xn

...
∂rm
∂x1

∂rm
∂x2

. . . ∂rm
∂xn


is the m × n Jacobian matrix of f .
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Finding Critical Points

I Note that ∇F : Rn → Rn in nonlinear in general.
I Need an algorithm to solve the equation ∇F (x) = 0.

• The Newton-Ralphson method is generally too expensive.
• Special techniques are available for this type of problems.
• See lsqnonlin in MATLAB.
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A MATLAB Demonstration
I Want to minimize the function

10∑
k=1

(
2 + 2k − ekx1 − ekx2

)︸ ︷︷ ︸
rk (x)

2
.

%%
function example_lsqnonlin

x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0); % Invoke optimizer

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

end

end
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Basic Ideas of GPS
I Consider the scenario:

• Three observers, located along a straight line, measure the angle
of their line-of-sight to a certain object.

• Assume that the angles are measured counterclockwise from the
east (normal to the baseline of observers).

• Due to various reasons, such as atmosphere turbulence, their
observations are obscured.

y1y1

y2y2

y3y3

θ1

θ2

θ3

η1

η2

η3

1
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Information Retrieval

I The three measured angles θi , i = 1,2,3, are more or less
correct but carry some small uncertainties.

I It is desired to estimate the true position of the object.
I How to correct the problem?
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Necessary Conditions on the True Solution

y

x

y1

y2

y3

η1

η2

η3

1

y − yi

x
= tan ηi , i = 1,2,3.
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Build up Something Workable

I Get rid of y :

y = y1 + x tan η1 = y2 + x tan η2 = y3 + x tan η3.

I Get rid of x :

y2 − y1

tan η1 − tan η2
=

y3 − y2

tan η2 − tan η3
.

I The constraint:

(y2 − y1) (tan η2 − tan η3) = (y3 − y2) (tan η1 − tan η2) .

• Why is this significant?
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Constrained Least Squares

min f (η1, η2, η3) :=
∑3

i=1(θi − ηi )
2,

subject to (y2 − y1) (tan η2 − tan η3) = (y3 − y2) (tan η1 − tan η2) .

I How to handle this type of optimization problem?
I Homework: Using Lagrange multiplier theory, show that the

optimal angles are given by

η1 = θ1 + ω(y2 − y3) sec2 η1,

η2 = θ2 + ω(y3 − y1) sec2 η2,

η3 = θ3 + ω(y1 − y2) sec2 η3,

where ω is a constant that ensures the lines of sight define a
single point of intersection.
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Improvement of Techonology

I Must the measurement be done by angles?
• What are pros and cons in doing measurement by angles?

I Must the observers be lined up?
• What will happen if more observers (m > 3) are providing

information?
I The newer technology allows us to measure long distances.

• (L)ight (a)mplification by (s)timulated (e)mission of (r)adiation.
• Electronic signals.
• Satellite.
• GPS.
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Observation Around a Point
I Consider the scenario:

• Four observers, located at known positions in the plane, measure
the distance of their line-of-sight to a certain object.

• For various reasons, the measurements do not add up.
• Where is the correct position of (x , y)?

(x,y)

(x1, y1)

(x2, y2)

(x3, y3) (x4, y4)

R1

R2

R3

R4

1
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Setup

I Define the residuals:

ri (x , y) =
√

(x − xi )2 + (y − yi )2 − Ri , i = 1,2,3,4.

I Want to minimize the overall residual

F (x) :=
1
2
‖r(x)‖2

2.

I Need to solve the first order optimality condition:

[ x−x1
S1

x−x2
S2

x−x3
S3

x−x4
S4

y−y1
S1

y−y2
S2

y−y3
S3

y−y4
S4

]
r1(x , y)
r2(x , y)
r3(x , y)
r4(x , y)

 = 0.

• Si :=
√

(x − xi)2 + (y − yi)2.
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A Blessed Curse

I Suppose
• The observers are the satellites.
• A signal traveling at speed c is sent between the satellite and the

receiver.
• The distance Ri is calculated by measuring the transmission time

ti . Ideally,
Ri = cti .

I The clock in the typical low-cost receiver, i.e., the GPS, has
relatively poor precision. It carries an unknown latency d . So, in
reality,

Ri = c(ti − d)

• d is part of the calculation.
I How precise the time measurement of the atomic clocks must be

to keep the precision of distance to within 3 meter? 10 nanoseconds
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Reformulation

I Define the residuals:

ri (x , y ,d) =
√

(x − xi )2 + (y − yi )2 − c(ti − d), i = 1,2,3,4.

I Need to solve the first order optimality condition:
x−x1

S1

x−x2
S2

x−x3
S3

x−x4
S4

y−y1
S1

y−y2
S2

y−y3
S3

y−y4
S4

c c c c




r1(x , y ,d)
r2(x , y ,d)
r3(x , y ,d)
r4(x , y ,d)

 = 0.

• How many solutions are there in the system?.
• Why is this question important?
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How Many Satellites?

I Suppose that
• The object is moving around a circle (the earth) center at the origin

with radius r .
• The satellites are moving around the earth at a height of R from the

center.
I Assume that

• Satellites are programmed to automatically avoid collision.
• The object can occur at arbitrary point on the circle.

I To fully cover any point on the earth at any given time by four
satellites, how many satellites in total are needed in the orbit?
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r

R
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General GPS Description

I Currently, there are 24 satellites carrying atomic clocks.
I Orbit at an altitude of 20,200 km.
I Four satellites in each of six planes, slanted at 55o with respect

to the poles, make two revolutions per day.
I At any time, from any point on earth, five to eight satellites are in

the direct line of sight.
I Transmit synchronized signals from predetermined positions in

space.
I The receivers (GPS) on earth will pick up the signals.
I Do the mathematics to determine the accurate (x , y , z)

coordinates of the receiver.
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– from Wikipedia
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Navigation Equation

I Define the residuals:

ri (x , y , z,d) =
√

(x − xi )2 + (y − yi )2 + (z − zi )2 − c(ti − d).

I Four equations in four unknowns.
• Subtracting the first equation from the last three leads to three

linear equations in (x , y , z).
• By Gaussian elimination, a single solution (x , y , z) is found.
• Obtain a quadratic equation in d upon substitution.
• At most two real solutions can be found.
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Other Concerns
I There are other technical issues when GPS is deployed.

• Conditioning of the navigation equation.
• Transmission speed might be less than the speed of light

• Need to pass through 100 km ionosphere and 10 km troposphere
while subjecting to electromagnetic fields.

• Might encounter obstacles or atmospheric degradation.

I Can overcome the issues by adding more satellites.
• No longer a square problem.
• Need fast nonlinear least squares techniques.

I Who is maintaining the GBS?
• civilian GPS (CPS) versus military GPS (PPS)

• two frequencies + ionosphere correction.

• DoD, $1.3B, US taxpayers’ money.
• Galileo, EU, e5.0B, 30 satellites by 2019.
• GLONESS, Russian, 24 satellites.
• BeiDou, China, 35 satellites by 2020.
• QZSS, Japan, 7 satellites by 2023, high precision (6 cm)
• NAVIC, India, 7 by 2018.
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