Nonlinear Least Squares with Its Application to GPS Technology

Moody T. Chu

North Carolina State University

MA325 @ North Carolina State University

Take Home Message

- Many sophisticated modern applications are based on simple mathematical theory.
- Many complicated mathematical concepts are based on elementary geometry and calculus.
- The global position system (GPS) is one such an example.

Course Plan of This Module

1. Review of Calculus (2 hour)
2. Linear Least Squares Problems (2 hours)

- Homework

3. Nonlinear Least Squares Problems (1 hours)
4. 2-D Set up (2 hours)

- Homework

5. 3-D Set up (2 hours)

- Project

Outline

Review of Calculus

Optimization
Constrained Optimization
Linear Least Squares
Data Fitting
Mathematics Behind
Numerical Techniques
Nonlinear Least Squares
Mathematical Setup
Gauss-Newton Method
2-D GPS Setup
Observation Along a Straight Line
Measurement by Distance
3-D GPS Mechanism
Satellite setup
Navigation Equation

Outline

Review of Calculus
Optimization
Constrained Optimization
Linear Least Squares
Data Fitting
Mathematics Behind
Numerical Techniques
Nonlinear Least Squares
Mathematical Setup
Gauss-Newton Method
2-D GPS Setup
Observation Along a Straight Line
Measurement by Distance
3-D GPS Mechanism
Satellite setup
Navigation Equation

Outline

Review of Calculus
Optimization
Constrained Optimization
Linear Least Squares
Data Fitting
Mathematics Behind
Numerical Techniques
Nonlinear Least Squares
Mathematical Setup
Gauss-Newton Method
2-D GPS Setup
Observation Along a Straight Line
Measurement by Distance
3-D GPS Mechanism
Satellite setup
Navigation Equation

Outline

Review of Calculus
Optimization
Constrained Optimization
Linear Least Squares
Data Fitting
Mathematics Behind
Numerical Techniques
Nonlinear Least Squares
Mathematical Setup
Gauss-Newton Method
2-D GPS Setup
Observation Along a Straight Line
Measurement by Distance
3-D GPS Mechanism
Satellite setup
Navigation Equation

Outline

Review of Calculus
Optimization
Constrained Optimization
Linear Least Squares
Data Fitting
Mathematics Behind
Numerical Techniques
Nonlinear Least Squares
Mathematical Setup
Gauss-Newton Method
2-D GPS Setup
Observation Along a Straight Line
Measurement by Distance
3-D GPS Mechanism
Satellite setup
Navigation Equation

Gradient

- Given a scalar function

$$
f: \mathbb{R}^{n} \longrightarrow \mathbb{R}
$$

define the gradient of η by

$$
\nabla f:=\left[\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]
$$

- Significance:
- Points in the direction where the function $f(\mathbf{x})$ ascends most rapidly.
- Attainable maximum rate of change is precisely $\|\nabla f(\mathbf{x})\|$.

First Order Optimality Condition

Suppose $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is a smooth function over an open domain. Then

- The functional value $f(\mathbf{x})$ reaches an extreme value, either maximum or minimum, at a point $\mathbf{x} \in \mathbb{R}^{n}$ only if

$$
\nabla f(\mathbf{x})=0
$$

- The extreme is only a relative (local) extreme.

$$
f(x, y)=3(1-x)^{2} e^{-x^{2}-(y+1)^{2}}-10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{\left(-x^{2}-y^{2}\right)}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}}
$$

Peaks

Second Order Optimality Condition

- Need a way to tell the concavity.
- In Calculus III, for the case $n=2$, we have learned the basic rules:
- Compute the second derivative, the so called Hessian matrix,

$$
H_{f}(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right] .
$$

- If $f_{x x} f_{y y}-f_{x y} f_{y x}<0$, then it is a saddle.
- If $f_{x x} f_{y y}-f_{x y} f_{y x}>0$ and $f_{x x}>0$, then it is a minimum (cup).
- If $f_{x x} f_{y y}-f_{x y} f_{y x}>0$ and $f_{x x}<0$, then it is a maximum (cap).
- If any of these is zero, then go to graduate school.
- What is going on here?
- How to generalize this concept to more than two variables?

Symmetric and Positive Definite Matrix

- A matrix $A \in \mathbb{R}^{n \times n}$ is said to be positive definite if and only if

$$
\mathbf{x}^{\top} A \mathbf{x}>0 \quad \text { for all } \mathbf{x} \neq 0
$$

- A is said to be positive semi-definite if " $>$ " is replaced by " \geq ".
- There are multiple equivalent conditions for determining whether a matrix A is symmetric and positive definite.
- All eigenvalues of A are positive.
- All principal minors have positive determinant.

Negative Definite Matrix

- How to define a negative definite matrix?
- What are some conditions for determining whether a matrix A is symmetric and negative definite?
- Where does the symmetry of a Hessian matrix come from?

The Real Second Order Optimality Condition

- If \mathbf{x} is a critical point and is a local minimum for a smooth function f, then its Hessian $H_{f}(\mathbf{x})$ is necessarily positive semi-definite.
- If \mathbf{x} is a critical point and if its Hessian $H_{f}(\mathbf{x})$ is positive definite, then \mathbf{x} is a local minimum.
- What is the difference?
- What can be said about a local maximum?

Constrained Optimization

- In real world, we cannot do whatever we want to do.
- Even we are interested in maximizing the gain or minimizing the loss, often we are subject to some constraints.
- The challenge is how to handle this type of constrained optimization?

Roserbrock Function

$$
\begin{array}{cl}
\min & 100\left(y-x^{2}\right)^{2}+(1-x)^{2} \\
\text { subject to } & x^{2}+y^{2} \leq 1
\end{array}
$$

Method of Lagrange Multiplier

Suppose that the optimization problem is

$$
\begin{array}{cl}
\min & f(x, y), \\
\text { subject to } & g(x, y)=c .
\end{array}
$$

- Introduce a new variable λ, called a Lagrange multiplier.
- Define the Lagrange function, called Lagrangian, defined by

$$
\begin{equation*}
\Lambda(x, y, \lambda)=f(x, y)-\lambda(g(x, y)-c) \tag{1}
\end{equation*}
$$

- The critical point must satisfy

$$
\nabla \wedge=0
$$

- Why?

Geometric Meaning

An Example

Find the dimensions of the box with largest volume if the total surface area is A.

- Setup:

$$
\begin{array}{cl}
\max & x y z, \\
\text { subject to } & 2 x y+2 x z+2 y z=A .
\end{array}
$$

- Lagrangian:

$$
\Lambda(x, y, z)=x y z-\lambda\left(x y+x z+y z-\frac{A}{2}\right) .
$$

- Necessary condition:

$$
\left\{\begin{aligned}
y z & =\lambda(y+z), \\
x z & =\lambda(x+z), \\
x y & =\lambda(x+y), \\
x y+x z+y z & =\frac{A}{2} .
\end{aligned}\right.
$$

- Need to solve the above system of equations for (x, y, z, λ).
- Hint: Multiply the first equation by x and the second equation by y. Make an argument from here.

Parameter Estimation

Parameter estimation is an important technique used for modeling in many areas of disciplines.

- To mimic a complicated physical phenomenon, we sometimes can create a model via a relationship such as

$$
\begin{equation*}
y=f\left(z ; x_{1}, \ldots, x_{n}\right) \tag{2}
\end{equation*}
$$

- f is a prescribed model determined up to values of x_{1}, \ldots, x_{n}.
- x_{1}, \ldots, x_{n} are the parameters.
- z is the control variable or input.
- y is the expected response or output to z.
- For more sophisticated models, both input z and output y can be vectors.

Using Observations

- Perform m experiments and collected m observed quantities $\left(z_{i}, y_{i}\right), i=1, \ldots, m$.
- Typically ($m \geq n$).
-Why?
- Due to measurement errors (called noise), $\left(z_{i}, y_{i}\right)$ may not satisfy (2) exactly.
- Seek to adjust the parameters x_{1}, \ldots, x_{n} so that the expression

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{m}\left\|y_{i}-f\left(z_{i} ; x_{1}, \ldots, x_{n}\right)\right\|^{2} \tag{3}
\end{equation*}
$$

is minimized.

- When the norm used in (3) is either the 2 -norm or the Frobenius norm, we say we have a least squares problem.

Polynomial Fitting

- Suppose an ($n-1$)-th degree polynomial

$$
\begin{equation*}
f\left(z ; x_{1}, \ldots, x_{n}\right)=x_{1} z^{n-1}+\ldots+x_{n-1} z+x_{n} . \tag{4}
\end{equation*}
$$

is to fit m points in the plane.

- Ideally, want to solve the system

$$
\left[\begin{array}{ccccc}
z_{1}^{n-1} & z_{1}^{n-2} & \ldots & z_{1} & 1 \tag{5}\\
z_{2}^{n-1} & & & & \\
\vdots & & & & \\
& & & & \\
z_{m}^{n-1} & z_{m}^{n-1} & \ldots & z_{m} & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\\
y_{m}
\end{array}\right]
$$

for the coefficients $\left(x_{1}, \ldots, x_{n}\right)$.

- The system (5) is overdetermined, so generally there is no solution.

General Linear Least Squares Problem

- Want to solve the optimization problem

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2} \tag{6}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ are known quantities.

- "Linear" in the sense that the expected response y depends linearly on the parameters \mathbf{x}.

Normal Equation

- Can write the objective function as

$$
g(\mathbf{x})=\frac{1}{2}(A \mathbf{x}-\mathbf{b})^{\top}(A \mathbf{x}-\mathbf{b}) .
$$

- The first order condition becomes

$$
\nabla g(\mathbf{x})=A^{\top} A \mathbf{x}-A^{\top} \mathbf{b}=0
$$

- Prefer $A \mathbf{x}=\mathbf{b}$; now $A^{\top} A \mathbf{x}=A^{\top} \mathbf{b}$.

Geometry behind Linear Least Squares

- Let the columns of $A \in \mathbb{R}^{m \times n}$ be denoted as $A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ where each $\mathbf{a}_{i} \in \mathbb{R}^{m}$.
- The product $A \mathbf{x}$ can be written as

$$
A \mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{a}_{i}
$$

- $A \mathbf{x}$ is a linear combination of columns of A and hence is an element in the range space of A.
- Solving the equation $A \mathbf{x}=\mathbf{b}$ is equivalent to finding an appropriate combination of columns of A that makes up the vector \mathbf{b}.
- A necessary condition for $A \mathbf{x}=\mathbf{b}$ to have a solution is that $\mathbf{b} \in R(A)$.
- What to do when $\mathbf{b} \notin R(A)$?

Nowhear Least Squares

 00

- The best we can hope for is to find a combination so that the residual $\mathbf{b}-A \mathbf{x}$ is minimized.
- The residual $\mathbf{b}-A \mathbf{x}$ must be perpendicular to $R(A)$.
- How to quantify this geometry?

Mathematical Setup

- From the assumed model $y=f\left(z ; x_{1}, \ldots, x_{n}\right)$, define a residual

$$
r_{i}=r_{i}\left(x_{1}, \ldots, x_{n}\right):=y_{i}-f\left(z_{i} ; x_{1}, \ldots, x_{n}\right)
$$

for each observed data $\left(z_{i}, y_{i}\right), i=1, \ldots, m$.

- Intend to minimize the overall residual

$$
g\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{m}\left\|r_{i}\right\|_{2}^{2}
$$

- Rewrite the notion as an unconstrained optimization problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} F(\mathbf{x})
$$

where

$$
\begin{equation*}
F(\mathbf{x}):=\frac{1}{2}\|\mathbf{r}(\mathbf{x})\|_{2}^{2} \tag{7}
\end{equation*}
$$

and

$$
\mathbf{r}(\mathbf{x}):=\left[r_{1}(\mathbf{x}), \ldots, r_{m}(\mathbf{x})\right]^{\top} .
$$

First Optimality Condition

- The necessary condition for \mathbf{x} to be a critical point is that $\nabla F(\mathbf{x})=0$.
- We calculate the gradient of F to be

$$
\begin{equation*}
\nabla F(\mathbf{x})=J(\mathbf{x})^{\top} t(\mathbf{x}) \tag{8}
\end{equation*}
$$

where

$$
J(\mathbf{x}):=\frac{\partial \mathbf{r}}{\partial \mathbf{x}}:=\left[\begin{array}{cccc}
\frac{\partial r_{1}}{\partial x_{1}} & \frac{\partial r_{1}}{\partial x_{2}} & \cdots & \frac{\partial r_{1}}{\partial x_{n}} \\
\vdots & & & \\
\frac{\partial r_{m}}{\partial x_{1}} & \frac{\partial r_{m}}{\partial x_{2}} & \cdots & \frac{\partial r_{m}}{\partial x_{n}}
\end{array}\right]
$$

is the $m \times n$ Jacobian matrix of f.

Finding Critical Points

- Note that $\nabla F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ in nonlinear in general.
- Need an algorithm to solve the equation $\nabla F(\mathbf{x})=0$.
- The Newton-Ralphson method is generally too expensive.
- Special techniques are available for this type of problems.
- See Isqnonlin in Matlab.

A Matlab Demonstration

- Want to minimize the function

$$
\sum_{k=1}^{10} \underbrace{\left(2+2 k-e^{k x_{1}}-e^{k x_{2}}\right)^{2}}_{r_{k}(\mathbf{x})}
$$

$\% \%$
function example_lsqnonlin
$\mathrm{x} 0=\left[\begin{array}{ll}0.3 & 0.4\end{array}\right]$
[x,resnorm] $=$ lsqnonlin(@myfun, $x 0$);
\% Starting guess
\% Invoke optimizer

```
function \(F=\) myfun(x)
    \(\mathrm{k}=1: 10\);
    \(\mathrm{F}=2+2 \star \mathrm{k}-\exp (\mathrm{k} * \mathrm{x}(1))-\exp (\mathrm{k} * \mathrm{x}(2))\);
    end
```

end

Basic Ideas of GPS

- Consider the scenario:
- Three observers, located along a straight line, measure the angle of their line-of-sight to a certain object.
- Assume that the angles are measured counterclockwise from the east (normal to the baseline of observers).
- Due to various reasons, such as atmosphere turbulence, their observations are obscured.

Information Retrieval

- The three measured angles $\theta_{i}, i=1,2,3$, are more or less correct but carry some small uncertainties.
- It is desired to estimate the true position of the object.
- How to correct the problem?

Necessary Conditions on the True Solution

$$
\frac{y-y_{i}}{x}=\tan \eta_{i}, \quad i=1,2,3 .
$$

Build up Something Workable

- Get rid of y :

$$
y=y_{1}+x \tan \eta_{1}=y_{2}+x \tan \eta_{2}=y_{3}+x \tan \eta_{3} .
$$

- Get rid of x :

$$
\frac{y_{2}-y_{1}}{\tan \eta_{1}-\tan \eta_{2}}=\frac{y_{3}-y_{2}}{\tan \eta_{2}-\tan \eta_{3}} .
$$

- The constraint:

$$
\left(y_{2}-y_{1}\right)\left(\tan \eta_{2}-\tan \eta_{3}\right)=\left(y_{3}-y_{2}\right)\left(\tan \eta_{1}-\tan \eta_{2}\right) .
$$

- Why is this significant?

Constrained Least Squares

min

$$
\begin{array}{cc}
\min & f\left(\eta_{1}, \eta_{2}, \eta_{3}\right):=\sum_{i=1}^{3}\left(\theta_{i}-\eta_{i}\right)^{2}, \\
\text { subject to } & \left(y_{2}-y_{1}\right)\left(\tan \eta_{2}-\tan \eta_{3}\right)=\left(y_{3}-y_{2}\right)\left(\tan \eta_{1}-\tan \eta_{2}\right) .
\end{array}
$$

- How to handle this type of optimization problem?
- Homework: Using Lagrange multiplier theory, show that the optimal angles are given by

$$
\begin{aligned}
& \eta_{1}=\theta_{1}+\omega\left(y_{2}-y_{3}\right) \sec ^{2} \eta_{1}, \\
& \eta_{2}=\theta_{2}+\omega\left(y_{3}-y_{1}\right) \sec ^{2} \eta_{2}, \\
& \eta_{3}=\theta_{3}+\omega\left(y_{1}-y_{2}\right) \sec ^{2} \eta_{3},
\end{aligned}
$$

where ω is a constant that ensures the lines of sight define a single point of intersection.

Improvement of Techonology

- Must the measurement be done by angles?
-What are pros and cons in doing measurement by angles?
- Must the observers be lined up?
- What will happen if more observers ($m>3$) are providing information?
- The newer technology allows us to measure long distances.
- (L)ight (a)mplification by (s)timulated (e)mission of (r)adiation.
- Electronic signals.
- Satellite.
- GPS.

Observation Around a Point

- Consider the scenario:
- Four observers, located at known positions in the plane, measure the distance of their line-of-sight to a certain object.
- For various reasons, the measurements do not add up.
- Where is the correct position of (x, y) ?

Setup

- Define the residuals:

$$
r_{i}(x, y)=\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}-R_{i}, \quad i=1,2,3,4 .
$$

- Want to minimize the overall residual

$$
F(\mathbf{x}):=\frac{1}{2}\|\mathbf{r}(\mathbf{x})\|_{2}^{2}
$$

- Need to solve the first order optimality condition:

$$
\left[\begin{array}{cccc}
\frac{x-x_{1}}{S_{1}} & \frac{x-x_{2}}{S_{2}} & \frac{x-x_{3}}{S_{3}} & \frac{x-x_{4}}{S_{4}} \\
\frac{y-y_{1}}{S_{1}} & \frac{y-y_{2}}{S_{2}} & \frac{y-y_{3}}{S_{3}} & \frac{y-y_{4}}{S_{4}}
\end{array}\right]\left[\begin{array}{l}
r_{1}(x, y) \\
r_{2}(x, y) \\
r_{3}(x, y) \\
r_{4}(x, y)
\end{array}\right]=0
$$

- $S_{i}:=\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}$.

A Blessed Curse

- Suppose
- The observers are the satellites.
- A signal traveling at speed c is sent between the satellite and the receiver.
- The distance R_{i} is calculated by measuring the transmission time t_{i}. Ideally,

$$
R_{i}=c t_{i} .
$$

- The clock in the typical low-cost receiver, i.e., the GPS, has relatively poor precision. It carries an unknown latency d. So, in reality,

$$
R_{i}=c\left(t_{i}-d\right)
$$

- d is part of the calculation.
- How precise the time measurement of the atomic clocks must be to keep the precision of distance to within 3 meter?

Reformulation

- Define the residuals:

$$
r_{i}(x, y, d)=\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}-c\left(t_{i}-d\right), \quad i=1,2,3,4 .
$$

- Need to solve the first order optimality condition:

$$
\left[\begin{array}{cccc}
\frac{x-x_{1}}{S_{1}} & \frac{x-x_{2}}{S_{2}} & \frac{x-x_{3}}{S_{3}} & \frac{x-x_{4}}{S_{4}} \\
\frac{y-y_{1}}{S_{1}} & \frac{y-y_{2}}{S_{2}} & \frac{y-y_{3}}{S_{3}} & \frac{y-y_{4}}{S_{4}} \\
c & c & c & c
\end{array}\right]\left[\begin{array}{l}
r_{1}(x, y, d) \\
r_{2}(x, y, d) \\
r_{3}(x, y, d) \\
r_{4}(x, y, d)
\end{array}\right]=0
$$

- How many solutions are there in the system?.
- Why is this question important?

How Many Satellites?

- Suppose that
- The object is moving around a circle (the earth) center at the origin with radius r.
- The satellites are moving around the earth at a height of R from the center.
- Assume that
- Satellites are programmed to automatically avoid collision.
- The object can occur at arbitrary point on the circle.
- To fully cover any point on the earth at any given time by four satellites, how many satellites in total are needed in the orbit?

General GPS Description

- Currently, there are 24 satellites carrying atomic clocks.
- Orbit at an altitude of $20,200 \mathrm{~km}$.
- Four satellites in each of six planes, slanted at 55° with respect to the poles, make two revolutions per day.
- At any time, from any point on earth, five to eight satellites are in the direct line of sight.
- Transmit synchronized signals from predetermined positions in space.
- The receivers (GPS) on earth will pick up the signals.
- Do the mathematics to determine the accurate (x, y, z) coordinates of the receiver.

Navigation Equation

- Define the residuals:

$$
r_{i}(x, y, z, d)=\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}}-c\left(t_{i}-d\right)
$$

- Four equations in four unknowns.
- Subtracting the first equation from the last three leads to three linear equations in (x, y, z).
- By Gaussian elimination, a single solution (x, y, z) is found.
- Obtain a quadratic equation in d upon substitution.
- At most two real solutions can be found.

Other Concerns

- There are other technical issues when GPS is deployed.
- Conditioning of the navigation equation.
- Transmission speed might be less than the speed of light
- Need to pass through 100 km ionosphere and 10 km troposphere while subjecting to electromagnetic fields.
- Might encounter obstacles or atmospheric degradation.
- Can overcome the issues by adding more satellites.
- No longer a square problem.
- Need fast nonlinear least squares techniques.
- Who is maintaining the GBS?
- civilian GPS (CPS) versus military GPS (PPS)
- two frequencies + ionosphere correction.
- DoD, \$1.3B, US taxpayers' money.
- Galileo, EU, €5.0B, 30 satellites by 2019.
- GLONESS, Russian, 24 satellites.
- BeiDou, China, 35 satellites by 2020.
- QZSS, Japan, 7 satellites by 2023, high precision (6 cm)
- NAVIC, India, 7 by 2018.

