Conditioning

- A mathematical problem is said to be well-conditioned if small changes in the data of a problem result in small changes in the solution.
	- \Diamond Conditioning is a qualitative description of the sensitivity dependence of the solution to the change of data in a problem.
	- \Diamond An ill-conditioned problem can be solved accurately, if this possible at all, only by very careful calculation, quite aside from the method used. An unstable numerical method for a particular (even a well-conditioned) problem may give accurate results only in the early stage, but inevitably will give useless i results in the long run.
- An example: Root-finding of a polynomial could be an ill-conditioned problem.
	- \Diamond Consider using a machine with $\beta = 2$ and $t = 30$.
	- \Diamond The zeros of the 20-th degree polynomial

$$
p(x) = (x - 1)(x - 2) \dots (x - 20) = x^{20} - 210x^{19} + \dots
$$

are obvious and well separated.

 \Diamond Suppose a change in the 30-th significant base-2 digit is made only at the coefficient of x^{19} . Then, instead, the problem understood by the computer is to find roots of the perturbed polynomial,

$$
q(x) = p(x) + 2^{-23}x^{19}.
$$

 \Diamond Upon using very accurate method, the roots of $q(x)$ are

- Note that the small change in the coefficient −210 by a quantity $2^{-23} \approx 10^{-7}$ has caused ten of the zeros of $p(x)$ to become complex and that two have moved more than 2.81 units off the real axis. The problem is ill-conditioned.
- The sensitivity can sometimes be measured by the partial derivatives.
	- \diamond Denote the dependence on α as

$$
p(x, \alpha) = x^{20} - \alpha x^{19} + \ldots = 0.
$$

 \diamond Use implicit differentiation. We have

$$
\frac{\partial p(x,\alpha)}{\partial x}\frac{\partial x}{\partial \alpha} + \frac{\partial p(x,\alpha)}{\partial \alpha} = 0.
$$

Thus,

$$
\frac{\partial x}{\partial \alpha}|_{\alpha=210} = -\frac{\frac{\partial p}{\partial \alpha}}{\frac{\partial p}{\partial x}} = \frac{x^{19}}{\sum_{i=1}^{20} \prod_{j\neq i} (x-j)}.
$$

 \Diamond Evaluating this at each root gives $\frac{\partial x}{\partial \alpha}|_{x=i} = \frac{i^{19}}{\prod_{i=1}^{20}}$ $\frac{i^{19}}{\prod_{j=1}^{20}}(i-j)$. These numbers give a direct measure of the sensitivity of each of the roots to the coefficient α . It turns out, for example, $\frac{\partial x}{\partial \alpha}|_{x=18} \approx 1.0 \times 10^9$.