Conditioning

- A mathematical problem is said to be *well-conditioned* if small changes in the data of a problem result in small changes in the solution.
 - ♦ Conditioning is a qualitative description of the sensitivity dependence of the solution to the change of data in a problem.
 - An ill-conditioned problem can be solved accurately, if this possible at all, only by very careful calculation, quite aside from the method used. An unstable numerical method for a particular (even a well-conditioned) problem may give accurate results only in the early stage, but inevitably will give useless i results in the long run.
- An example: Root-finding of a polynomial could be an ill-conditioned problem.
 - \diamond Consider using a machine with $\beta = 2$ and t = 30.
 - $\diamond\,$ The zeros of the 20-th degree polynomial

$$p(x) = (x - 1)(x - 2) \dots (x - 20) = x^{20} - 210x^{19} + \dots$$

are obvious and well separated.

 \diamond Suppose a change in the 30-th significant base-2 digit is made only at the coefficient of x^{19} . Then, instead, the problem understood by the computer is to find roots of the perturbed polynomial,

$$q(x) = p(x) + 2^{-23}x^{19}.$$

 \diamond Upon using very accurate method, the roots of q(x) are

1.000000000	$10.095266145 \pm 0.643500904 \mathrm{i}$
2.000000000	$11.793633881 \pm 1.652329728 \mathrm{i}$
3.000000000	$13.992358137 \pm 2.518830070i$
4.000000000	$16.730737466 \pm 2.812624894i$
4.999999928	$19.502429400 \pm 1.940330347i$
6.000000000	
6.999697234	
8.007267603	
8.917250249	
20.846908104.	

- ♦ Note that the small change in the coefficient -210 by a quantity $2^{-23} \approx 10^{-7}$ has caused ten of the zeros of p(x) to become complex and that two have moved more than 2.81 units off the real axis. The problem is ill-conditioned.
- The sensitivity can sometimes be measured by the partial derivatives.
 - $\diamond\,$ Denote the dependence on α as

$$p(x, \alpha) = x^{20} - \alpha x^{19} + \ldots = 0.$$

 $\diamond\,$ Use implicit differentiation. We have

$$\frac{\partial p(x,\alpha)}{\partial x}\frac{\partial x}{\partial \alpha} + \frac{\partial p(x,\alpha)}{\partial \alpha} = 0.$$

Thus,

$$\frac{\partial x}{\partial \alpha}|_{\alpha=210} = -\frac{\frac{\partial p}{\partial \alpha}}{\frac{\partial p}{\partial x}} = \frac{x^{19}}{\sum_{i=1}^{20} \prod_{j \neq i} (x-j)}.$$

♦ Evaluating this at each root gives $\frac{\partial x}{\partial \alpha}|_{x=i} = \frac{i^{19}}{\prod_{\substack{j=1 \ j\neq i}}^{20}}(i-j)$. These numbers give a direct measure of the sensitivity of each of the roots to the coefficient α . It turns out, for example, $\frac{\partial x}{\partial \alpha}|_{x=18} \approx 1.0 \times 10^9$.