Polynomial Interpolation

- Two distinct points can uniquely determine a straight line. What can three points in a plane that are not collinear determine?
 - \diamond Given $\{(x_i, f_i)\}_{i=0}^2$, determine a quadratic polynomial

$$p(t) - a_0 + a_1t + a_2t^2$$

such that

$$p(x_i) = f_i, \ i = 0, 1, 2.$$

 \diamond The coefficients can be determined, in principle, by solving the linear equation

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}.$$

- ♦ Concerns in numerical calculation:
 - \triangleright Is the system solvable?
 - \triangleright How expensive?
 - \triangleright How about conditioning of the linear system?
- The general interpolation problem:
 - ♦ Given points $\{(x_i, f_i)\}_{i=0}^n$, where x_i are distinct, determine a polynomial p(t) satisfying

$$deg(p) \leq n,$$

$$p(x_i) = f_i, i = 0, 1, \dots, n.$$

♦ If $p(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a_n t^n$, then the interpolation problem is equivalent to solving the Vandermonde linear system

$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\begin{array}{c} x_0 \\ x_1 \end{array}$	$x_0^2 \\ x_1^2$	· · · ·	$\begin{bmatrix} x_0^n \\ x_1^n \end{bmatrix}$	$\left[\begin{array}{c}a_0\\a_1\end{array}\right]$		$\begin{bmatrix} f_0 \\ f_1 \end{bmatrix}$	
: 1	\vdots x_n	\vdots x_n^2		$\begin{bmatrix} \vdots \\ x_n^n \end{bmatrix}$	$\begin{bmatrix} \vdots \\ a_n \end{bmatrix}$	=	$\begin{array}{c} \vdots \\ f_n \end{array}$	•