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Polynomial Interpolation

• Two distinct points can uniquely determine a straight line. What can
three points in a plane that are not collinear determine?

� Given {(xi, fi)}2
i=0, determine a quadratic polynomial

p(t)− a0 + a1t + a2t
2

such that
p(xi) = fi, i = 0, 1, 2.

� The coefficients can be determined, in principle, by solving the
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� Concerns in numerical calculation:

. Is the system solvable?

. How expensive?

. How about conditioning of the linear system?

• The general interpolation problem:

� Given points {(xi, fi)}n
i=0, where xi are distinct, determine a poly-

nomial p(t) satisfying

deg(p) ≤ n,

p(xi) = fi, i = 0, 1, . . . , n.

� If p(t) = a0+a1t+a2t
2+ . . .+ant

n, then the interpolation problem
is equivalent to solving the Vandermonde linear system
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