Newton's Interpolation Formula

- Newton's interpolation formula is mathematically equivalent to the Lagrange's formula, but is much more efficient.
 - ♦ One of the most important features of Newton's formula is that one can gradually increase the support data without recomputing what is already computed.
- Divided Difference:
 - \diamond Let $P_{i_0 i_1 \dots i_k}(t)$ represent the k-th degree polynomial that satisfies

$$P_{i_0 i_1 \dots i_k}(x_{i_j}) = f_{i_j} \tag{1}$$

for all $j = 0, \ldots, k$.

 $\diamond\,$ The recursion formula holds:

$$p_{i_0 i_1 \dots i_k}(t) = \frac{(t - x_{i_0}) P_{i_1 \dots i_k}(t) - (t - x_{i_k}) P_{i_0 \dots i_{k-1}}(t)}{x_{i_k} - x_{i_0}}$$
(2)

- ▷ The right-hand side of (??), denoted by R(t), is a polynomial of degree $\leq k$.
- $\triangleright R(x_{i_j}) = f_{i_j}$ for all j = 0, ..., k. That is, R(t) interpolates the same set of data as does the polynomial $P_{i_0 i_1...i_k}(t)$.
- \triangleright By uniqueness, $R(t) = P_{i_0 i_1 \dots i_k}(t)$.
- ♦ The difference $P_{i_0i_1...i_k}(t) P_{i_0i_1...i_{k-1}}(t)$ is a k-th degree polynomial that vanishes at x_{i_j} for j = 0, ..., k 1. Thus we may write

$$P_{i_0i_1\dots i_k}(t) = P_{i_0i_1\dots i_{k-1}}(t) + f_{i_0\dots i_k}(t-x_{i_0})(t-x_{i_1})\dots(t-x_{i_{k-1}}).$$
(3)

♦ The leading coefficients $f_{i_0...i_k}$ can be determined recursively from the formula (??), i.e.,

$$f_{i_0\dots i_k} = \frac{f_{i_1\dots i_k} - f_{i_0\dots i_{k-1}}}{x_{i_k} - x_{i_0}} \tag{4}$$

where $f_{i_1...i_k}$ and $f_{i_0...i_{k-1}}$ are the leading coefficients of the polynomials $P_{i_1...i_k}(x)$ and $P_{i_0...i_{k-1}}(x)$, respectively.

• Let x_0, \ldots, x_k be support arguments (but not necessarily in any order) over the interval [a, b]. We define the Newton's divided difference as follows:

$$f[x_0]: = f(x_0)$$
(5)

$$f[x_0, x_1]: = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$
(6)

$$f[x_0, \dots, x_k] := \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$
(7)

• The k-th degree polynomial that interpolates the set of support data $\{(x_i, f_i) | i = 0, ..., k\}$ is given by

$$P_{x_0\dots x_k}(x) = f[x_0] + f[x_0, x_1](x - x_0)$$

$$+ \dots + f[x_0, \dots, x_k](x - x_0)(x - x_1)\dots(x - x_{k-1}).$$
(8)