Error in Interpolation

• Suppose the polynomial p(t) interpolates a function f(t) at nodes $t = x_0, x_1, \ldots, x_n$, i.e., suppose $p(x_i) = f_i = f(x_i)$ for all $i = 0, 1, \ldots, n$. Define

$$e(t) = f(t) - p(t)$$

as the error function. What can be said about the behavior of e(t)?

 \diamond Choose $x_{-1} \neq x_i$ for any $i = 0, 1, \dots, n$. Define

$$F(u) = f(u) - p(u) - (f(x_{-1}) - p(x_{-1})) \frac{\prod_{i=0}^{n} (x - x_i)}{\prod_{i=0}^{n} (x_{-1} - x_i)}.$$

- \diamond Observe $F(x_i) = 0$ for $i = -1, 0, 1, \dots, n$, i.e., F(u) has n+2 zeros.
- ♦ By Rolle's theorem, there exists ξ betweein x_{-1}, x_0, \ldots, x_n such that $F^{(n+1)}(\xi) = 0$.
- $\diamond\,$ Note that

$$f^{(n+1)}(\xi) - (f(x_{-1}) - p(x_{-1})) \frac{(n+1)!}{\prod_{i=0}^{n} (x_{-1} - x_i)}$$

 \diamond Since x_{-1} is arbitrary, we have established

$$e(t) = \frac{\prod_{i=0}^{n} (t - x_i)}{(n+1)!} f^{(n+1)}(\xi)$$
(1)

for some ξ between t, x_0, \ldots, x_n .

 \triangleright Note that $\xi = \xi(t)$ varies as t varies.