Hermite Interpolation

- Thus far, the interpolation has been required only to interpolate the functional values. Sometimes it is desirable that the derivatives are also interpolated.
- Given $\{x_i\}, i = 1, ..., k$ and values $a_i^{(0)}, ..., a_i^{(r_i)}$ where r_i are nonnegative integers. We want to construct a polynomial p(t) such that

$$P^{(j)}(x_i) = a_i^{(j)} \tag{1}$$

for i = 1, ..., k and $j = 0, ..., r_i$.

- ♦ Such a polynomial is called an osculatory (kissing) interpolating polynomial of a function f if $a_i^{(j)} = f^{(j)}(x_i)$ for all i and j.
- Some examples of osculatory interpolation:
 - ♦ Suppose $r_i = 0$ for all *i*. Then this is simply the ordinary Lagrange or Newton interpolation.
 - ♦ Suppose $k = 1, x_1 = a, r_1 = n 1$, then the osculatory polynomial becomes $p(t) = \sum_{j=0}^{n-1} f^{(j)}(a) \frac{(t-a)^j}{j!}$ which is the Taylor's polynomial of f at x = a.
- One of the most interesting osculatory interpolations is when $r_i = 1$ for all i = 1, ..., k. That is, the values of $f(x_i)$ and $f'(x_i)$ are to be interpolated.
 - \diamond The resulting (2k 1)-degree polynomial is called the *Hermite* interpolating polynomial.
 - ◊ Very useful for deriving numerical integration scheme of high precision.

Construction of Hermite Polynomial

• Recall the (k-1)-degree polynomial

$$\ell_i(t) = \prod_{\substack{j=1\\j\neq i}}^k \frac{t - x_j}{x_i - x_j}$$

has the property

$$\ell_i(x_j) = \delta_{ij}.$$

• Define

$$h_i(t) = [1 - 2(t - x_i)\ell'_i(x_i)]\ell^2_i(t)$$
(2)

$$g_i(t) = (t - x_i)\ell_i^2(x).$$
 (3)

 \diamond Note that both $h_i(x)$ and $g_i(x)$ are of degree 2k - 1.

 $\diamond\,$ The following properties can be checked out:

$$\begin{aligned} h_i(x_j) &= \delta_{ij}; \\ g_i(x_j) &= 0; \\ h'_i(x_j) &= [1 - 2(t - x_i)\ell'_i(x_i)]2\ell_i(t)\ell'_i(t) - 2\ell'_i(x_i)\ell^2_i(t)|_{t=x_j} = 0; \\ g'_i(x_j) &= (x - x_i)2\ell_i(x)\ell'_i(x) + \ell^2_i(x)|_{x=x_j} = \delta_{ij}. \end{aligned}$$

• The Hermite polynomial can be written down as

$$p(t) = \sum_{i=1}^{k} f(x_i)h_i(t) + f'(x_i)g_i(t)).$$
(4)