Numerical Integration

e Not all functions have closed-form anti-derivatives. Thus not all inte-
grals can be evaluated by the Fundamental Theorem of Calculus.

e For special functions, such as the error function
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efforts can be taken to tabulate values once for all. But this practice is
too limited.

e One better approach is to approximate the integral by quadratures.

o Given a function f(t) defined on [a, b], a formula of the form
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with a; € R and z; € [a,b] is called a quadrature rule for the
integral I(f) := [? f(t)dt
> The points x; are called the quadrature points (abscissas)
> The values «; are called the quadrature coefficients (welghts)
> The quadrature error is defined to be E,(f) := I(f) — Q.(f).

o A quadrature rule is said to have degree of precision m if E, (%) =
0 for k=0,...,m and E,(z™) # 0.

> If a quadrature rule has degree of precision m, then E,(px) =
0 for all polynomials p(x) of degree < m.
¢ The trapezoidal rule,
b—a
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[f(a) + f(b)], (2)

is a quadrature rule with degree of precision m = 1.



More on Trapezoidal Rule

e Recall the linear interpolant of f(¢) and the corresponding error:
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e Integrate both side of the above, we obtain
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[f(a) + f(b)]

and
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¢ Recall the Mean Value Theorem for integrals (?): If f is continu-
ous and g is nondecreasing in the interval |a,b|, then there ezists
€ € [a,b] such that
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o We may rewrite

B =T [ -nar =L a3

o If | f"(t)| is not too large and if b — a is small, the trapezoidal rule
gives an approximation with errors around O(h?).



e Over a large interval, the trapezoidal rule should be applied by sum-
ming the results of many applications of the rule over smaller intervals.

This is called composite trapezoidal rule.
o Divide [a, b] into n equally spaced intervals with step size h = b;—“
and nodes z; = a+ith for i =0,1,... n.

¢ Use the trapezoidal rule to approximate
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over each subinterval [z;—1, x;].

¢ Sum these approximations together:
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This is called the composite trapezoidal rule.

¢ Error formula:
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