Newton-Cotes Formula

- The way the trapezoidal rule is derived can be generalized to higher degree polynomial interpolants. Such a quadrature rule is called a *Newton-Cotes formula*.
- Let x_0, x_1, \ldots, x_n be given nodes in [a, b]. Recall that the Lagrange interpolation of a function at these nodes is given by the polynomial

$$p(t) = \sum_{j=0}^{n} f(x_j)\ell_j(t)$$

where each $\ell_j(t)$ is the Lagrange polynomial

$$\ell_j(t) := \prod_{i=0, i \neq j}^n \frac{t - x_i}{x_j - x_i}, \ j = 0, 1, \dots, n.$$

• We therefore have

$$\int_{a}^{b} f(t)dt \approx \int_{a}^{b} p(t)dt = \sum_{j=0}^{n} \omega_{j} f(x_{j})$$

where the weight ω_j is determined by

$$\omega_j = \int_a^b \ell_j(t) dt. \tag{1}$$

 \diamond Note that if f(t) itself is a polynomial of degree $\leq n$, then

$$f(t) = \sum_{j=0}^{n} f(x_j) \ell_j(t).$$
 (Why?)

In this case, the Newtow-Cotes quadrature rule evaluates $\int_a^b f(t)dt$ precisely.

 $\diamond~$ The Newton-Cotes quadrature rule has degree of precision at least n.

An Example — Simpson's Rule

- It is nice to know how the weight ω_j should be calculated. However, there are some other concerns:
 - ♦ These weights are difficult to evaluate.
 - \diamond How high can the degree of precision be pushed?
- Suppose we approximate f(t) by a quadratic polynomial $p_2(t)$ that interpolates $f(a), f\left(\frac{a+b}{2}\right)$ and f(b).
 - \diamond It can be shown that (I derived it in class)

$$Q_3(f) = \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)].$$
 (2)

- \diamond The error part is tricky!
 - ▷ Observe that the function (in variable s) from Newton's formula, $g(s) = p_2(s) + f[a, b, \frac{a+b}{2}, t](s-a)(s-b)(s-\frac{a+b}{2})$, interpolates f at $a, b, \frac{a+b}{2}$ and t.
 - \triangleright Thinking t as arbitrary, we should have

$$f(t) = p_2(t) + f[a, b, \frac{a+b}{2}, t](t-a)(t-b)(t-\frac{a+b}{2})$$

 \triangleright The error $E_3(f)$ therefore is given by

$$E_{3}(f) = \int_{a}^{b} f[a, b, \frac{a+b}{2}, t]\omega(t)dt$$
 (3)

with $\omega(t) := (t - a)(t - b)(t - \frac{a+b}{2}).$

 \triangleright We already know that the degree of precision is ≥ 2 . Can this be better?

- The function $\omega(x)$ changes sign as x crosses $\frac{a+b}{2}$. So we have to analyze $E_3(x)$ by a different approach.
 - ♦ Let $Ω(x) := \int_a^x ω(t) dt$. Then Ω'(x) = ω(x).
 - $\diamond\,$ By integration by parts, we have

$$E_3(f) = f[a, b, \frac{a+b}{2}, x]\Omega(x)|_a^b - |_a^b f[a, b, \frac{a+b}{2}, x, x]\Omega(x)dx.$$

- ♦ Observe that $\Omega(a) = \Omega(b) = 0$. Observe also that $\Omega(x) > 0$ for all $x \in (a, b)$.
- \diamond We may apply the mean value theorem to conclude that

$$E_{3}(f) = -\int_{a}^{b} f[a, b, \frac{a+b}{2}, x, x] \Omega(x) dx$$

$$= -f[a, b, \frac{a+b}{2}, \xi, \xi] \int_{a}^{b} \Omega(x) dx$$

$$= -\frac{f^{(4)}(\eta)}{4!} \frac{4}{15} \left(\frac{b-a}{2}\right)^{5}$$

$$= -\frac{f^{(4)}(\eta)}{90} \left(\frac{b-a}{2}\right)^{5}.$$

- $\diamond\,$ The degree of precision for Simpson's rule is 3 rather than 2.
- Divide the interval into 2n equally space subintervals with $h = \frac{b-a}{2n}$ and $x_i = a + ih$ for i = 0, 1, ..., 2n. Upon applying Simpson's rule over *two* consecutive subintervals $[x_{2j}, x_{2j+2}]$ for j = 0, 1, ..., n-1 and summing up these integrals, we obtain the composite Simpson's rule:

$$\int_{a}^{b} f(t)dt \approx \frac{h}{3} \left\{ f_{0} + 4f_{1} + 2f_{2} + 4f_{3} + \ldots + 2f_{2n-2} + 4f_{2n-1} + f_{2n} \right\}.$$
(4)

♦ The error formula for the composite Simpson's rule can be obtained in the same way as we derived the error formula for the composite trapezoidal rule:

$$E_{3,cs} = -\frac{(b-a)h^4}{180}f^{(4)}(\eta).$$
(5)