Newton-Cotes Formula

- The way the trapezoidal rule is derived can be generalized to higher degree polynomial interpolants. Such a quadrature rule is called a Newton-Cotes formula.
- Let x_0, x_1, \ldots, x_n be given nodes in [a, b]. Recall that the Lagrange interpolation of a function at these nodes is given by the polynomial

$$
p(t) = \sum_{j=0}^{n} f(x_j) \ell_j(t)
$$

where each $\ell_i(t)$ is the Lagrange polynomial

$$
\ell_j(t) := \prod_{i=0, i \neq j}^n \frac{t - x_i}{x_j - x_i}, \ j = 0, 1, \dots, n.
$$

• We therefore have

$$
\int_a^b f(t)dt \approx \int_a^b p(t)dt = \sum_{j=0}^n \omega_j f(x_j)
$$

where the weight ω_j is determined by

$$
\omega_j = \int_a^b \ell_j(t) dt. \tag{1}
$$

 \Diamond Note that if $f(t)$ itself is a polynomial of degree $\leq n$, then

$$
f(t) = \sum_{j=0}^{n} f(x_j) \ell_j(t)
$$
. (Why?)

In this case, the Newtow-Cotes quadrature rule evaluates $\int_a^b f(t)dt$ precisely.

 The Newton-Cotes quadrature rule has degree of precision at least \overline{n} .

- It is nice to know how the weight ω_j should be calculated. However, there are some other concerns:
	- These weights are difficult to evaluate.
	- \Diamond How high can the degree of precision be pushed?
- Suppose we approximate $f(t)$ by a quadratic polynomial $p_2(t)$ that interpolates $f(a)$, $f\left(\frac{a+b}{2}\right)$ 2) and $f(b)$.
	- \Diamond It can be shown that (I derived it in class)

$$
Q_3(f) = \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)].
$$
 (2)

- \diamond The error part is tricky!
	- \triangleright Observe that the *function (in variable s)* from Newton's formula, $g(s) = p_2(s) + f[a, b, \frac{a+b}{2}, t](s-a)(s-b)(s-\frac{a+b}{2})$ $\frac{+b}{2}$), interpolates f at $a, b, \frac{a+b}{2}$ and t .
	- \triangleright Thinking t as arbitrary, we should have

$$
f(t) = p_2(t) + f[a, b, \frac{a+b}{2}, t](t-a)(t-b)(t - \frac{a+b}{2})
$$

 \triangleright The error $E_3(f)$ therefore is given by

$$
E_3(f) = \int_a^b f[a, b, \frac{a+b}{2}, t] \omega(t) dt
$$
 (3)

with $\omega(t) := (t - a)(t - b)(t - \frac{a + b}{2})$ $\frac{+b}{2}$).

 \triangleright We already know that the degree of precision is ≥ 2 . Can this be better?

- The function $\omega(x)$ changes sign as x crosses $\frac{a+b}{2}$. So we have to analyze $E_3(x)$ by a different approach.
	- \Diamond Let $\Omega(x) := \int_a^x \omega(t) dt$. Then $\Omega'(x) = \omega(x)$.
	- \diamond By integration by parts, we have

$$
E_3(f) = f[a, b, \frac{a+b}{2}, x] \Omega(x)|_a^b - \left| \frac{b}{a} f[a, b, \frac{a+b}{2}, x, x] \Omega(x) dx \right|.
$$

- \Diamond Observe that $\Omega(a) = \Omega(b) = 0$. Observe also that $\Omega(x) > 0$ for all $x \in (a, b).$
- \diamond We may apply the mean value theorem to conclude that

$$
E_3(f) = -\int_a^b f[a, b, \frac{a+b}{2}, x, x] \Omega(x) dx
$$

= $-f[a, b, \frac{a+b}{2}, \xi, \xi] \int_a^b \Omega(x) dx$
= $-\frac{f^{(4)}(\eta)}{4!} \frac{4}{15} \left(\frac{b-a}{2}\right)^5$
= $-\frac{f^{(4)}(\eta)}{90} \left(\frac{b-a}{2}\right)^5$.

- The degree of precision for Simpson's rule is 3 rather than 2.
- Divide the interval into 2n equally space subintervals with $h = \frac{b-a}{2n}$ $\frac{a}{2n}$ and $x_i = a + ih$ for $i = 0, 1, ..., 2n$. Upon applying Simpson's rule over two consecutive subintervals $[x_{2j}, x_{2j+2}]$ for $j = 0, 1, ..., n-1$ and summing up these integrals, we obtain the composite Simpson's rule:

$$
\int_{a}^{b} f(t)dt \approx \frac{h}{3} \left\{ f_0 + 4f_1 + 2f_2 + 4f_3 + \ldots + 2f_{2n-2} + 4f_{2n-1} + f_{2n} \right\}.
$$
\n(4)

 The error formula for the composite Simpson's rule can be obtained in the same way as we derived the error formula for the composite trapezoidal rule:

$$
E_{3,cs} = -\frac{(b-a)h^4}{180} f^{(4)}(\eta). \tag{5}
$$