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Newton-Cotes Formula

• The way the trapezoidal rule is derived can be generalized to higher
degree polynomial interpolants. Such a quadrature rule is called a
Newton-Cotes formula.

• Let x0, x1, . . . , xn be given nodes in [a, b]. Recall that the Lagrange
interpolation of a function at these nodes is given by the polynomial

p(t) =
n∑

j=0

f(xj)`j(t)

where each `j(t) is the Lagrange polynomial

`j(t) :=
n∏

i=0,i6=j

t− xi

xj − xi

, j = 0, 1, . . . , n.

• We therefore have∫ b

a
f(t)dt ≈

∫ b

a
p(t)dt =

n∑
j=0

ωjf(xj)

where the weight ωj is determined by

ωj =
∫ b

a
`j(t)dt. (1)

� Note that if f(t) itself is a polynomial of degree ≤ n, then

f(t) =
n∑

j=0

f(xj)`j(t). (Why?)

In this case, the Newtow-Cotes quadrature rule evaluates
∫ b
a f(t)dt

precisely.

� The Newton-Cotes quadrature rule has degree of precision at least
n.
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An Example — Simpson’s Rule

• It is nice to know how the weight ωj should be calculated. However,
there are some other concerns:

� These weights are difficult to evaluate.

� How high can the degree of precision be pushed?

• Suppose we approximate f(t) by a quadratic polynomial p2(t) that

interpolates f(a), f
(

a+b
2

)
and f(b).

� It can be shown that (I derived it in class)

Q3(f) =
b− a

6
[f(a) + 4f(

a + b

2
) + f(b)]. (2)

� The error part is tricky!

. Observe that the function (in variable s) from Newton’s for-
mula, g(s) = p2(s) + f [a, b, a+b

2
, t](s − a)(s − b)(s − a+b

2
), in-

terpolates f at a, b, a+b
2

and t.

. Thinking t as arbitrary, we should have

f(t) = p2(t) + f [a, b,
a + b

2
, t](t− a)(t− b)(t− a + b

2
)

. The error E3(f) therefore is given by

E3(f) =
∫ b

a
f [a, b,

a + b

2
, t]ω(t)dt (3)

with ω(t) := (t− a)(t− b)(t− a+b
2

).

. We already know that the degree of precision is ≥ 2. Can this
be better?
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• The function ω(x) changes sign as x crosses a+b
2

. So we have to analyze
E3(x) by a different approach.

� Let Ω(x) :=
∫ x
a ω(t)dt. Then Ω′(x) = ω(x).

� By integration by parts, we have

E3(f) = f [a, b,
a + b

2
, x]Ω(x)|ba − |baf [a, b,

a + b

2
, x, x]Ω(x)dx.

� Observe that Ω(a) = Ω(b) = 0. Observe also that Ω(x) > 0 for all
x ∈ (a, b).

� We may apply the mean value theorem to conclude that

E3(f) = −
∫ b

a
f [a, b,

a + b

2
, x, x]Ω(x)dx

= −f [a, b,
a + b

2
, ξ, ξ]

∫ b

a
Ω(x)dx

= −f (4)(η)

4!

4

15

(
b− a

2

)5

= −f (4)(η)

90

(
b− a

2

)5

.

� The degree of precision for Simpson’s rule is 3 rather than 2.

• Divide the interval into 2n equally space subintervals with h = b−a
2n

and
xi = a+ ih for i = 0, 1, . . . , 2n. Upon applying Simpson’s rule over two
consecutive subintervals [x2j, x2j+2] for j = 0, 1, . . . , n−1 and summing
up these integrals, we obtain the composite Simpson’s rule:∫ b

a
f(t)dt ≈ h

3
{f0 + 4f1 + 2f2 + 4f3 + . . . + 2f2n−2 + 4f2n−1 + f2n} .

(4)

� The error formula for the composite Simpson’s rule can be ob-
tained in the same way as we derived the error formula for the
composite trapezoidal rule:

E3,cs = −(b− a)h4

180
f (4)(η). (5)


