Gaussian Quadrature

- Newton-Cotes quadratures for the integral $I(f) = \int_a^b f(x) dx$ are based on the integration of the polynomial p(x) that interpolates f(x) at a set of pre-selected nodes in [a, b].
 - ♦ The weights of a Newton-Cotes are determined by $\omega_j = \int_a^b \ell_j(t) dt$.
 - ♦ It can be proved that the degree of precision for a Newton-Cotes formula of *equally spaced* nodes x_0, x_1, \ldots, x_n is
 - $\diamond n+1$, if n is even (such as Simplson's rule).
 - $\diamond n$, if n is odd (such as the trapezoidal rule).
- Gaussian quadratures adopt a different approach in which both the abscissas x_i and weights α_i are to be determined *simultaneously* so that the quadrature

$$Q_n(f) = \sum_{i=1}^n \alpha_i f(x_i) \tag{1}$$

has a maximal degree of precision.

 \diamond Since there are 2n unknowns in (??), the requirements

$$E_n(x^k) = 0, k = 0, 1, \dots, 2n - 1$$
⁽²⁾

supply 2n equations.

- ♦ It is expected that the maximal degree of precision is $\geq 2n 1$.
- To determine the Gaussian quadrature, one approach is through the orthogonal polynomials.