Orthogonal Polynomials

• Two functions f and q defined on $[a, b]$ are said to be *orthogonal* if and only if

$$
\langle f, g \rangle := \int_{a}^{b} f(t)g(t)dt = 0.
$$
 (1)

- \Diamond The operation $\langle f, g \rangle$ may be regarded as an *inner product* of f and g .
- \Diamond A sequence $\{p_i(t)\}_{i=0}^{\infty}$ of polynomials with $\deg(p_i) = i$ is called a sequence of orthogonal polynomials on $[a, b]$ if

$$
\int_a^b p_i(t)p_j(t)dt = 0, \text{ whenever } i \neq j.
$$

- \triangleright The orthogonality is not affected by scalar multiplication. We may assume that all $p_i(t)$ are monic, i.e., the leading coefficients of all $p_i(t)$ are one.
- \triangleright Any *n*-th degree polynomial $q(t)$ can uniquely be written as

$$
q(t) = b_n p_n(t) + b_{n-1} p_{n-1}(t) + \ldots + b_0 p_0(t).
$$

That is, the orthogonal polynomials of degree $\leq n$ span the entire space of polynomials of degree $\leq n$.

Constructing Orthonomial Polynomials

- The following process constructs orthogonal polynomials over an arbitrary $[a, b]$:
	- $p_0(t) = 1.$
	- φ $p_1(t) = t a_0$, but

$$
0 = \langle p_0, p_1 \rangle \Longrightarrow a_0 = \frac{b+a}{2}.
$$

 ∞ Suppose $p_0(t), \ldots, p_n(t)$ has been constructed. We seek $p_{n+1}(t)$ in the form

$$
p_{n+1}(t) = (t - a_{n+1})p_n + b_{n+1}p_{n-1}(t) + c_{n+1}p_{n-2}(t) + \dots
$$

 \triangleright a_{n+1} can be determined from

$$
0 = \langle p_{n+1}, p_n \rangle \Longrightarrow a_{n+1} = \frac{\langle t, p_n^2 \rangle}{\langle p_n, p_n \rangle}.
$$

 \triangleright b_{n+1} can be determined from

$$
0 = \langle p_{n+1}, p_{n-1} \rangle \Longrightarrow b_{n+1} = \frac{\langle t, p_n p_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle}.
$$

 \triangleright c_{n+1} can be determined from

$$
0 = \langle p_{n+1}, p_{n-2} \rangle \Longrightarrow c_{n+1} = \frac{\langle t, p_n p_{n-2} \rangle}{\langle p_{n-2}, p_{n-2} \rangle}.
$$

But, surprisingly, the denominator $\langle t, p_n p_{n-2} \rangle = \langle t p_{n-1}, p_n \rangle =$ 0. (Why?)

• We therefore conclude that $p_{n+1}(t)$ can be generated by a *three-term* recurrence formula:

$$
p_{n+1}(t) = (t - a_{n+1})p_n(t) + b_{n+1}p_{n-1}(t).
$$
\n(2)

• If $[a, b] = [-1, 1]$, such a sequence of orthogonal polynomials are called the Legendre polynomials.